Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

COMPLEX NUMBER

COMPLEX NUMBER

1. DEFINITION

A number of the form $\mathrm{a}+\mathrm{ib}$, where $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\mathrm{i}=\sqrt{-1}$, is called a complex number and is denoted by ' Z '.

1.1 Conjugate of a Complex Number

For a given complex number $\mathrm{z}=\mathrm{a}+\mathrm{ib}$, its conjugate ' \bar{z} ' is defined as $\bar{z}=a-i b$

2. ALGEBRA OF COMPLEX NUMBERS

Let $\mathrm{z}_{1}=\mathrm{a}+\mathrm{ib}$ and $\mathrm{z}_{2}=\mathrm{c}+\mathrm{id}$ be two complex numbers where $a, b, c, d \in R$ and $i=\sqrt{-1}$.

1. Addition :

$$
\begin{aligned}
\mathrm{z}_{1}+\mathrm{z}_{2} & =(\mathrm{a}+\mathrm{bi})+(\mathrm{c}+\mathrm{di}) \\
& =(\mathrm{a}+\mathrm{c})+(\mathrm{b}+\mathrm{d}) \mathrm{i}
\end{aligned}
$$

2. Subtraction :

$$
\begin{aligned}
\mathrm{z}_{1}-\mathrm{z}_{2} & =(\mathrm{a}+\mathrm{bi})-(\mathrm{c}+\mathrm{di}) \\
& =(\mathrm{a}-\mathrm{c})+(\mathrm{b}-\mathrm{d}) \mathrm{i}
\end{aligned}
$$

3. Multiplication :

$$
\begin{aligned}
\mathrm{z}_{1} \cdot \mathrm{z}_{2} \quad & =(\mathrm{a}+\mathrm{bi})(\mathrm{c}+\mathrm{di}) \\
& =\mathrm{a}(\mathrm{c}+\mathrm{di})+\mathrm{bi}(\mathrm{c}+\mathrm{di}) \\
& =\mathrm{ac}+\mathrm{adi}+\mathrm{bci}+\mathrm{bdi}^{2} \\
& =\mathrm{ac}-\mathrm{bd}+(\mathrm{ad}+\mathrm{bc}) \mathrm{i}
\end{aligned}
$$

$$
\left(\because \mathrm{i}^{2}=-1\right)
$$

4. Division :

$$
\begin{aligned}
\frac{z_{1}}{z_{2}}=\frac{a+b i}{c+d i}= & \frac{a+b i}{c}+\operatorname{di} \cdot \frac{c-d i}{c-d i} \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+\left(\frac{b c-a d}{c^{2}+d^{2}}\right) i
\end{aligned}
$$

Note.
 A

1. $\mathrm{a}+\mathrm{ib}=\mathrm{c}+\mathrm{id}$

$$
\Leftrightarrow \mathrm{a}=\mathrm{c} \& \mathrm{~b}=\mathrm{d}
$$

2. $i^{4 k+r}=\left\{\begin{aligned} 1 ; & r=0 \\ i ; & r=1 \\ -1 ; & r=2 \\ -i ; & r=3\end{aligned}\right.$
3. $\sqrt{\wedge} \sqrt{\mathrm{a}}=\sqrt{{ }^{\wedge} \mathrm{a}}$ only if at least one of either a or b is non-negative.

3. ARGAND PLANE

A complex number $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ can be represented by a unique point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ in the argand plane.

$\mathrm{Z}=\mathrm{a}+\mathrm{ib}$ is represented by a point $\mathrm{P}(\mathrm{a}, \mathrm{b})$

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

3.1 Modulus and Argument of Complex Number

If $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ is a complex number

(i) Distance of Z from origin is called as modulus of complex number Z .

It is denoted by $r=|z|=\sqrt{a^{2}+b^{2}}$
(ii) Here, θ i.e. angle made by OP with positive direction of real axis is called argument of \mathbf{z}.

$z_{1}>z_{2}$ or $z_{1}<z_{2}$ has no meaning but $\left|z_{1}\right|>\left|z_{2}\right|$ or $\left|z_{1}\right|<\left|z_{2}\right|$ holds meaning.

3.2 Principal Argument

The argument ' θ ' of complex number $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ is called principal argument of z if $-\pi<\theta \leq \pi$.

Let $\tan \alpha=\left|\frac{b}{\mathrm{a}}\right|$, and θ be the $\arg (\mathrm{z})$.

(i)

(iii)

(ii)

(iv)

In (iii) and (iv) principal argument is given by $-\pi+\alpha$ and $-\alpha$ respectively.

Vedantu

4. POLAR FORM

$a=r \cos \theta \quad \& b=r \sin \theta ;$
where $r=|z|$ and $\theta=\arg (z)$
$\therefore \quad \mathrm{z}=\mathrm{a}+\mathrm{ib}$

$$
=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)
$$

Nate.

$Z=r e{ }^{i \theta}$ is known as Euler's form; where $\mathrm{r}=|\mathrm{Z}| \& \theta=\arg (\mathrm{Z})$

5. SOME IMPORTANT PROPERTIES

1. $\overline{(\bar{z})}=z$
2. $z+\bar{z}=2 \operatorname{Re}(z)$
3. $\mathrm{z}-\overline{\mathrm{z}}=2 \mathrm{i} \operatorname{Im}(\mathrm{z})$
4. $\overline{\mathrm{z}_{1}+\mathrm{z}_{2}}=\overline{\mathrm{z}}_{1}+\overline{\mathrm{z}}_{2}$
5. $\overline{z_{1} z_{2}}=\bar{z}_{1} \bar{z}_{2}$
6. $|\mathrm{z}|=0 \Rightarrow \mathrm{z}=0$
7. $\mathrm{z} \overline{\mathrm{z}}=|\mathrm{z}|^{2}$
8. $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| ;\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
9. $|\overline{\mathrm{z}}|=|\mathrm{z}|=|-\mathrm{z}|$
10. $\left|z_{1} \pm z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} \pm 2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
11. $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad$ (Triangle Inequality)
12. $\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
13. $\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}=\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
14. $\operatorname{amp}\left(\mathrm{z}_{1} \cdot \mathrm{z}_{2}\right)=\operatorname{amp} \mathrm{z}_{1}+\operatorname{amp} \mathrm{z}_{2}+2 \mathrm{k} \pi ; \mathrm{k} \in \mathrm{I}$
15. $\operatorname{amp}\left(\frac{y_{0}}{y_{1}}\right)=\operatorname{amp} z_{1}-\operatorname{amp} z_{2}+2 k \pi ; k \in I$
16. $\operatorname{amp}\left(\mathrm{z}^{\mathrm{n}}\right)=\mathrm{n} \operatorname{amp}(\mathrm{z})+2 \mathrm{k} \pi ; \mathrm{k} \in \mathrm{I}$

6. DE-MOIVRE'S THEOREM

Statement $: \cos n \theta+i \sin n \theta$ is the value or one of the values of $(\cos \theta+i \sin \theta)^{n}$ according as if ' n ' is integer or a rational number. The theorem is very useful in determining the roots of any complex quantity

7. CUBE ROOT OF UNITY

Roots of the equation $x^{3}=1$ are called cube roots of unity.

$$
\begin{gathered}
x^{3}-1=0 \\
(x-1)\left(x^{2}+x+1\right)=0 \\
x=1 \quad \text { or } \quad x^{2}+x+1=0 \\
\text { i.e } \quad x=\underbrace{\frac{-1+\sqrt{3} i}{2}}_{w} \text { or } x=\underbrace{\frac{-1-\sqrt{3} i}{2}}_{w^{2}}
\end{gathered}
$$

(i) The cube roots of unity are $1, \frac{-1+\mathrm{i} \sqrt{3}}{2}, \frac{-1-\mathrm{i} \sqrt{3}}{2}$.
(ii) $\quad \mathrm{W}^{3}=1$
(iii) If w is one of the imaginary cube roots of unity then $1+\mathrm{w}+\mathrm{w}^{2}=0$.
(iv) In general $1+w^{r}+w^{2 r}=0$; where $r \in I$ but is not the multiple of 3 .
(v) In polar form the cube roots of unity are :
$\cos 0+i \sin 0 ; \cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}, \quad \cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}$
(vi) The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle.
(vii) The following factorisation should be remembered:
$a^{3}-b^{3}=(a-b)(a-\omega b)\left(a-\omega^{2} b\right) ;$
$x^{2}+x+1=(x-\omega)\left(x-\omega^{2}\right) ;$
$a^{3}+b^{3}=(a+b)(a+\omega b)\left(a+\omega^{2} b\right) ;$
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a+\omega b+\omega^{2} c\right)\left(a+\omega^{2} b+\omega c\right)$

8. ' n ' $n^{\text {th }}$ ROOTS OF UNITY

Solution of equation $x^{n}=1$ is given by

$$
\begin{array}{ll}
x=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n} & ; k=0,1,2, \ldots, n-1 \\
=e^{i\left(\frac{2 k \pi}{n}\right)} & ; k=0,1, \ldots ., n-1
\end{array}
$$

1. We may take any n consecutive integral values of k to get ' n ' nth roots of unity.
2. Sum of ' n ' n ' roots of unity is zero, $n \in N$
3. The points represented by ' n ' nth roots of unity are located at the vertices of regular polygon of n sides inscribed in a unit circle, centred at origin $\&$ one vertex being one +ve real axis.

Properties :

If $1, \alpha_{1}, \alpha_{2}, \alpha_{3} \ldots . \alpha_{\mathrm{n}-1}$ are the $\mathrm{n}, \mathrm{n}^{\text {th }}$ root of unity then :
(i) They are in G.P. with common ratio $\mathrm{e}^{\mathrm{i}(2 \pi / \mathrm{n})}$
(ii) $1^{\mathrm{p}}+\alpha_{0}^{\mathrm{o}}+\alpha_{1}^{\mathrm{o}}+\ldots .+\alpha_{\mathrm{m}-0}^{\mathrm{o}}=\left[\begin{array}{l}0, \\ \text { if } \mathrm{p} \neq \mathrm{kn} \\ \mathrm{n}, \\ \text { if } \mathrm{p}=\mathrm{kn}\end{array}\right.$ where $\mathrm{k} \in \mathrm{Z}$
(iii) $\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \ldots \ldots\left(1-\alpha_{n-1}\right)=n$
(iv) $\left(1+\alpha_{1}\right)\left(1+\alpha_{2}\right) \ldots \ldots\left(1+\alpha_{n-1}\right)=\left[\begin{array}{l}0, \text { if } n \text { is even } \\ 1, \text { if } n \text { is odd }\end{array}\right.$
(v) $1 \cdot \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \ldots \ldots \ldots \alpha_{n-1}=$ $\left[\begin{array}{c}-1, \text { if } n \text { is even } \\ 1, \text { if } n \text { is odd }\end{array}\right.$

Note.

(i) $\cos \theta+\cos 2 \theta+\cos 3 \theta+\ldots . .+\cos n \theta=\frac{\sin (\mathrm{n} \theta / 2)}{\sin (\theta / 2)} \cos \left(\frac{\mathrm{n}+1}{2}\right) \theta$.
(ii) $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots . .+\sin n \theta=\frac{\sin (\mathrm{n} \theta / 2)}{\sin (\theta / 2)} \sin \left(\frac{\mathrm{n}+1}{2}\right) \theta$.

9. SQUARE ROOT OF COMPLEX NUMBER

Let $\mathrm{x}+\mathrm{iy}=\sqrt{\mathrm{a}+\mathrm{ib}}$, Squaring both sides, we get

$$
(x+i y)^{2}=a+i b
$$

ie. $x^{2}-y^{2}=a, 2 x y=b$
Solving these equations, we get square roots of z .

10. LOCI IN COMPLEX PLANE

(i) $\left|z-z_{0}\right|=$ a represents circumference of circle, centred at z_{o}, radius a .
(ii) $\left|\mathrm{z}-\mathrm{z}_{\mathrm{o}}\right|<$ a represents interior of circle
(iii) $\left|\mathrm{z}-\mathrm{z}_{\mathrm{o}}\right|>$ a represents exterior of this circle.
(iv) $\left|\mathrm{z}-\mathrm{z}_{1}\right|=\left|\mathrm{z}-\mathrm{z}_{2}\right|$ represents \perp bisector of segment with end points $z_{1} \& z_{2}$.
(v)
$\left|\begin{array}{l}-{ }_{1} \\ -_{2}\end{array}\right|=\mathrm{k}$ represents : $\left\{\begin{array}{l}\text { circle, } \mathrm{k} \neq 1 \\ \perp \text { bisector, } \mathrm{k}=1\end{array}\right\}$
(vi) $\arg (\mathrm{z})=\theta$ is a ray starting from origin (excluded) inclined at an $\angle \theta$ with real axis.
(vii) Circle described on line segment joining $z_{1} \& z_{2}$ as diameter is :

$$
\left(-{ }_{1}\right)\left(--\overline{\mathrm{z}}_{2}\right)+\left(\mathrm{z}-{ }_{2}\right)\left(--\overline{\mathrm{z}}_{1}\right)=0 .
$$

(viii)Four pts. $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}$ in anticlockwise order will be concyclic, if \& only if

$$
\begin{aligned}
& \theta=\arg \cdot\left(\frac{\mathrm{z}_{2}-{ }_{4}}{1_{4}-{ }_{4}}\right)=\arg \left(\frac{\mathrm{z}_{2}-{ }_{3}}{1_{3}-{ }_{3}}\right) \\
\Rightarrow & \arg \left(\frac{2-\mathrm{z}_{4}}{{ }_{1}-4_{4}}\right)-\arg \cdot\left(\frac{2-\mathrm{z}_{3}}{{ }_{1}-\mathrm{z}_{3}}\right)=2 \mathrm{n} \pi ;(\mathrm{n} \in \mathrm{I}) \\
\Rightarrow & \arg \left[\left(\frac{2-\mathrm{z}_{4}}{1_{1}-\mathrm{z}_{4}}\right)\left(\frac{1-3_{3}}{2_{3}-3_{3}}\right)\right]=2 \mathrm{n} \pi \\
\Rightarrow & \left(\frac{\mathrm{z}_{2}-{ }_{4}}{\mathrm{z}_{1}-{ }_{4}}\right) \times\left(\frac{\mathrm{z}_{1}-{ }_{3}}{\mathrm{z}_{2}-\mathrm{z}_{3}}\right) \text { is real \& positive. }
\end{aligned}
$$

COMPLEX NUMBER

11. VECTORIAL REPRESENTATION OF A COMPLEX

Every complex number can be considered as if it is the position vector of that point. If the point P represents the complex number z then,
$\overrightarrow{\mathrm{OP}}=\mathrm{z} \quad \& \quad|\overrightarrow{\mathrm{OP}}|=|\mathrm{z}|$.

(i) If $\overrightarrow{\mathrm{OP}}=\mathrm{z}=\mathrm{re}^{\mathrm{i} \theta}$ then $\overrightarrow{\mathrm{OQ}}=\mathrm{z}_{1}=\mathrm{re} \mathrm{e}^{\mathrm{i}(\theta+\phi)}=\mathrm{z} \cdot \mathrm{e}^{\mathrm{i} \phi}$.

If $\overrightarrow{O P}$ and $\overrightarrow{O Q}$ are of unequal magnitude then $\stackrel{\Lambda}{\mathrm{OQ}}=\stackrel{\Lambda}{\mathrm{OP}} \mathrm{e}^{\mathrm{i} \mathrm{\phi} \phi}$
(ii) If $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$, are three vertices of a triangle ABC described in the counter-clock wise sense, then $\frac{z_{3}-z}{z_{2}-z}=\frac{A C}{A B}(\cos \alpha+i \sin \alpha)=\frac{A C}{A B} \cdot e^{i \alpha}=\frac{\left|z_{3}-z_{1}\right|}{\left|z_{2}-z_{1}\right|} \cdot e^{i \alpha}$

12. SOME IMPORTANT RESULTS

(i) If z_{1} and z_{2} are two complex numbers, then the distance between z_{1} and z_{2} is $\left|z_{2}-z_{1}\right|$.
(ii) Segment Joining points $\mathrm{A}\left(\mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{z}_{2}\right)$ is divided by point $\mathrm{P}(\mathrm{z})$ in the ratio $\mathrm{m}_{1}: \mathrm{m}_{2}$
then $\mathrm{z}=\frac{\mathrm{m}_{1} \mathrm{z}_{2}+\mathrm{m}_{2} \mathrm{z}}{\mathrm{m}_{1}+\mathrm{m}_{2}}, \mathrm{~m}_{1}$ and m_{2} are real.
(iii) The equation of the line joining z_{1} and z_{2} is given by
$\left|\begin{array}{cc}\mathrm{z} & \overline{\mathrm{Z}} \\ \mathrm{z} & \overline{\mathrm{Z}} \\ \mathrm{z}_{2} & \overline{\mathrm{Z}}_{2}\end{array}\right|=0$ (non parametric form)

Or
$\frac{\mathrm{z}-\mathrm{z}}{\overline{\mathrm{z}}-\overline{\mathrm{Z}}}=\frac{\mathrm{z}-\mathrm{z}_{2}}{\overline{\mathrm{Z}}-\overline{\mathrm{Z}}_{2}}$
(iv) $\bar{a} z+a \bar{z}+b=0$ represents general form of line.
(v) The general eqn. of circle is :

$$
z \bar{z}+a \bar{z}+\bar{a} z+b=0 \quad \text { (where } b \text { is real no.). }
$$

Centre : $(-\mathrm{a})$ \& radius $\sqrt{|\mathrm{a}|^{2}-\mathrm{b}}=\sqrt{\mathrm{a} \overline{\mathrm{a}}-\mathrm{b}}$.
(vi) Circle described on line segment joining $\mathrm{z}_{1} \& \mathrm{z}_{2}$ as diameter is :

$$
\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{2}\right)+\left(\mathrm{z}-\mathrm{z}_{2}\right)\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{1}\right)=0 .
$$

(vii) Four pts. $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}$ in anticlockwise order will be concylic, if \& only if

$$
\theta=\arg \cdot\left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right)=\arg \left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)
$$

$\Rightarrow \quad \arg \left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right)-\arg \cdot\left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)=2 n \pi ;(n \in I)$
$\Rightarrow \quad \arg \left[\left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right)\left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)\right]=2 n \pi$
$\Rightarrow \quad\left(\frac{z_{2}-z_{4}}{z_{1}-z_{4}}\right) \times\left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)$ is real \& positive.
(viii) If z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle where z_{0} is its circumcentre then
(a) $\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}+\frac{1}{z_{1}-z_{2}}=0$
(b) $\mathrm{z}_{0}^{1}+\mathrm{z}_{1}^{1}+\mathrm{z}_{2}^{1}-\mathrm{z}_{1} \mathrm{z}_{2}-\mathrm{z}_{2} \mathrm{z}_{3}-\mathrm{z}_{3} \mathrm{z}_{1}=0$
(c) $\mathrm{z}_{0}^{1}+\mathrm{z}_{1}^{1}+\mathrm{z}_{2}^{1}=3 \mathrm{z}_{1}^{1}$
(ix) If $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ are four points representing the complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3} \& \mathrm{z}_{4}$ then
$A B\left|\mid C D\right.$ if $\frac{z_{4}-z_{3}}{z_{2}-z_{1}}$ is purely real ;
$\mathrm{AB} \perp \mathrm{CD} \quad$ if $\frac{\mathrm{z}_{4}-\mathrm{z}_{3}}{\mathrm{z}_{2}-\mathrm{z}_{1}}$ is purely imaginary]
(x) Two points $\mathrm{P}\left(\mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{z}_{2}\right)$ lie on the same side or opposite side of the line $\bar{a} z+a \bar{z}+b$ accordingly as $\bar{a} z_{1}+a \bar{z}_{1}+b$ and $\overline{\mathrm{a}} \mathrm{z}_{2}+\mathrm{a} \overline{\mathrm{z}}_{2}+\mathrm{b}$ have same sign or opposite sign.

Important Identities

(i) $\mathrm{x}^{2}+\mathrm{x}+1=(\mathrm{x}-\omega)\left(\mathrm{x}-\omega^{2}\right)$
(ii) $\mathrm{x}^{2}-\mathrm{x}+1=(\mathrm{x}+\omega)\left(\mathrm{x}+\omega^{2}\right)$
(iii) $x^{2}+x y+y^{2}=(x-y \omega)\left(x-y \omega^{2}\right)$
(iv) $x^{2}-x y+y^{2}=(x+\omega y)\left(x+y \omega^{2}\right)$
(v) $x^{2}+y^{2}=(x+i y)(x-i y)$
(vi) $\mathrm{x}^{3}+\mathrm{y}^{3}=(\mathrm{x}+\mathrm{y})(\mathrm{x}+\mathrm{y} \omega)\left(\mathrm{x}+\mathrm{y} \omega^{2}\right)$
(vii) $x^{3}-y^{3}=(x-y)(x-y \omega)\left(x-y \omega^{2}\right)$
(viii) $x^{2}+y^{2}+z^{2}-x y-y z-z x=\left(x+y \omega+z \omega^{2}\right)\left(x+y \omega^{2}+z \omega\right)$
or $\quad\left(x \omega+y \omega^{2}+z\right)\left(x \omega^{2}+y \omega+z\right)$
or $\left(x \omega+y+z \omega^{2}\right)\left(x \omega^{2}+y+z \omega\right)$.
(ix) $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+\omega y+\omega^{2} z\right)$ $\left(x+\omega^{2} y+\omega z\right)$

QUADRATIC EQUATION

QUADRATIC EQUATION

1. QUADRATIC EXPRESSION

The general form of a quadratic expression in x is, $f(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R} \& \mathrm{a} \neq 0$. and general form of a quadratic equation in x is, $a x^{2}+b x+c=0$, where $a, b, c \in R \& a \neq 0$.

2. ROOTS OF QUADRATIC EQUATION

(a) The solution of the quadratic equation,
$\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is given by $\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
The expression $D=b^{2}-4 a c$ is called the discriminant of the quadratic equation.
(b) If $\alpha \& \beta$ are the roots of the quadratic equation
$a x^{2}+b x+c=0$, then ;
(i) $\alpha+\beta=-b / a$
(ii) $\alpha \beta=\mathrm{c} / \mathrm{a}$
(iii) $|\alpha-\beta|=\frac{\sqrt{\mathrm{D}}}{|\mathrm{a}|}$.
(c) A quadratic equation whose roots are $\alpha \& \beta$ is $(x-\alpha)(x-\beta)=0$ i.e.
$x^{2}-(\alpha+\beta) x+\alpha \beta=0 \quad$ i.e.
$x^{2}-($ sum of roots $) x+$ product of roots $=0$.

$$
\begin{aligned}
y & =\left(a x^{2}+b x+c\right) \equiv a(x-\alpha)(x-\beta) \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{D}{4 a}
\end{aligned}
$$

3. NATURE OF ROOTS

(a) Consider the quadratic equation $\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c}=\mathbf{0}$ where $a, b, c \in R \& a \neq 0$ then;
(i) $\mathrm{D}>0 \Leftrightarrow$ roots are real $\&$ distinct (unequal).
(ii) $\mathrm{D}=0 \Leftrightarrow$ roots are real \& coincident (equal).
(iii) $\mathrm{D}<0 \Leftrightarrow$ roots are imaginary.
(iv) If $\mathrm{p}+\mathrm{i} \mathrm{q}$ is one root of a quadratic equation, then the other must be the conjugate $\mathrm{p}-\mathrm{i} \mathrm{q} \&$ vice versa. $(\mathrm{p}, \mathrm{q} \in \mathrm{R} \& \mathrm{i}=\sqrt{-1})$.
(b) Consider the quadratic equation $\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c}=\mathbf{0}$ where $a, b, c \in Q \& a \neq 0$ then;
(i) If $\mathrm{D}>0 \&$ is a perfect square, then roots are rational \& unequal.
(ii) If $\alpha=p+\sqrt{q}$ is one root in this case, (where p is rational $\& \sqrt{q}$ is a surd) then the other root must be the conjugate of it i.e. $\beta=p-\sqrt{q} \&$ vice versa.
-

Remember that a quadratic equation cannot have three different roots \& if it has, it becomes an identity.

QUADRATIC EQUATION

4. GRAPH OF QUADRATIC EXPRESSION

Consider the quadratic expression, $y=a x^{2}+b x+c$, $a \neq 0 \& a, b, c \in R$ then ;
(i) The graph between x, y is always a parabola. If $a>0$ then the shape of the parabola is concave upwards \& if a <0 then the shape of the parabola is concave downwards.
(ii) $\mathrm{y}>0 \forall \mathrm{x} \in \mathrm{R}$, only if $\mathrm{a}>0 \& \mathrm{D}<0$
(iii) $\mathrm{y}<0 \forall \mathrm{x} \in \mathrm{R}$, only if $\mathrm{a}<0 \& \mathrm{D}<0$

5. SOLUTION OF QUADRATIC INEQUALITIES

$a x^{2}+b x+c>0(a \neq 0)$.
(i) If $\mathrm{D}>0$, then the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ has two different roots ($\mathrm{x}_{1}<\mathrm{x}_{2}$).

Then $\mathrm{a}>0 \Rightarrow \mathrm{x} \in\left(-\infty, \mathrm{x}_{1}\right) \cup\left(\mathrm{x}_{2}, \infty\right)$

$$
\mathrm{a}<0 \quad \Rightarrow \mathrm{x} \in\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
$$

(ii) Inequalities of the form $\frac{P(x)}{Q(x)} \gtrless 0$ can be
quickly solved using the method of intervals (wavy curve).

6. MAX. \& MIN. VALUE OF QUADRATIC EXPRESSION

Maximum \& Minimum Value of $y=a x^{2}+b x+c$ occurs at $x=-(b / 2 a)$ according as :

For a >0, we have :

$y \in\left[\frac{4 a c-b^{2}}{4 a}, \infty\right)$

$$
\left(-\frac{\mathrm{b}}{2 \mathrm{a}},-\frac{\mathrm{D}}{4 \mathrm{a}}\right)
$$

$y_{\text {min }}=\frac{-\mathrm{D}}{4 \mathrm{a}}$ at $\mathrm{x}=\frac{-\mathrm{b}}{2 \mathrm{a}}$, and $\mathrm{y}_{\max } \rightarrow \infty$

For $\mathbf{a}<0$, we have :

$$
\left(-\frac{\mathrm{b}}{2 \mathrm{a}},-\frac{\mathrm{D}}{4 \mathrm{a}}\right)
$$

$$
\mathrm{y} \in\left(-\infty, \frac{4 \mathrm{ac}-\mathrm{b}^{2}}{4 \mathrm{a}}\right]
$$

$$
y_{\max }=\frac{-\mathrm{D}}{4 \mathrm{a}} \text { at } \mathrm{x}=\frac{-\mathrm{b}}{2 \mathrm{a}}, \text { and } \mathrm{y}_{\min } \rightarrow-\infty
$$

QUADRATIC EQUATION

7. THEORY OF EQUATIONS

If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots ., \alpha_{\mathrm{n}}$ are the roots of the $\mathrm{n}^{\text {th }}$ degree polynomial equation :

$$
f(\mathrm{x})=\mathrm{a}_{0} \mathrm{x}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{a}_{2} \mathrm{x}^{\mathrm{n}-2}+\ldots \ldots .+\mathrm{a}_{\mathrm{n}-1} \mathrm{x}+\mathrm{a}_{\mathrm{n}}=0
$$

where $\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots \ldots . \mathrm{a}_{\mathrm{n}}$ are all real $\& \mathrm{a}_{0} \neq 0$,
Then,

$$
\begin{aligned}
& \sum \alpha_{1}=-\frac{\mathrm{a}_{1}}{\mathrm{a}_{0}} \\
& \sum \alpha_{1} \alpha_{2}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{0}} \\
& \sum \alpha_{1} \alpha_{2} \alpha_{3}=-\frac{\mathrm{a}_{3}}{\mathrm{a}_{0}}
\end{aligned}
$$

\qquad

$$
\alpha_{1} \alpha_{2} \alpha_{3} \ldots . \alpha_{\mathrm{n}}=(-1)^{\mathrm{n}} \frac{\mathrm{a}_{\mathrm{n}}}{\mathrm{a}_{0}}
$$

8. LOCATION OF ROOTS

Let $f(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, where $\mathrm{a}>0 \& \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$.
(i) Conditions for both the roots of $f(\mathrm{x})=0$ to be greater than a specified number ' k ' are :
$\mathrm{D} \geq 0$
\& $\quad f(\mathrm{k})>0$
\& $\quad(-b / 2 a)>k$.
(ii) Conditions for both roots of $f(\mathrm{x})=0$ to lie on either side of the number ' k ' (in other words the number ' k ' lies between the roots of $f(\mathrm{x})=0$ is:
$a f(\mathrm{k})<0$.
(iii) Conditions for exactly one root of $f(\mathrm{x})=0$ to lie in the interval $\left(k_{1}, k_{2}\right)$ i.e. $\mathrm{k}_{1}<\mathrm{x}<\mathrm{k}_{2}$ are :
$\mathrm{D}>0 \quad \& \quad f\left(\mathrm{k}_{1}\right) \cdot f\left(\mathrm{k}_{2}\right)<0$.
(iv) Conditions that both roots of $f(x)=0$ to be confined between the numbers $\mathrm{k}_{1} \& \mathrm{k}_{2}$ are $\left(\mathrm{k}_{1}<\mathrm{k}_{2}\right)$:
$\mathrm{D} \geq 0 \& f\left(\mathrm{k}_{1}\right)>0 \& f\left(\mathrm{k}_{2}\right)>0 \& \mathrm{k}_{1}<(-\mathrm{b} / 2 \mathrm{a})<\mathrm{k}_{2}$.

Soto.

Remainder Theorem : If $f(x)$ is a polynomial, then $f(\mathrm{~h})$ is the remainder when $f(\mathrm{x})$ is divided by $\mathrm{x}-\mathrm{h}$.

Factor theorem : If $x=h$ is a root of equation $f(\mathrm{x})=0$, then $\mathrm{x}-\mathrm{h}$ is a factor of $f(\mathrm{x})$ and conversely.

9. MAX. \& MIN. VALUES OF RATIONAL EXPRESSION

Here we shall find the values attained by a rational
expresion of the form $\frac{a_{1} x^{2}+b_{1} x+c_{1}}{a_{2} x^{2}+b_{2} x+c_{2}}$ for real values
of x.
Example No. 4 will make the method clear.

10. COMMON ROOTS

(a) Only One Common Root

Let α be the common root of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0 \&$
$a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, such that $a, a^{\prime} \neq 0$ and $a b^{\prime} \neq a^{\prime} b$.
Then, the condition for one common root is :
$\left(c a^{\prime}-c^{\prime} a\right)^{2}=\left(a b^{\prime}-a^{\prime} b\right)\left(b c^{\prime}-b^{\prime} c\right)$.
(b) Two Common Roots

Let α, β be the two common roots of
$a x^{2}+b x+c=0 \& a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$,
such that $\mathrm{a}, \mathrm{a}^{\prime} \neq 0$.
Then, the condition for two common roots is :
$\frac{\mathrm{a}}{\mathrm{a}^{\prime}}=\frac{\mathrm{b}}{\mathrm{b}^{\prime}}=\frac{\mathrm{c}}{\mathrm{c}^{\prime}}$

QUADRATIC EQUATION

11. RESOLUTION INTO TWO LINEAR FACTORS

The condition that a quadratic function
$f(\mathrm{x}, \mathrm{y})=\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}$
may be resolved into two linear factors is that ;
$\mathrm{abc}+2 \mathrm{fgh}-\mathrm{af}^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$
OR $\left|\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right|=0$

12. FORMATION OF A POLYNOMIAL EQUATION

If $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots ., \alpha_{\mathrm{n}}$ are the roots of the $\mathrm{n}^{\text {th }}$ degree polynomial equation, then the equation is
$x^{n}-S_{1} x^{n-1}+S_{2} x^{n-2}+S_{3} x^{n-3}+\ldots \ldots+(-1)^{n} S_{n}=0$
where S_{k} denotes the sum of the products of roots taken k at a time.

Particular Cases

(a) Quadratic Equation if α, β be the roots the quadratic equation, then the equation is :
$x^{2}-S_{1} x+S_{2}=0 \quad$ i.e. $\quad x^{2}-(\alpha+\beta) x+\alpha \beta=0$
(b) Cubic Equation if α, β, γ be the roots the cubic equation, then the equation is :
$\mathrm{x}^{3}-\mathrm{S}_{1} \mathrm{x}^{2}+\mathrm{S}_{2} \mathrm{x}-\mathrm{S}_{3}=0 \quad$ i.e.
$x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma=0$
(i) If α is a root of equation $f(x)=0$, the polynomial $f(x)$ is exactly divisible by $(x-\alpha)$. In other words, $(x-\alpha)$ is a factor of $f(x)$ and conversely.
(ii) Every equation of nth degree ($\mathrm{n} \geq 1$) has exactly n roots \& if the equation has more than n roots, it is an identity.
(iii) If there be any two real numbers ' a ' \& ' b ' such that $f(a) \& f(b)$ are of opposite signs, then $\mathrm{f}(\mathrm{x})=0$ must have atleast one real root between ' a ' and ' b '.
(iv) Every equation $f(x)=0$ of degree odd has atleast one real root of a sign opposite to that of its last term.

13. TRANSFORMATION OF EQUATIONS

(i) To obtain an equation whose roots are reciprocals of the roots of a given equation, it is obtained by replacing x by $1 / x$ in the given equation
(ii) Transformation of an equation to another equation whose roots are negative of the roots of a given equation-replace x by -x .
(iii) Transformation of an equation to another equation whose roots are square of the roots of a given equation-replace x by $\sqrt{\mathrm{x}}$.
(iv) Transformation of an equation to another equation whose roots are cubes of the roots of a given equation-replace x by $x^{1 / 3}$.

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

