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COMPLEX NUMBER

COMPLEX NUMBER

1. DEFINITION

A number of the form a + ib, where a,b € Rand j = /-1,

is called a complex number and is denoted by ‘Z’.

J J
Re(z) Im(z)

1.1 Conjugate of a Complex Number

For a given complex number z = a + ib,

its conjugate ‘7’ is defined as z =a— ib

2. ALGEBRA OF COMPLEX NUMBERS

Letz, =a +ib and z, = ¢ + id be two complex numbers

where a, b, ¢, d € R and iz\/—_l.

1. Addition :
z,+z, =(a+Dbi)+ (c+di)

=(atc)+(b+d)i

2. Subtraction :

Z, -1,

= (a + bi) - (c + di)
=(a-c)+(b-d)i

3. Multiplication :

= (a + bi) (c + di)
=a(c+di)+ bi(c+di)
= ac + adi + bei + bdi’

=ac—bd+ (ad +bc) i

ZI'ZZ

(i =-1)

4. Division :
z, a+bi a+bi c—di
z, c+di c+di c—di

B (ac+bdj+[bc—adji
c+d*) \?+d’

1. a+ib=c+id
<a=c&b=d

3. \/_ \/_ =,/ a only if atleast one of either a or b

is non-negative.

3. ARGAND PLANE

A complex number z = a + ib can be represented by a
unique point P (a, b) in the argand plane.

Alm(z)

Z = a+ ib is represented by a point P (a, b)
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3.1 Modulus and Argument of Complex Number

If z=a+ ib is a complex number

Im(z)4

>

i (ab)P

@
X

7
5

>
0 (0,0) Re(2)

(1) Distance of Z from origin is called as modulus of complex

number Z.

It is denoted by =|Z| =+a’ +b’

(i) Here, 6 i.e. angle made by OP with positive direction of

real axis is called argument of z.

s A

z,> z,0r 7, < z, has no meaning but |z | > |z,| or |z,| < |z,

holds meaning.

3.2 Principal Argument

The argument ‘0’ of complex number z = a + ib is called

principal argument of z if -t < 0 < 7.

, and O be the arg (z).

b
Let tano =|—|
a

Plab] Flab]

o 4 o *
ang [zl =0k arg (2] = M- G
(i [if)
A A
(5}
M ~ N >
o O \ya
P (a,b) P (a, b)
arg (z)=n+a arg (z) =2n—a

(iii) (iv)

In (iii) and (iv) principal argument is given by —r + oo and

— o respectively.
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4. POLAR FORM

P (a,b)

r irsin 0

|

rcos 0

a=rcosH & b =rsin 0;

where r = |z| and 6 = arg(z)
z =a+tib

=1 (cos O + isin 0)

s A

7 = re” is known as Euler’s form; where
r =|Z| & 0 = arg(Z)

5. SOME IMPORTANT PROPERTIES

1. @)=z
2. z+Z=2Re(z)

3. z—z=2iIm(z)

4. 7,+2,=7,+7,

5. Z,2, =Z Z,
6.|z|=0=>2z=0
7. ZZ:|Z\2

_ |Zl|

|Z2|

4
Z,

8.12,2, =z ||z, |;

9. 1z[=[z|=| -z

10. |z, +2z, |2:|Z| i +]z, ?+2Re (2, 7,)
.|z +z|<|z|+]z] (Triangle Inequality)
12.]7,-2,2 |12 |- | 2,

13.|az,~ bz, [+ | bz, +az,['= @'+ b)) (| z,[+]z,)

14. amp (z,.z)) = amp z, +ampz,+2kn;k el

15. amp (&J =ampz, —ampz,+2kn ;kel
M

16. amp(z")=namp(z) + 2kn;k el

6. DE-MOIVRE’S THEOREM

Statement : cosn0+isinn® is the value or one of the
values of (cos 6 +isin 0)" according as if ‘n’ is integer or
a rational number. The theorem is very useful in
determining the roots of any complex quantity

7. CUBE ROOT OF UNITY

Roots of the equation x’ = 1 are called cube roots of unity.

xX-1=0
x-1)E +x+1)=0
x=1 or X+x+1=0
. 1443 —1-4/3i
1.€ X = or X =
2 2
w 2

w

“1+iV3  -1-i3

2 2

(i) The cube roots of unity are 1,

(i) W=1

(iii) If w is one of the imaginary cube roots of unity then
I+w+w=0.

(iv) Ingeneral 1 + w'+w> =0 ; where r €I but is not the
multiple of 3.

(v) In polar form the cube roots of unity are :

o 2n . 2m 4t 4n
cos0+1isin0; cosT +1sm7, cosT +1smT

(vi) The three cube roots of unity when plotted on the argand
plane constitute the verties of an equilateral triangle.

(vii) The following factorisation should be remembered :
a’— b3 =(a—Db)(a—wb)(a— wb);
X+x+1l=x-0) (xX-0?;

2 +b3>=(a+Db)(a+ wb)(a+ w’b);

a3+ b+ c3—3abc=(a+b+c)(a+wb+wc)(at+wb+ac)
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8. ‘n’ n" ROOTS OF UNITY

Solution of equation x" = 1 is given by

2kn . . 2km
X =CcoS—— +isin—
n n

;k=0,1,2,..,n-1

:ei(z%nj :k=0,1,...,n—1

s A

1. We may take any n consecutive integral values of k
to get ‘n’ n" roots of unity.

2. Sumof ‘n’ n" roots of unity is zero, ne N
3.  The points represented by ‘n’ n" roots of unity are located
at the vertices of regular polygon of n sides inscribed in

a unit circle, centred at origin & one vertex being one
+ve real axis.

Properties :

If 1,0,, o, 05....0, , are the n, n' root of unity
then :

(i) They are in GP. with common ratio e

0, if p #k

G) Prad+al+..taso=|" P 7" Sherekez
n, if p =kn

i) (1-0)(-0y).(l-a ) =n

' o . - 10, if niseven
() (1+a)d+oy ... (I ta, )= 1, if nis odd
_|-1, if niseven
OLn—l - : e
1, if nis odd

s A

(i) cosO+cos20+c0s30+....+cosnf=

) 22)

in(n6/2
(ii) sinO+sin20+sin30+....+sinnO= SITl(n / )Sin(n+1j9.
sin(6/2) 2

9. SQUARE ROOT OF COMPLEX NUMBER

Letx + iy = \/a +ib , Squaring both sides, we get
(x+iy) =a+ib
ie. X — y2 =a,2xy=>b

Solving these equations, we get square roots of z.

10. LOCI IN COMPLEX PLANE

(i) |z—z|= arepresents circumference of circle, centred
at z , radius a.

(ii) |z —z| < arepresents interior of circle
(iii) |z — z| > a represents exterior of this circle.

(iv) |z —z| = |z — z,| represents _L bisector of segment
with end points z, & z,.

V) ‘_1

i 2

{circle, k=1 }
= krepresents :

L bisector, k =1
(vi) arg (z) = O is a ray starting from origin (excluded)
inclined at an 0 with real axis.

(vii) Circle described on line segment joining z, & z, as
diameter is :

(viii)Four pts. z,, z,, z,, z, in anticlockwise order will be
concyclic, if & only if

= arg

z,— z,— . »
— 24 x| —2 | is real & positive.
Z17 Z, =74
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11. VECTORIAL REPRESENTATION OF A COMPLEX

Every complex number can be considered as if
itis the position vector of that point. If the point

P represents the complex number z then,

- -
OP=z & |OP| = |4].
C(z)
Y
(ZJ_ZI) B(Zz)
Q(Z') (Zz'zl)
. A(z)
o 1T
0
O X

i A

_) .
@ IfOP =z=rel? then

N
0Q =z=re®"® =7 ¢i

L -
If OP and OQ are of unequal magnitude then

A AT
0Q =0Pe*
(i) Ifz,z,z, are three vertices of a triangle ABC described
in the counter-clock wise sense, then
Z,—7Z .. AC z,—27 | .
——— =——(cosa+isina)=—.¢" =|3—1‘. =
z,-z AB AB |z, -2z, |

)

(i)

12. SOME IMPORTANT RESULTS

If z and z, are two complex numbers, then the distance
between z, and z,is |z, - z|.
Segment Joining points A (z,) and B(z,) is divided by point

P (2) in the ratio m : m,

m,z, + m,z
then z=—"2—2— m and m, are real.

m, +m2

(iii) The equation of the line joining z and z, is given by

z Z
z Z =0 (non parametric form)
Z, o
Or
Z—Z _ zZ— 22
Z-7 7-7,

(iv)  az-+az+b=0represents general form of line.
(v) The general eqn. of circle is :
7zZ+aZ+az+b=0 (where b is real no.).
Centre : (—a) & radius NE \2 b =+/aa-b.
(vi) Circle described on line segment joining z, & z, as diameter

is :

(z-2,)(z2-%,)+(z-2,)(z-7)=0.

2
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(vii)

(viii)

(ix)

x)

Four pts. z, z,, z,, z, in anticlockwise order will be

concylic, if & only if
0= arg.(z2 % ] = arg(—z2 % ]
Z, =2 Z, —Z4

arg % _Z“]—arg.(z2 _23]:2nn ;(nel)

z,-z2, z,— 7,

z, -2, )\ 2, —7,

Z,-2 z,-7, ). "
2% Ix| == | is real & positive.
z,-7, ) \z,-2,

If z,, z,, z, are the vertices of an equilateral triangle

where Zy 1s its circumcentre then

1 1 1 _
(b) z) tz| tz, -2/2)-2,2,— 2,2, =0

(c) zé +Z% +Z; :32/1
If A,B,C & D are four points representing the complex

numbers z,, z,,z, & z, then

AB || cp if 2=

Z, 17

is purely real ;

ABLCD if 275 g purely imaginary |
tp =%

Two points P (z,) and Q(z,) lie on the same side or opposite

side of the line 3z + a7 + b accordingly as az, +az, +b and

az, +az, + b have same sign or opposite sign.

Important Identities

() X+x+1=(x0) (o)

() x—x+1=(x+0)x+o)

(i) X'+ xy +y = (x-yo) (x-yo)

(iv) x'— Xy + y2: (x + oy) (x + yo)

V) X+y'=@+iy) (x-iy)

(Vi) X4y = (x+y) (x+ yo) (x + yo)

(vid) X'y’ = (x - y) (x ~ yo) (x - yo)

(viii) X+ y2 +7- Xy —yz —zx = (X + yo +zu)2) (x-iryco2 + zm)
or (xo-+ ym2 +z) (xm2+ yo + z)

or (xo+y+ 70) (xco2 + vy + zw).

(ix) X+ y3 +2z - 3xyz=(x +y + z) (x+wy+mzz)

(X +0'y+oz)
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QUADRATIC EQUATION

1. QUADRATIC EXPRESSION 3. NATURE OF ROOTS

The general form of a quadratic expression in X is,

(a) Consider the quadratic equation ax> + bx + ¢ =0

(o) — a2
f(x)=ax"+bx+c,wherea,b,c € R&a=0. where a, b, ¢ € R & a # 0 then;

and general form of a quadratic equation in x is, . o
(i) D >0 < roots are real & distinct (unequal).

ax’+bx+c=0,wherea,b,c € R&a=0.
(i) D =0 < roots are real & coincident (equal).

2. ROOTS OF QUADRATIC EQUATION

(iii) D <0 < roots are imaginary.

(a) The solution of the quadratic equation, ) ¥y ) )
(iv) If p +1 q is one root of a quadratic equation,

2 .. —b++/b? —4ac then the other must be the conjugate p —iq &
ax*+bx+c=0is givenbyx= —————
¥ vice versa. (p, qgeR & i:1/-1).

The expression D = b? — 4ac is called the discriminant
of the quadratic equation. (b) Consider the quadratic equation ax> + bx +c =0

(b) If o &P are the roots of the quadratic equation fCre 8, b, c SEUEEEEE

ax® + bx + ¢ = 0. then : (i) If D> 0 & is a perfect square, then roots are

rational & unequal.

(i) a+ B =-Db/a (ii) aB=c/a

Jo (i) If a= p+\/5 is one root in this case, (where p
(iii) |a—BF—.

|al

is rational & ./q is a surd) then the other root

(c) A quadratic equation whose roots are o & [ is
(x-a)(x-PB)=0i.e. must be the conjugate ofiti.e. B =p- \/a & vice

x*—(a+B)x+af =0 ie. versa.

x* — (sum of roots) x + product of roots = 0.

. A

Remember that a quadratic equation cannot have
y=(ax’+bx +c)=a(x—a) (x—P)

(3 =
=a|x+— | ——
2a 4a

three different roots & if it has, it becomes an

identity.
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4. GRAPH OF QUADRATIC EXPRESSION

Consider the quadratic expression, y = ax> + bx + c,

a0 &a,b,c € R then;

(i) The graph between Xx, y is always a parabola.
If a > 0 then the shape of the parabola is
concave upwards & if a < 0 then the shape of

the parabola is concave downwards.
(i) y>0VxeR, onlyif a>0&D<0

(i) y<0VxeR,

5. SOLUTION OF QUADRATIC INEQUALITIES

ax?+bx+c>0 (a=0).

only if a<0&D<0

(i) IfD> 0, then the equation ax> + bx + ¢ = 0 has

two different roots (x, <x,).
Then a>0

= xe€(=90,x)VU(X,,)

a<o0 = xe(Xx,X)

(i) Inequalities of the form Q(X) 2 0 can be

quickly solved using the method of intervals

(wavy curve).

6. MAX. & MIN. VALUE OF QUADRATIC EXPRESSION

Maximum & Minimum Value of y = ax? + bx + ¢ occurs

at x = —(b/2a) according as :

For a> (0, we have :

[\
N

(+-3)

L b
Ymin :Ta at x :Z’ and Ymax —> ®

For a <0, we have :

£ 4ac—b*
y ’ 4a

-b
atx=—, and y,;, > —©
a

Ymax = E
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7. THEORY OF EQUATIONS /
If o, a,, a,, ..... , o are the roots of the n" degree Wg' o

polynomial equation :
fx)=ax"+ax"'+ax"?+. ... +a_x+a =0

where I a_are all real & a =0,

Then,

8. LOCATION OF ROOTS

Let f(x)=ax>+bx +c, wherea>0&a,b,c € R.

(i) Conditions for both the roots of f{x) = 0 to be
greater than a specified number ‘k’ are :
D> 0 & fk)>0 & (-b/2a) > k.

(i) Conditions for both roots of f'(x) = 0 to lie on
either side of the number ‘k’ (in other words
the number ‘k’ lies between the roots of
f(x)=01is:
af(k)<0.

(iii)) Conditions for exactly one root of f(x) = 0 to lie

in the interval (k , k,) i.e. k, <x <k, are:

D>0 & f(k).f(k)<O0.

Conditions that both roots of f(x) = 0 to be

confined between the numbers k, & k, are

(k,<k,):
D> 0& f(k)>0 & f(k)>0 &k, <(-b2a)<k.

(iv)

Remainder Theorem : If f(x) is a polynomial, then
f(h) is the remainder when f (x) is divided by x — h.

Factor theorem : If x = h is a root of equation

f(x) =0, then x-h is a factor of f(x) and conversely.

9. MAX. & MIN. VALUES OF RATIONAL EXPRESSION

Here we shall find the values attained by a rational

alx2 +bx+¢

expresion of the form for real values

212x2 +by,x+c,

of x.

Example No. 4 will make the method clear.

10. COMMON ROOTS

(a) Only One Common Root
Let o be the common root ofax>+bx+¢c=0 &
a'’x>+ b'x +¢'=0, suchthata,a'=0andab'=a'b.

Then, the condition for one common root is :
(ca'—c'a)’ = (ab’—a'b) (bc'—b'c).

(b) Two Common Roots

Let o, B be the two common roots of
ax’+bx+c=0&ax>+b'x+c' =0,
such that a, a'# 0.

Then, the condition for two common roots is :

a b ¢
;_F_c'
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11. RESOLUTION INTO TWO LINEAR FACTORS

The condition that a quadratic function

f(X,y):aX2+2hxy+by2+2gx+2fy+c

may be resolved into two linear factors is that ;

abc + 2fgh — af> —bg? —ch?=0

OR

=0

0 B oo
= o =
o h0Q

12. FORMATION OF A POLYNOMIAL EQUATION

Ifa,a,a, ..., o are the roots of the n" degree

polynomial equation, then the equation is

X"— 8 xS X"+ S x4 +(=1)"S, =0

where S, denotes the sum of the products of roots

taken k at a time.

Particular Cases

(@)

(b)

(M)

(i)

Quadratic Equation if o,  be the roots the
quadratic equation, then the equation is :

xX*-Sx+8,=0 ie X*-(a+B)x+af=0

Cubic Equation if a, 3, y be the roots the cubic
equation, then the equation is :
X*-Sx*+8x-S =0 ie
X*—(a+tB+y)x*+(ap + Py +ya)x—apfy=0
If oL is a root of equation f(x) = 0, the polynomial

f (x) is exactly divisible by (x— o). In other words,

(x — ) is a factor of f(x) and conversely.

Every equation of nth degree (n > 1) has exactly
n roots & if the equation has more than nroots,
it is an identity.

(iii)

(iv)

If there be any two real numbers ‘a’ & ‘b’ such
that f (a) & f (b) are of opposite signs, then
f (x) = 0 must have atleast one real root
between ‘a’ and ‘b’.

Every equation f(x) = 0 of degree odd has
atleast one real root of a sign opposite to that
of its last term.

13. TRANSFORMATION OF EQUATIONS

(M)

(i)

(iii)

(iv)

To obtain an equation whose roots are reciprocals
of the roots of a given equation, it is obtained by
replacing x by 1/x in the given equation

Transformation of an equation to another
equation whose roots are negative of the roots of
a given equation-replace x by — x.

Transformation of an equation to another
equation whose roots are square of the roots of a

given equation—replace x by \/x .
Transformation of an equation to another

equation whose roots are cubes of the roots of a
given equation—-replace x by x'3.
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