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Preface

This document is the lecture notes for the course “MAT-33317Statistics 1”, and is a translation
of the notes for the corresponding Finnish-language course. The laborious bulk translation was
taken care of by Jukka-Pekka Humaloja and the material was then checked by professor Robert
Piché. I want to thank the translation team for their effort.

The lecture notes are based on chapters 8, 9, 10, 12 and 16 of the book WALPOLE, R.E. &
MYERS, R.H. & MYERS, S.L. & YE, K.: Probability & Statistics for Engineers & Scientists,
Pearson Prentice Hall (2007). The book (denoted WMMY in the following) is one of the most
popular elementary statistics textbooks in the world. The corresponding sections in WMMY
are indicated in the right margin. These notes are however much more compact than WMMY
and should not be considered as a substitute for the book, forexample for self-study. There are
many topics where the presentation is quite different from WMMY; in particular, formulas that
are nowadays considered too inaccurate have been replaced with better ones. Additionally, a
chapter on stochastic simulation, which is not covered in WMMY, is included in these notes.

The examples are mostly from the book WMMY. The numbers of these examples in WMMY
are given in the right margin. The examples have all been recomputed using MATLAB, the sta-
tistical program JMP, or web-based calculators. The examples aren’t discussed as thoroughly
as in WMMY and in many cases the treatment is different.



iii

An essential prerequisite for the course “MAT-33317 Statistics” is the course “MAT-20501
Probability Calculus” or a corresponding course that covers the material of chapters 1–8 of
WMMY. MAT-33317 only covers the basics of statistics. The TUT mathematics department
offers many advanced courses that go beyond the basics, including “MAT-34006 Statistics 2”,
which covers statistical quality control, design of experiments, and reliability theory, “MAT-
51706 Bayesian methods”, which introduces the Bayesian approach to solving statistical prob-
lems, “MAT-51801 Mathematical Statistics”, which covers the theoretical foundations of statis-
tics, and “MAT-41281 Multivariate Statistical Methods”, which covers a wide range of methods
including regression.

Keijo Ruohonen



Chapter 1

FUNDAMENTAL
SAMPLING
DISTRIBUTIONS AND
DATA DESCRIPTIONS

This chapter is mostly a review of basic Probability Calculus. Addition-
ally, some methods for visualisation of statistical data are presented.

1.1 Random Sampling [8.1]

A population is a collection of all the values that may be included in a
sample. A numerical value or a classification value may exist in the sam-
ple multiple times. A sample is a collection of certain values chosen from
the population. The sample size, usually denoted by n, is the number of
these values. If these values are chosen at random, the sample is called
a random sample.

A sample can be considered a sequence of random variables: X1, X2,
. . . , Xn (”the first sample variable”, ”the second sample variable”, . . . )
that are independent and identically distributed. A concrete realized
sample as a result of sampling is a sequence of values (numerical or clas-
sification values): x1, x2, . . . , xn. Note: random variables are denoted
with upper case letters, realized values with lower case letters.

The sampling considered here is actually sampling with replacement. Sampling without
replacement is not
considered in this

course.

In other words, if a population is finite (or countably infinite), an element
taken from the sample is replaced before taking another element.

1.2 Some Important Statistics [8.2]

A statistic is some individual value calculated from a sample:
f(X1, . . . , Xn) (random variables) or f(x1, . . . , xn) (realized values). A
familiar statistic is the sample mean

X =
1

n

n∑
i=1

Xi or x =
1

n

n∑
i=1

xi.

1
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The former is a random variable while the latter is a numerical value
called the realized sample mean.

Another familiar statistic is the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 or s2 =
1

n− 1

n∑
i=1

(xi − x)2.

Again, the former is a random variable and the latter is a realized nu-
merical value. The sample variance can be written also in the form

Expand the square
(Xi −X)2.

S2 =
1

n− 1

n∑
i=1

X2
i −

n

n− 1
X

2

(and s2 similarly). The sample standard deviation, denoted by S (random
variable) or s (realized value), is the positive square root of the sample
variance. Other important statistics are the sample maximum and the
sample minimum

Xmax = max(X1, . . . , Xn) or xmax = max(x1, . . . , xn),

Xmin = min(X1, . . . , Xn) or xmin = min(x1, . . . , xn)

and their difference, the sample range.

R = Xmax −Xmin or r = xmax − xmin.

1.3 Data Displays and Graphical Methods [8.3]

In addition to the familiar bar chart or histogram, there are other very
common ways to visualize data.

Example. In this example nicotine content was measured in a random [8.3]

sample of n = 40 cigaretters:

1.09 1.92 2.31 1.79 2.28 1.74 1.47 1.97 0.85 1.24
1.58 2.03 1.70 2.17 2.55 2.11 1.86 1.90 1.68 1.51
1.64 0.72 1.69 1.85 1.82 1.79 2.46 1.88 2.08 1.67
1.37 1.93 1.40 1.64 2.09 1.75 1.63 2.37 1.75 1.69

The statistical software package JMP prints the following (a little tidied
up) graphical display:

Nicotinedata: Distribution Page 1 of 1
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The box-and-whiskers plot in the upper left depicts the distribution of
data. The box denotes the part of the data that lies between the lower
q(0.25) and upper q(0.75) quartiles (quartiles are explained below). In-
side the box there is also a vertical line denoting the sample median (see
next page). The whiskers show the sample maximum and the sample
minimum. Other quantiles can also be marked in the whiskers (see next
page). (Inside the box there is the mean value square that denotes the
confidence interval that will be considered in section 3.8.)

In most cases, one or more outliers are removed from the sample. An
outlier is a sample value that differs from the others so remarkably, that
it can be considered an error in the sample. There are various criteria to
classify outliers. In the picture, outliers are marked with dots (there are
two of them).

Instead of the bar chart, some people prefer a stem-and-leaf diagram
to visualize data. If a d-decimal presentation is used, the d − 1 first
decimals are chosen as the stem and the rest of the decimals are the
leaves. Data is typically displayed in the form

1.2
∣∣∣0227779

which in this case means, that the stem is 1.2, and the following values
are included in the sample: 1.20 once, 1.22 twice, 1.27 thrice and 1.29
once (1.21 for example isn’t included). The leaves may be written in
multiple rows due to space issues.

Example. (Continued) JMP prints the following stem and leaf diagram [8.3]

(again, a little tidied up compared to the default output)

Nicotinedata: Distribution Page 1 of 1
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In this case, the values have first been rounded off to two decimals.

The sample quantile q(f) is a numerical value, such that 100f % of
the sample values are ≤ q(f). In particular, it is defined that q(0) = xmin

and q(1) = xmax. In addition to the minimum and the maximum, other
common sample quantiles are the sample median q(0.5), the lower quartile
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q(0.25) and the upper quartile q(0.75). Yet other commonly used sample
quantiles are the quintiles

q(0.2) , q(0.4) , q(0.6) , q(0.8),

the deciles

q(0.1) , q(0.2) , q(0.3) , q(0.4) , q(0.5) , q(0.6) , q(0.7) , q(0.8) , q(0.9)

and the centiles

q(0.01) , q(0.02) , q(0.03) , . . . , q(0.99).

The difference q(0.75)− q(0.25) is the interquartile range.
The following may be a better definition to the sample quantile: q(f)

is such a numerical value that at most 100f % of the sample values are
< q(f) and at most (1− f)100 % of the sample values are > (q(f)). The
sample quantiles are however not unambiguously defined this way. There
are many ways to define the sample quantiles so that they will be unam-
biguous (see exercises). Statistical programs usually print a collection of
sample quantiles according to one of such definitions (see the previous
example).

The sample quantiles mentioned above are realized values. It is of
course possible to define the corresponding random variables Q(f), for
example the sample medianQ(0.5). The probability distributions of these
variables are however very complicated.

A quantile plot is obtained by first sorting the sample values x1, x2, . . . ,
xn in increasing order:

x(1), x(2), . . . , x(n)

(where x(i) is the i:th smallest sample value). Then a suitable number f
is computed for every sample value x(i). Such number is often chosen to
be

fi =
i− 3/8

n+ 1/4
.

Finally, the dots (fi, x(i)) (i = 1, . . . , n) can be plotted as a point plot or
a step line. The result is a quantile plot. If the data is displayed using a
step plot, the result is an empirical cumulative distribution function.

Example. (Continued) JMP plots exactly the cumulative distribution [8.3]
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function (the figure on the right):
Nicotinedata: Distribution Page 1 of 1
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Population values have a distribution that can be very difficult to
define accurately. There are often though good reasons to assume that
the distribution is somewhat normal. In other words, the cumulative
distribution function is often fairly well approximated by some cumulative
distribution function of the normal distribution N(µ, σ2). If in doubt,
the first thing to do is to examine a graphical display. This can be Often also the last!

done by comparing the sample quantiles to the relatives of the normal
distribution.

If the cumulative distribution function is F , its quantile q(f) is a num- Note that in spite their
similar notation, the

distribution’s quantile and
the sample quantile are

different concepts.

ber such that F
(
q(f)

)
= f . If the quantiles of the normal distribution

N(µ, σ2) are denoted by qµ,σ(f), then

qµ,σ(f) = µ+ σΦ−1(f),

where Φ is the cumulative distribution function of the standard normal
distribution N(0, 1).

Quite a good
approximation is

Φ−1(f) ∼= 4.91f0.14

− 4.91(1− f)0.14.By plotting the points
(
x(i), q0,1(fi)

)
(i = 1, . . . , n) as a scatter plot

or a step line, the result is a normal quantile plot. If the population
distribution actually is N(µ, σ2), then the plot should be somewhat a
straight line, because then ideally

q0,1(fi) = Φ−1(fi) =
qµ,σ(fi)− µ

σ
∼=
x(i) − µ

σ
.

Near the ends of the plot there may be some scattering, but at least in the
middle the plot should be a quite straight line. If that is not the case,
it can be tentatively concluded that the population distribution is not
normal. In the previous example the plot on the left is a normal quan-
tile plot. The population distribution can be, according to this figure,
considered normal although some scattering can be observed.

Example. In this example, the number of organisms (per square me- [8.5]
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ter) has been measured n = 28 times. JMP prints the following normal
quantile plot, from which it can be seen that the population distribution The axes are reversed!

cannot be considered normal. This can naturally be clearly seen from the
bar chart as well.

Organisms: Distribution Page 1 of 1
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There are other graphical methods to examine normality, for example
the normal probability plot.

1.4 Sampling distributions [8.4]

The distribution of a random variable is the sampling distribution. The
distributions of some random variables are often complicated, although
the population distribution itself may be ”nice” (for example normal).
Such variables are especially sample quantiles when considered random
variables.

1.4.1 Sampling distributions of means [8.5]

If the expectation of the sampling distribution is µ and its variance is σ2,
then the expectation of the sample mean is

E(X) = µ

and its variance is

var(X) =
σ2

n

(n is sample size). The standard deviation of the sample mean or its
standard error is σ/

√
n and it decreases as the sample size increases.

If the population distribution is a normal distribution N(µ, σ2), then Not all distributions have
an expectation. Some

distributions on the other
hand have only an

expectation but not a
finite variance.

the distribution of the sample mean is also a normal distribution, namely
N(µ, σ2/n). The distribution of (X) is however almost always normal in
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other cases, if just n is great enough (and the population distribution has
an expected value and a finite variance). This is ensured by a classical
approximation result:

The central limit theorem. If the expectation of the population distri-
bution is µ and its (finite) variance is σ, then the cumulative distribution
function of the standardized random variable

There are also versions of
the theorem where the

distributions are not
assumed to be identical,

only independent. Then, if
the expectations of the

sample values X1, . . . , Xn
are µ1, . . . , µn and their
variances are σ1, . . . , σn,

let’s choose

µ = 1
n (µ1 + · · ·+ µn) ,

σ2 = 1
n (σ2

1 + · · ·+ σ2
n).

Now the theorem holds as
long as yet some other

(weak) assumption is
made. A famous such

assumption is Lindeberg’s
condition. Jarl Lindeberg
(1876–1932), by the way,

was a Finnish
mathematician!

Z =
X − µ
σ/
√
n

approaches the cumulative distribution function Φ of the standard normal
distribution in the limit as n increases.

Usually a sample size of n = 30 is enough to normalize the distribution
of X accurately enough. If the population distribution is ”well-shaped”
(unimodal, almost symmetric) to begin with, a smaller sample size is
enough (for example n = 5).

Example. Starting from a strongly asymmetric distribution, density func-
tions of the sum X1 + · · ·+Xn for different sample sizes are formed ac-
cording to the first plot series on the next page (calculated with Maple).
If, on the other hand, in the beginning there is a symmetric, but strongly
bimodal, distribution, the density functions of the sum X1 + · · ·+Xn re-
semble ones in the second plot series on the next page. The sample size of
n = 7 is indeed enough to normalize the distribution X quite accurately
in the first case, but in the second the sample size of n = 20 is required.
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1. plot series:

n = 3
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Example. The diameter of a machine part should be µ = 5.0 mm (the [8.7]

expectation). It is known that the population standard deviation is σ =
0.1 mm. By measuring the diameter of n = 100 machine parts a sample
mean of x = 5.027 mm was calculated. Let’s calculate the probability that
a random sample from a population having the distribution N(5, 0.12)
would have a sample mean that differs from 5 at least as much as this
sample does:

P(|X − µ| ≥ 0.027 mm) = 2P
( X − 5.0

0.1/
√

100
≥ 2.7

)
= 0.0069

(from the standard normal distribution according to the Central limit
theorem). This probability is quite small, which raises suspicion: It is
quite probable that the actual µ is greater. The calculations in MATLAB
are:

>> mu=5.0;

sigma=0.1;

n=100;

x_viiva=5.027;

>> 2*(1-normcdf(x_viiva,mu,sigma/sqrt(n)))

ans =

0.0069

An expectation and a variance can be calculated for the difference of
two independent samples X1 and X2 If the random variables X

and Y are independent,
then

var(X ± Y )
= var(X) + var(Y ).

E(X1 −X2) = µ1 − µ2 and var(X1 −X2) =
σ2
1

n1

+
σ2
2

n2

,

where µ1, µ2 and σ2
1, σ

2
2 are the corresponding expectations and variances

of the population standard deviations and n1, n2 are the sample sizes. If
the sample sizes are great enough, a standardized random variable

Z =
X1 −X2 − (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

has, according to the Central limit theorem, a distribution that is close The sum and the difference
of two normally distributed

random variables are also
normally distributed

(when considering cumulative distributions) to a normal distribution
N(µ1 − µ2, σ

2
1/n1 + σ2

2/n2). (The distribution is exactly normal if the
population distributions are normal.)

Example. The drying times of two paints A and B were compared by [8.8]

measuring n = 18 samples. The population variances of the paints are
known to be σA = σB = 1.0 h. The difference of the sample means was
xA−xB = 1.0 h. Could this result be possible, even though the population
expectations are the same (meaning µA = µB)? Let’s calculate

P(XA −XB ≥ 1.0 h) = P
( XA −XB − 0√

1.02/18 + 1.02/18
≥ 3.0

)
= 0.0013.

The probability is so small that the result most likely isn’t a coincidence,
so indeed µA > µB. If there had been xA− xB = 15 min, the result would
be

P(XA −XB ≥ 0.25 h) = 0.2266,
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This result might well be a coincidence. These calculations in Matlab
are:

>> mu=0; % The paints have the same expectations

sigma_A=1.0;

sigma_B=1.0;

n_A=18;

n_B=18;

difference=1.0; % The sample mean of paint A - the sample mean of paint B

> 1-normcdf(difference,mu,sqrt(sigma_A/n_A+sigma_B/n_B))

ans =

0.0013

>> difference=0.25;

>> 1-normcdf(difference,mu,sqrt(sigma_A/n_A+sigma_B/n_B))

ans =

0.2266

1.4.2 The sampling distribution of the sample vari-
ance [8.6]

The sampling distribution of the sample variance is a difficult concept, The proofs are quite
complicated and are

omittedunless it can be assumed that the population distribution is normal. Let’s
make this assumption, so the sampling distribution of the sample variance
can be formed using the χ2-distribution.

If random variables U1, . . . , Uv have the standard normal distribution
and they are independent, a random variable

V = U2
1 + · · ·+ U2

v

has the χ2-distribution. Here v is a distribution’s parameter, the number ”chi-square-distribution”

of degrees of freedom. The density function of the distribution is

g(x) =


1

2
v
2 Γ(v

2
)
x
v−2
2 e−

x
2 , when x > 0

0, when x ≤ 0,

where Γ is the gamma-function Γ(y) =
∫∞
0
ty−1e−t dt. Despite its diffi- The gamma-function is a

continuous generalization
of the factorial n!. It

can be easily seen that
Γ(1) = 1 and by partial

integration that
Γ(y + 1) = yΓ(y).
Thus Γ(n) = (n− 1)!

when n is a positive
integer. It is more

difficult to see that

Γ( 1
2 ) =

√
π.

cult form, the probabilities of the χ2-distribution are numerically quite
easily computed. Here are presented some density functions of the χ2-
distribution (the number of degrees of freedom is denoted by n, the func-



CHAPTER 1. FUNDAMENTAL SAMPLING DISTRIBUTIONS... 11

tions are calculated with MATLAB):

0 1 2 3 4 5 6 7 8 9 10
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n = 1
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n = 15

n = 20

χ2(n)-jakaumien tiheysfunktioita

x

It is easily seen that E(V ) = v and it can be shown that var(V ) = 2v.
As a consequence of the Central limit theorem for large values of v (about That is the reason why the

χ2-distribution is tabulated
to at most 30–40 degrees

of freedom.

v ≥ 30) the χ2-distribution is very close to normal distribution N(v, 2v).
If X1, . . . , Xn is a sample of N(µ, σ2)-distributed population, then the

random variables (Xi − µ)/σ have the standard normal distribution and
they are independent. Additionally, the sum

n∑
i=1

(Xi − µ)2

σ2

is χ2-distributed with n degrees of freedom. But the sum is not the
sample variance! On the other hand a similar random variable

(n− 1)S2

σ2
=

n∑
i=1

(Xi −X)2

σ2

calculated from the sample variance is also χ2-distributed , but with n−1 This is difficult to prove!

degrees of freedom. It is important to notice that in this case there is no
approximation such as the Central limit theorem that can be used. The
distribution has to be normal.

Example. The lifetimes of n = 5 batteries have been measured. The [8.10]

standard deviation is supposed to be σ = 1.0 y. The measured lifetimes
were 1.9 y, 2.4 y, 3.0 y, 3.5 y and 4.2 y. Sample variance can be calculated
to be s2 = 0.815 y 2. Furhermore

P(S2 ≥ 0.815 y 2) = P
((n− 1)S2

σ2
≥ 3.260

)
= 0.5153

(by using χ2-distribution with n − 1 = 4 degrees of freedom.) The value
s2 is thus quite ”common” (close to median). There’s no reason to doubt
the supposed standard deviation 1.0 y. The calculations with MATLAB:

>> mu=3;
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sigma=1;

n=5;

otos=[1.9 2.4 3.0 3.5 4.2];

>> s=std(otos)

s =

0.9028

>> 1-chi2cdf((n-1)*s^2/sigma^2,n-1)

ans =

0.5153

1.4.3 t-Distribution [8.7]

Earlier when considering the sample mean, it was required to know the Again, the proofs are
complicated and will be

omittedstandard deviation σ. If the standard deviation is not known, it is possi-
ble to proceed, but instead of a normal distribution, a t-distribtution (or
Student’s distribution) is used. Additionally, the Central limit theorem
isn’t used, but the population distribution has to be normal.

If random variables U and V are independent, U has the standard
normal distribution and V is χ2-distributed with v degrees of freedom, a
random variable

T =
U√
V/v

has a t-distribution with v degrees of freedom. The density function of The distribution was
originally used by chemist

William Gosset
(1876–1937) a.k.a.

”Student”.

the distribution is

g(x) =
Γ(v+1

2
)

√
πv Γ(v

2
)

(
1 +

1

v
x2
)− v+1

2

.

Here are a few examples of density functions of the t-distribution (with
n degrees of freedom, calculated with MATLAB):

-4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n = 1

n = 5

n = 10

n = 30

t(n)-jakaumien tiheysfunktioita

t

The t-distribution is unimodal and symmetric about the origin and
somewhat resembles the standard normal distribution. It approaches the
standard normal distribution in the limit as v → ∞, but that is not
because of the Central limit theorem. But what?
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If the population distribution is normal, then the sample mean X
and the sample variance s2 are independent random variables. Because This independence is quite

difficult to prove and
somewhat surprising!of this, the random variables

U =
X − µ
σ/
√
n

and V =
(n− 1)S2

σ2

calculated from those are also independent. The preceding has the stan-
dard normal distribution and the latter has χ2-distribution with n − 1
degrees of freedom. Thus a random variable

T =
U√

V/(n− 1)
=
X − µ
S/
√
n

has the t-distribution with n− 1 degrees of freedom.

Example. The outcome of a chemical process is measured. The outcome
should be µ = 500 g/ml (supposed population expectation). The outcome
was measured in n = 25 batches, when the sample mean was x = 518
g/ml and the standard deviation s = 40 g/ml. Let’s calculate

P
(X − µ
S/
√
n
≥ 518− 500

40/
√

25

)
= P(T ≥ 2.25) = 0.0169

(by using a t-distribution with n − 1 = 24 degrees of freedom.) This
probability is quite small, so the result wasn’t a coincidence and thus the
outcome is actually better than it was thought to be. The calculations
with MATLAB:

>> mu=500;

n=25;

x_viiva=518;

s=40;

>> 1-tcdf((x_viiva-mu)/(s/sqrt(n)),n-1)

ans =

0.0169

Although the t-distribution is derived with the assumption that the
population distribution is normal, it is still quite robust, for the preceding
random variable T is almost t-distributed as long as the population dis-
tribution is normal-like (unimodal, almost symmetric). That is because
the standard deviation S of population distributions with relatively large
sample sizes n is so accurately = σ, that the Central limit theorem is used
in some ways. Thus the t-distribution is very useful in many situations.
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1.4.4 F-distribution [8.8]

Comparing the standard deviations of two samples can be done with their
sample variances and by using the F-distribution (also known as Fisher’s

Ronald Fisher (1880–
1962), a pioneer in

statistics

George Snedecor
(1881–1974)

distribution or Snedecor’s distribution).
If random variables V1 and V2 are independent and they are χ2-

distributed with v1 and v2 degrees of freedom correspondingly, a random
variable

F =
V1/v1
V2/v2

has the F-distribution with v1 and v2 degrees of freedom. In that case, ran-
dom variable 1/F has also F-distribution, namely with v2 and v1 degrees
of freedom. The formula for the density function of the F-distribution is
quite complicated:

g(x) =


(v1
v2

)v1
2 Γ(v1+v2

2
)

Γ(v1
2

)Γ(v2
2

)
x
v1−2

2

(
1 +

v1
v2
x
)− v1+v2

2
, when x > 0

0, when x ≤ 0.

A few examples of these density functions (with n1 and n2 degrees of
freedom, calculated with MATLAB):

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
1
 = 5, n

2
 = 5

n
1
 = 5, n

2
 = 20

n
1
 = 20, n

2
 = 5

n
1
 = 20, n

2
 = 20

F(n
1
,n

2
)-jakaumien tiheysfunktioita

v

If S2
1 and S2

2 are the sample variances of two independent samples,
the corresponding populations are normally distributed with standard
deviations σ1 and σ2 and the sample sizes are n1 and n2, then random
variables

V1 =
(n1 − 1)S2

1

σ2
1

and V2 =
(n2 − 1)S2

2

σ2
2

are independent, χ2-distributed with n1−1 and n2−1 degrees of freedom.
Thus a random variable

F =
V1/(n1 − 1)

V2/(n2 − 1)
=
S2
1/σ

2
1

S2
2/σ

2
2

is F-distributed with n1 − 1 and n2 − 1 degrees of freedom.
The F-distribution can be used to compare sample variances using

samples, see sections 2.9 and 3.7. It is however a fairly limited tool for
that purpose, and statistical software usually use other methods. E.g. Bartlett’s test or

Levene’s test.
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Example. Let’s consider a case where realized sample variances are s21 =
0.20 and s22 = 0.14 and the sample sizes are n1 = 25 and n2 = 30.
Additionally, the corresponding standard deviations are the same meaning
σ1 = σ2. Let’s calculate

P
(S2

1/σ
2
1

S2
2/σ

2
2

≥ s21/σ
2
1

s22/σ
2
2

)
= P(F ≥ 1.429) = 0.1787

(by using a F-distribution with n1 − 1 = 24 and n2 − 1 = 29 degrees of
freedom). The tail probability is therefore quite large, the value is in the
”common” area of the distribution and there’s no actual reason to doubt
that the sample deviations wouldn’t be the same. The calculations with
MATLAB:

>> n_1=25;

n_2=30;

s_1_toiseen=0.20;

s_2_toiseen=0.14;

>> 1-fcdf(s_1_toiseen/s_2_toiseen,n_1-1,n_2-1)

ans =

0.1787

Primarily the F-distribution is used in analysis of variance that will
be considered later.



Chapter 2

ONE- AND TWO-SAMPLE
ESTIMATION

Estimation of a numerical value related to the population distribution is,
together with hypothesis testing, a basic method in the field of classical Another basic field in

statisticals methods is
Bayesian statistics that is

not considered in this
course.

statistical inference.

2.1 Point Estimation and Interval Estima-

tion [9.3]

The purpose of point estimation is to estimate some population-related
numerical value, a parameter θ, by using the sample. Such a parameter
is for example the population’s expectation µ, which can be estimated by
the sample mean X. The realized value calculated from the sample is a
numerical value that estimates θ. This value is called the estimate, and
it is denoted by θ̂. The estimate is calculated from the sample values by
using some formula or some numerical algorithm.

On the other hand, the estimate calculated by applying the estimation
formula or algorithm to a sequence of random variables X1, . . . , Xn is a
random variable as well, and it is denoted by Θ̂. This random variable Remember: random

variables are denoted with
upper case letters, realized

values with lower case
letters.

is called the estimator.
There may be different estimators for the same parameter, and dif-

ferent parameters can be estimated by the same function of the sample.
For example the population expectation could be estimated by the sam-
ple median. The quality of the estimates depends on the symmetry of
the population distribution about its expectation. Moreover, the sample
mean is an estimator of the population median—a better estimator of
the population median is of course the sample median.

When estimating the population mean µ, variance σ2 and median m
the above mentioned concepts are:

Parameter θ Estimate θ̂ Estimator Θ̂

µ µ̂ = x X

σ2 σ̂2 = s2 S2

m m̂ = q(0.5) Q(0.5)

16
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A random variable that is used as an estimator of a population pa-
rameter is called a point estimator. If there is no systematic error in its
value, in other words its expectation E(Θ̂) equals the actual parameter
value, it is said that the estimator is unbiased. If, on the other hand,
E(Θ̂) 6= θ, then it’s said that the estimator E(Θ̂) is biased. (Here it is
assumed, of course, that E(Θ̂) exists!)

If µ is the population expectation, then the estimator X (the sample
mean as a random variable) is unbiased, because E(X) = µ. It will now
be shown that the sample variance S2 is an unbiased estimator for the
population variance σ2. Firstly, S2 can be written in the form

Write

Xi −X = (Xi − µ)

− (X − µ)
and expand the square.

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
1

n− 1

n∑
i=1

(Xi − µ)2 − n

n− 1
(X − µ)2.

Thus,

E(S2) =
1

n− 1

n∑
i=1

E
(
(Xi − µ)2

)
− n

n− 1
E
(
(X − µ)2

)
=

n

n− 1
σ2 − n

n− 1

σ2

n
= σ2.

The smaller the variance

var(Θ̂) = E
(
(Θ̂− θ)2

)
of the unbiased point estimator Θ̂ is, the more probable it is that it is
close to its expectation. It’s said that an estimator is more efficient, the
smaller its variance is. A biased estimator can be good as well, in the
sense that its mean square error E

(
(Θ̂− θ)2

)
is small.

The purpose of interval estimation is, by calculating from a sample, to
create an interval in which the correct parameter value θ belongs, at least
at some known, high enough probability. The interval may be one- or
two-sided. In a two-sided interval, both the endpoints θL (left or lower)
and θU (right or upper) are estimated. In one-sided interval, only the
other endpoint is estimated (the other is trivial, for example ±∞ or 0.)
Let’s consider first the two-sided intervals.

Here also, the estimates θ̂L and θ̂U are realized values calculated from
the sample. The estimators Θ̂L and Θ̂U, for their part, are random So the endpoints Θ̂L and

Θ̂U are the random
variables, not the

parameter θ!

variables. The basic idea is to find estimators, in one way or another, so
that

P(Θ̂L < θ < Θ̂U) = 1− α,

where α is a given value (often 0.10, 0.05 or 0.01). The realized interval
(θ̂L, θ̂U) is then called a 100(1−α) % confidence interval. The value 1−α
is the interval’s degree of confidence, and its endpoints are the lower and
the upper confidence limit.

The greater the degree of confidence is required, the wider the confi-
dence interval will be, and a degree of confidence close to 100 % usually
leads to intervals that are too wide to be interesting. Additionally, the
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condition P(Θ̂L < θ < Θ̂U) = 1 − α doesn’t tell, how the interval is
chosen. It is often required that the interval is symmetric, in other words

P(θ ≤ Θ̂L) = P(θ ≥ Θ̂U) =
α

2
.

(Another alternative would be to seek an interval that is the shortest
possible but that often leads to complicated calculations.)

2.2 Single Sample: Estimating the Mean [9.4]

When point estimating the population expectation µ, a natural unbiased
estimator is the sample mean X, whose variance is σ2/n. Here σ2 is the
population variance, which is for now supposed to be known. With large
sample sizes n such estimation is quite accurate indeed.

The interval estimation of the expectation is based on the fact that
the distribution of the random variable

Z =
X − µ
σ/
√
n

approaches, according to the Central limit theorem, the standard normal
distribution N(0, 1) in the limit as n increases. Let’s now choose a quan-
tile zα/2 of the distribution so that P(Z ≥ zα/2) = 1− Φ(zα/2) = α/2, so Φ is the cumulative

distribution function of the
standard normal

distribution.

that (by symmetry) also P(Z ≤ −zα/2) = Φ(−zα/2) = α/2. Then

P(−zα/2 < Z < zα/2) = 1− α.

On the other hand, the double inequality

−zα/2 <
X − µ
σ/
√
n
< zα/2

is equivalent to the double inequality

X − zα/2
σ√
n
< µ < X + zα/2

σ√
n
.

Thus, if the realized sample mean is x, the 100(1−α) % confidence limits
are chosen to be

µ̂L = x− zα/2
σ√
n

and µ̂U = x+ zα/2
σ√
n
.

Here are presented 100 cases of 90 %, 95 % and 99 % confidence For each 95 % confidence
interval case we generate

twenty standard normal
numbers, compute X, and
plot the line segment with
endpoints X ± 1.96/

√
20.

intervals for the standard normal distribution simulated with MATLAB.
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Let’s begin with the 90 % confidence intervals.

Note how about ten intervals don’t include the correct expectation µ = 0.
Many of the intervals are even disjoint. When moving to a higher degree
of confidence, the intervals become longer but are more likely to include
the correct expectation:
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Example. This is about zinc concentration in n = 36 different locations. [9.2]

The sample mean of the measurements is x = 2.6 g/ml. The population
standard deviation is known to be σ = 0.3 g/ml. If α = 0.05, when
z0.025 = 1.960, by calculating we get µ̂L = 2.50 g/ml and µ̂U = 2.70
g/ml. If again α = 0.01, when z0.005 = 2.575, we get µ̂L = 2.47 g/ml and
µ̂U = 2.73 g/ml so the interval is longer.

If a confidence interval is determined by a symmetric distribution,
which is the case for the expectation, the limits are of the form θ̂±b, where
θ̂ is the point estimate. The value b is in that case called the estimation
error. For the expectation the estimation error is b = zα/2σ/

√
n. So if

the estimation error is wanted to be at most b0, the sample size n must
be chosen so that

zα/2
σ√
n
≤ b0 so n ≥

(zα/2σ
b0

)2
.

Thus, if in the previous example the estimation error is wanted to be at
most b0 = 0.05 g/ml, the sample size should be at least n = 139.

In the above, the confidence intervals have always been two-sided.
If only the lower confidence limit is wanted for the sample mean µ, let’s
choose a quantile zα of the standard normal distribution, for which P(Z ≥
zα) = 1 − Φ(zα) = α; then also P(Z ≤ −zα) = Φ(−zα) = α. Now the
inequality

X − µ
σ/
√
n
< zα
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is equivalent with the inequality

µ > X − zα
σ√
n

and we obtain the wanted 100(1− α) % lower confidence limit.

µ̂L = x− zα
σ√
n
.

Correspondingly, the 100(1 − α) % upper confidence limit is µ̂U = x +
zασ/

√
n.

Example. A certain reaction time was measured on n = 25 subjects. [9.4]

From previous tests it is known that the standard deviation of the reaction
times is σ = 2.0 s. The measured sample mean of the samples is x =
6.2 s. Now z0.05 = 1.645 and the 95 % upper confidence limit for the
expectations of the reaction times is µ̂U = 6.86 s.

Above it was required that population variance σ2 is known. If the
population variance is not known, it is possible to proceed but a nor-
mal distribution will be replaced with a t-distribution (The central limit
theorem isn’t used here: the population distribution has to be normal.)
Let’s now begin with a random variable

T =
X − µ
S/
√
n

that has a t-distribution with n − 1 degrees of freedom. Let’s find a
quantile tα/2 for which holds P(T ≥ tα/2) = α/2. Then, because of the
symmetry of the t-distribution, P(T ≤ −tα/2) = α/2 and P(−tα/2 < T <
tα/2) = 1 − α, just like for the normal distribution. By proceeding as
above, we obtain the 100(1 − α) % confidence limits for the population
expectation µ

µ̂L = x− tα/2
s√
n

and µ̂U = x+ tα/2
s√
n
.

The estimation error of the estimate x is obviously in this case b =
tα/2s/

√
n. But it is not known

beforehand.The corresponding one-sided confidence limits are

µ̂L = x− tα
s√
n

and µ̂U = x+ tα
s√
n
,

where quantile tα is chosen so that P(T ≥ tα) = α.

Example. The contents of seven similar containers of sulfuric acid [9.5]

were measured. The mean value of these measurements is x = 10.0 l,
and their standard deviation is s = 0.283 l. Now t0.025 = 2.447 and the
95 % confidence interval is (9.74 l, 10.26 l).
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2.3 Prediction Intervals [9.6]

Often after interval estimation a corresponding prediction interval is
wanted for the next measurement x0. Naturally the corresponding ran-
dom variable X0 is considered independent of the sample’s random vari-
ables X1, . . . , Xn and identically distributed to them.

Assuming that the population distribution is a normal distribution
N(µ, σ2), it is known that the difference X0 − X is also normally dis-
tributed and The sum and the difference

of two independent
normally distributed

random variables are also
normally distributed.

E(X0 −X) = E(X0)− E(X) = µ− µ = 0

and If random variables X and
Y are independent, then
var(X ± Y )

= var(X) + var(Y ).var(X0 −X) = var(X0) + var(X) = σ2 +
σ2

n
=
(

1 +
1

n

)
σ2.

Thus, the random variable

Z =
X0 −X

σ
√

1 + 1/n

has the standard normal distribution. Here it is again assumed that the
population variance σ2 is known.

By proceeding just like before, but replacing σ/
√
n with σ

√
1 + 1/n,

we obtain the 100(1− α) % confidence interval for x0

x− zα/2σ
√

1 +
1

n
< x0 < x+ zα/2σ

√
1 +

1

n
,

in which it belongs to with probability 1− α. The probability has to be
interpreted so that it is the probability of an event

X − zα/2σ
√

1 +
1

n
< X0 < X + zα/2σ

√
1 +

1

n
.

Thus the prediction interval takes into account the uncertainty of both
the expectation and the random variable X0.

Again, if the population standard deviation σ is not known, the sam-
ple standard deviation s must be used instead and instead of a normal
distribution, a t-distribution must be used with n−1 degrees of freedom.
A random variable X0−X is namely independent of the sample variance Again a difficult fact to

prove.S2, so

T =
Z√

(n− 1)S2

σ2(n− 1)

=
X0 −X

S
√

1 + 1/n

is t-distributed with n−1 degrees of freedom. The 100(1−α) % prediction
interval obtained for the value x0 is then

x− tα/2s
√

1 +
1

n
< x0 < x+ tα/2s

√
1 +

1

n
.
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Example. The percentage of meat was measured in n = 30 packages [9.7]

of a low-fat meat product. The distribution was supposed to be normal.
The sample mean is x = 96.2 %, and the population standard deviation Don’t confuse the meat

percentages with the
confidence interval

percentages!

is s = 0.8 %. By using a t-quantile t0.005 = 2.756 (with 29 degrees of
freedom) the 99 % confidence interval for the percentage of meat measured
in yet another sample is obtained (93.96 %, 98.44 %).

One use of prediction intervals is to find outliers. An observation is See the example in section
1.3considered to be an outlier if it doesn’t belong to the prediction interval

that is obtained after the observation in question is removed from the
sample.

One-sided prediction intervals could be also formulated by using sim-
ilar methods.

2.4 Tolerance Limits [9.7]

One form of interval estimation is the tolerance interval that is used in,
among other things, defining the statistical behavior of processes.

If a population distribution is a known normal distribution N(µ, σ2),
its 100(1 − α) % tolerance interval is an interval (µ − kσ, µ + kσ) such
that 100(1−α) % of the distribution belongs to it. The interval is given
by giving the corresponding value of k and is often presented in the form
µ ± kσ. Thus, for example a 95 % tolerance interval is µ ± 1.96σ. This
requires that µ and σ are known.

The µ ja σ of a population are usually however unknown. The tol-
erance interval is then obtained by using the corresponding statistics x
and s, as follows Sometimes x± k s√

n
.

x± ks.

These are however realized values of the random variables X ± kS and
thus, the tolerance interval is correct only with the probability of 1− γ,
which depends on the chosen value of k (and the sample size n). That’s
why k is chosen so that the interval X ± kS contains at least 100(1− α)
% of the distribution at the probability of 1− γ (significance).

The distribution of the endpoints of a tolerance interval is somewhat
complicated.1 Quantiles related to these distributions (the choosing of k)

1For those who might be interested! With a little thinking one can note that when
constructing the upper confidence interval such a value for k must be found that

P
(X + kS − µ

σ
≥ zα

)
= 1− γ.

If denoting like before,

Z =
X − µ
σ/
√
n

and V =
(n− 1)S2

σ2
,

then Z is standard-normally distributed and V is χ2-distributed with n − 1 degrees
of freedom and Z and V are independent. The problem can thus be written so that
no population parameters are needed: When α, γ and n are given, a number k must
be found such that

P
( Z√

n
+

k
√
V√

n− 1
≥ zα

)
= 1− γ.
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are tabulated in statistics books (and in particular, in WMMY). There Values given on the web
may however be based on

crude approximate
formulas and not very

accurate.

are also web-based calculators for these intervals. Accurate values for k
are tabulated in the Appendix.

Example. A sample of n = 9 machine-produced metal pieces are mea-
sured and the statistics x = 1.0056 cm and s = 0.0246 cm are obtained.
Then at least 95 % of the population values are included in the tolerance
interval 1.0056 ± k0.0246 cm (where k = 4.5810, see the Appendix) at
the probability of 0.99. The corresponding 0.99 % confidence interval is
shorter: (0.9781 cm, 1.0331 cm).

One-sided tolerance intervals are also possible.

2.5 Two Samples: Estimating the Differ-

ence between Two Means [9.8]

The expectations the variances of two populations are µ1, µ2 and σ2
1, σ2

2

respectively. A sample is taken from both populations, and sample sizes Naturally, the samples are
independent also in this

case.are n1 and n2. According to the Central limit theorem, the sample means
obtained are X1 and X2 (as random variables) and they are nearly nor-
mally distributed. Thus also their difference X1−X2 is (nearly) normally
distributed, and the expectation and the variance of that population are
µ1−µ2 and σ2

1/n1 +σ2
2/n2. Furthermore, the distribution of the random

variable

Z =
(X1 −X2)− (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

is then nearly the standard normal distribution.
By using a quantile zα/2 of the standard normal distribution like be-

fore and by noticing that inequalities

−zα/2 <
(X1 −X2)− (µ1 − µ2)√

σ2
1/n1 + σ2

2/n2

< zα/2

and

(X1 −X2)− zα/2

√
σ2
1

n1

+
σ2
2

n2

< µ1 − µ2 < (X1 −X2) + zα/2

√
σ2
1

n1

+
σ2
2

n2

are equivalent, the 100(1−α) % confidence limits for the difference µ1−µ2

are obtained:

(x1 − x2)± zα/2

√
σ2
1

n1

+
σ2
2

n2

,

where x1 and x2 are the realized sample means. Here it was again as-
sumed that the population variances σ2

1 and σ2
2 are known.

Because of the independence, the density function of the joint distribution of Z and
V is φ(z)g(v), where g is the density function of the χ2-distribution (with n − 1
degrees of freedom) and φ is the density function of the standard normal distribution.
By using that, the left side probability is obtained as an integral formula, and an
equation is obtained for k. It shouldn’t be a surprise that this is difficult and requires
a numerical solution! In case of two-sided tolerance interval the situation is even more
complicated.
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Example. The gas mileage of two different types of engines A and B [9.9]

was measured by driving cars having these engines, nA = 50 times for
engine A and nB = 75 times for engine B. The sample means obtained are
xA = 36 mpg (miles per gallon) and xB = 42 mpg. By using the quantile
z0.02 = 2.054 of the standard normal distribution, for the difference µB−
µA the calculated 96 % confidence limits are 3.43 mpg and 8.57 mpg.

If the population variances σ2
1 and σ2

2 are not known, the situation
becomes more complicated. Then naturally we try to use the sample
variances s21 and s22 obtained from the sample.

A nice feature of the χ2-distribution is that if V1 and V2 are indepen- This is quite difficult to
prove. It is however

somewhat apparent, if you
remember that V1 and V2

can be presented as a sum
of squares of independent

standard normal
distributions.

dent χ2-distributed random variables with v1 and v2 degrees of freedom,
then their sum V1 + V2 is also χ2-distributed with v1 + v2 degrees of free-
dom. By considering the sample variances to be random variables S2

1 and
S2
2 , it is known that random variables

V1 =
(n1 − 1)S2

1

σ2
1

and V2 =
(n2 − 1)S2

2

σ2
2

have the χ2-distributions with n1− 1 and n2− 1 degrees of freedom, and
they are also independent. Thus the random variable

V = V1 + V2 =
(n1 − 1)S2

1

σ2
1

+
(n2 − 1)S2

2

σ2
2

has the χ2-distribution with n1 + n2 − 2 degrees of freedom.
Let’s first consider a case where σ2

1 and σ2
2 are known to be equal

(= σ2), although it is not known what σ2 is. Then

V =
1

σ2

(
(n1 − 1)S2

1 + (n2 − 1)S2
2

)
which is χ2-distributed with n1 + n2 − 2 degrees of freedom. For more
concise notation, let’s denote

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
,

the pooled sample variance. Correspondingly, we obtain s2p from the
realized sample variances s21 and s22.’

Because the random variables Z (defined earlier) and V are indepen-
dent, the random variable This is also difficult to

prove.

Note how the population
standard deviations σ1 and

σ2 can’t be eliminated
from the formula of T if
they are unequal or the

ratio σ1/σ2 is unknown.

T =
Z√

V/(n1 + n2 − 2)
=

(X1 −X2)− (µ1 − µ2)

Sp

√
1/n1 + 1/n2

has the t-distribution with n1 + n2 − 2 degrees of freedom.
By using the quantile tα/2 of the t-distribution (with n1 + n2 − 2

degrees of freedom) and by noticing that the double inequalities

−tα/2 <
(X1 −X2)− (µ1 − µ2)

Sp

√
1/n1 + 1/n2

< tα/2
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and

(X1−X2)− tα/2Sp

√
1

n1

+
1

n2

< µ1−µ2 < (X1−X2)+ tα/2Sp

√
1

n1

+
1

n2

are equivalent, for the difference µ1 − µ2 we now obtain the 100(1 − α)
% confidence limits

(x1 − x2)± tα/2sp
√

1

n1

+
1

n2

,

where x1 and x2 are the realized sample means.

Example. A diversity index was measured in two locations monthly. The [9.10]

measurements lasted one year n1 = 12 in location 1 and for ten months
(n2 = 10) in location 2. The obtained statistics were

x1 = 3.11 , s1 = 0.771 , x2 = 2.04 and s2 = 0.448.

The calculated pooled sample variance is s2p = 0.417, so sp = 0.646.
The required t-quantile (with 20 degrees of freedom) is t0.05 = 1.725, by
using which we obtain for the difference µ1−µ2 the calculated confidence
interval (0.593, 1.547).

If the population variances are not known nor they are known to be This is known as the
Behrens–Fisher-problem.equal, the situation becomes difficult. It can often be however noted

that if the population variances are approximately equal, the method
mentioned above can be used. (The equality of variances can be tested
for example by using the F-distribution, see section 3.7.) The method
is often used, even when the population variances are known to differ, if This however has little

theoretical basis.the sample sizes are (approximately) equal.
A widely used method when the population variances cannot be sup-

posed to be even approximately equal, is the following Welch–Satterthwaite- Bernard Welch (1911–
1989), Franklin Satter-

thwaiteapproximation: A random variable

W =
(X1 −X2)− (µ1 − µ2)√

S2
1/n1 + S2

2/n2

is nearly t-distributed with

v =
(a1 + a2)

2

a21/(n1 − 1) + a22/(n2 − 1)
,

degrees of freedom, where a1 = s21/n1 and a2 = s22/n2. This v isn’t usually When using tabulated
values v must be rounded

off to closest integer or
interpolated.

an integer, but that is no problem because the t-distribution is defined
also in cases when its degree of freedom is not an integer. By using
this information we obtain for the difference µ1 − µ2 the approximative
100(1− α) % confidence limits

(x1 − x2)± tα/2

√
s21
n1

+
s22
n2

,

where again x1 and x2 are the realized sample means.
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The accuracy of this approximation is a controversial subject. Some
people recommend that it always be used when there is even a little
doubt of the equality of the population variances. Others warn about
the inaccuracy of the approximation when the population variances differ
greatly.

Example. The amount of orthophosphate is measured at two different
stations. n1 = 15 measurements were made at station 1 and n2 = 12
at station 2. Population variances are unknown. The obtained statistics
were (mg/l)

x1 = 3.84 , s1 = 3.07 , x2 = 1.49 and s2 = 0.80.

By using the (approximative) t-quantile t0.025 = 2.117 with v = 16.3 The same interval is
obtained at given precision
by rounding off the degree

of freedom to 16.

degrees of freedom we obtain for the difference µ1−µ2 the (approximative)
95 % confidence interval (0.60 mg/l, 4.10 mg/l).

2.6 Paired observations [9.9]

Often two populations examined are connected element by element. For
example a test subject on two different occasions, a product before and
after some treatment or a product now and a year later and so on. Let’s
denote the expectation of the first population by µ1 and the second by µ2.
Let’s take a random sample of matched pairs from the two populations:

X1,1, . . . , X1,n and X2,1, . . . , X2,n.

Let’s denote by Di the value in population 1 minus the corresponding
value in population 2:

D1 = X1,1 −X2,1 , . . . , Dn = X1,n −X2,n

and correspondingly the realized differences

d1 = x1,1 − x2,1 , . . . , dn = x1,n − x2,n.

Now the differences are considered the actual population (either random
or realized values). Thus, the sample means D and d and the sample
variances S2 ja s2 are obtained.

Clearly, E(D) = µ1 − µ2. On the other hand, the counterparts X1,i

and X2,i aren’t generally independent or uncorrelated, so there actually
isn’t too much information about the variance of D. In order to make This isn’t saying anything

about the actual
population distributions,

they don’t need to be even
close to normal.

statistical analysis, let’s suppose that the distribution of the differences
of the population values is (approximately) normal.

Just like before in section 2.2, we note that the random variable

T =
D − (µ1 − µ2)

S/
√
n

has the t-distribtution with n − 1 degrees of freedom. Thus, we obtain
from the realized samples the 100(1 − α) % confidence limits for the
difference of the population expectations µ1 − µ2

d± tα/2
s√
n
.
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Example. TCDD levels in plasma (population 1) and fat tissue (popu- [9.12]

lation 2) were measured on n = 20 veterans who were exposed to Agent
Orange -toxin during the Vietnam war. The mean of the differences
of the sample values was d = −0.87 and the standard deviation was
s = 2.98. The t-quantile with 19 degrees of freedom is t0.025 = 2.093 and
thus, we obtain for the difference µ1 − µ2 the 95 % confidence interval
(−2.265, 0.525).

2.7 Estimating a Proportion [9.10]

When estimating a proportion, the information we obtain is if the sample
values are of a certain type (’success’) or not (’failure’). The number
of successes is denoted by X (a random variable) or by x (a realized
numerical value). If the sample size is n and the probability of a successful
case in the population is p (ratio), the distribution of X is a binomial
distribution Bin(n, p) and

P(X = x) =

(
n

x

)
px(1− p)n−x.

For this distribution it is known that

E(X) = np and var(X) = np(1− p).

Because p(1− p) ≤ 1/4, it follows that var(X) ≤ n/4. The natural point The maximum of the
function x(1− x) is 1/4.estimator and estimate of the ratio p are

P̂ =
X

n
and p̂ =

x

n
.

P̂ is unbiased, in other words E(P̂ ) = p, and

var(P̂ ) =
1

n2
var(X) =

p(1− p)
n

≤ 1

4n
.

Again the variance of the estimator decreases as n increases. We also
note that if the standard deviation of P̂ is wanted to be at most b, it is

enough to choose n such that n ≥ 1

4b2
.

If the realized number of successful elements is x, then in interval
estimation we obtain the lower limit of the 100(1 − α) % confidence
interval for p by requiring that By considering how the

probability on the left
changes as p decreases,
you see that it indeed is

the lower limit
P(X ≥ x) =

α

2
.

Thus, we obtain an equation for p̂L
n∑
i=x

(
n

i

)
p̂iL(1− p̂L)n−i =

α

2
.

Correspondingly, the upper confidence limit p̂U for two-sided interval is
obtained by requiring that

P(X ≤ x) =
α

2
,
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and it’s obtained by solving the equation This accurate interval
estimate is called the

Clopper–Pearson estimate.x∑
i=0

(
n

i

)
p̂iU(1− p̂U)n−i =

α

2
.

These two equations are difficult to solve numerically, especially if n is A special function, the
beta function, is often used

in the solution.large. The solution is implemented in MATLAB, and there are also web-
based calculators.

One-sided confidence intervals are obtained similarly, just replace α/2
on the right hand side by α.

Instead of the above exact interval estimate, one of the many approx-
imate methods can be used to compute the interval estimate. According
to the Central limit theorem, the random variable X has nearly a normal
distribution N

(
np, np(1− p)

)
. Thus, the random variable

Z =
P̂ − p√
p(1− p)/n

has nearly the standard normal distribution. When the realized estimate
p̂ = x/n is obtained for p, the approximative 100(1 − α) % confidence This estimate is called the

Wilson estimate.limits are then obtained by solving the second order equation:

p̂− p√
p(1− p)/n

= ±zα/2 or (p̂− p)2 =
z2α/2
n
p(1− p).

The estimate p̂ can be used also in the denominator, because the
random variable

Z ′ =
P̂ − p√

P̂ (1− P̂ )/n

is also nearly normally distributed. With this, the approximative con-
fidence intervals can then be calculated very similarly as before when
considering a normally distributed population. The result isn’t however The Wald estimate.

always too accurate, and nowadays exact methods are preferable.
There are many other approximative interval estimates for binomial

distribution, that differ in their behavior. The above mentioned exact
estimate is the most conservative but also the most reliable.

Example. n = 500 households were chosen at random and asked if they [9.13]

subscribe to a certain cable TV channel. x = 340 had ordered the TV Here n is large and the
correct p is in the ”middle”,

so the normal distribution
approximation works fine.

channel in question. Then p̂ = 340/500 = 0.680 and the 95 % confidence
interval for the ratio p is (0.637, 0.721).

2.8 Single Sample: Estimating the Vari-

ance [9.12]

A natural point estimator for the population variance σ2 is the sample
variance S2; the corresponding point estimate would be the realized sam-
ple variance s2. As noted, S2 is unbiased, that is E(S2) = σ2, no matter
what the population distribution is (as long as it has a variance!)
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For the interval estimation it has to be assumed that the population
distribution is normal (accurately enough). The χ2-distribution to be
used is namely quite vulnerable to abnormality. The random variable

V =
(n− 1)S2

σ2

has then the χ2-distribution with n − 1 degrees of freedom. Let’s now Because the
χ2-distribution is not

symmetric, these quantiles
aren’t connected.

choose quantiles h1,α/2 and h2,α/2 of the χ2-distribution in question so
that

P(V ≤ h1,α/2) = P(V ≥ h2,α/2) =
α

2
.

Then
P(h1,α/2 < V < h2,α/2) = 1− α.

The double inequalities

h1,α/2 <
(n− 1)S2

σ2
< h2,α/2

and
(n− 1)S2

h2,α/2
< σ2 <

(n− 1)S2

h1,α/2

are equivalent. Thus, from the realized sample variance s2, confidence
limits are obtained for σ2

(n− 1)s2

h2,α/2
and

(n− 1)s2

h1,α/2
.

One-sided confidence limits are obtained similarly just by using an-
other χ2-quantile, h1,α for the upper and h2,α lower confidence limit.

Example. n = 10 packages of grass seed were weighted. The weights
are supposed to be normally distributed. The obtained sample variance is
s2 = 28.62 g 2. By using the χ2-quantiles h1,0.025 = 2.700 and h2,0.025 =
19.023 (with 9 degrees of freedom), the calculated 95 % confidence interval
for the population variance σ2 is (13.54 g 2, 95.40 g 2).

The square roots of the confidence limits for variance σ2 are the con- These limits are exact,
contrary to what is claimed

in WMMYfidence limits for the population standard deviation σ.

2.9 Two Samples: Estimating the Ratio of

Two Variances [9.13]

If two samples (sample sizes n1 and n2, sample variances S2
1 and S2

2) are Independent samples, of
course!taken from two populations whose variances are σ2

1 ja σ2
2, then the obvious

point estimator for the ratio σ2
1/σ

2
2 is the ratio S2

1/S
2
2 . Corresponding This isn’t usually unbiased.

For example, when
considering normally

distributed populations,
the corresponding unbiased

estimator is

n2 − 3

n2 − 1

S2
1

S2
2

(supposing that n2 > 3).

point estimate is s21/s
2
2, the ratio of the realized sample variances s21 and

s22.
For interval estimation, it has to be supposed that the populations are

normally distributed. The F-distribution isn’t robust in this respect, and
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using it with non-normal populations leads easily to inaccurate results.
The random variable

F =
S2
1/σ

2
1

S2
2/σ

2
2

=
σ2
2

σ2
1

S2
1

S2
2

is F-distributed with n1− 1 and n2− 1 degrees of freedom. Let’s choose,
for the interval estimation, quantiles f1,α/2 and f2,α/2 of the F-distribution
in question such that

P(F ≤ f1,α/2) = P(F ≥ f2,α/2) =
α

2
.

Then
P(f1,α/2 < F < f2,α/2) = 1− α.

Like the χ2-distribution, the F-distribution is asymmetric, so the
quantiles f1,α/2 and f2,α/2 are not directly connected. They aren’t how-
ever completely unrelated either. We remember that the random variable
F ′ = 1/F is F-distributed with n2 − 1 ja n1 − 1 degrees of freedom. If This is exploited in tables:

The values are tabulated
often only for the end tail

quantiles f2,α/2 or the first
degree of freedom is

smaller.

quantiles f ′1,α/2 and f ′2,α/2 are obtained for the F-distribution in question,

then f ′1,α/2 = 1/f2,α/2 and f ′2,α/2 = 1/f1,α/2. In particular, if the sample
sizes are equal, in other words n1 = n2, then the distributions of F and
F ′ are the same and f1,α/2 = 1/f2,α/2.

Because the inequalities

f1,α/2 <
σ2
2

σ2
1

S2
1

S2
2

< f2,α/2

and
S2
1

S2
2

1

f2,α/2
<
σ2
1

σ2
2

<
S2
1

S2
2

1

f1,α/2

are equivalent, from the realized sample variances s21 and s22 we can cal-
culate the 100(1− α) % confidence limits for the ratio σ2

1/σ
2
2

s21
s22

1

f2,α/2
and

s21
s22

1

f1,α/2
.

The one-sided confidence limits are obtained similarly, but by using
only one F-quantile, quantile f1,α for upper and f2,α for lower confidence
limit. Furthermore, the square roots of the confidence limits of the ratio These limits are exact,

contrary to what is claimed
in WMMY.σ2

1/σ
2
2 (population variances) are the confidence limits for the ratio σ1/σ2

(population standard deviations).

Example. Let’s return to the orthophosphate measurements of an ex- [9.18]

ample in section 2.5. The sample sizes were n1 = 15 and n2 = 12, the ob-
tained population standard deviations were s1 = 3.07 mg/l and s2 = 0.80
mg/l. By using the F-quantiles f1,0.01 = 0.2588 and f2,0.01 = 4.2932 (with
14 and 11 degrees of freedom), the calculated 98 % confidence interval for
the ratio σ2

1/σ
2
2 is (3.430, 56.903). Because the number 1 is not included

in this interval, it seems to be correct to assume–as was done in the
example–that the population variances aren’t equal. The 98 % confidence
limits for the ratio σ1/σ2 are the (positive) square roots of the previous
limits (1.852, 7.543).
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TESTS OF HYPOTHESES

3.1 Statistical Hypotheses [10.1]

A statistical hypotheses means some attribute of the population distribu-
tion(s) that it (they) either has (have) or does (do) not have. Such an
attribute often involves the parameters of the population distributions,
distribution-related probabilities or something like that. By hypothesis
testing we try to find out, by using the sample(s), whether the population
distribution(s) has (have) the attribute in question or not. The testing is
based on random samples, so the result (”yes” or ”no”) is not definite, but
it can be considered a random variable. The probability of an incorrect
result should of course be small and quantizable.

Traditionally a null hypothesis (denoted by H0) and an alternative
hypothesis (denoted by H1) are presented. A test is made with an as-
sumption that the null hypothesis is true. The result of the test may
then prove that the assumption is probably wrong, in other words the
realized result is very improbable if H0 is true. The result of hypothesis
testing is either of the following:

• Strong enough evidence has been found to reject the null hypothesis
H0. We’ll continue by assuming that the alternate hypothesis H1 is
true. This may require further testing.

• The sample and the test method used haven’t given strong enough
evidence to reject H0. This may result because H0 is true or because
the test method wasn’t strong enough. We’ll continue by assuming
that H0 is true.

Because of random sampling, both of the results may be wrong, ideally
though only with a small probability.

3.2 Hypothesis Testing [10.2]

A hypothesis is tested by calculating some suitable statistic from the
sample. If this produces a value that is highly improbable when assuming
that the null hypothesis H0 is true, evidence has been found to reject H0.
The result of hypothesis testing may be wrong in two different ways:

32
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Type I error: H0 is rejected, although it’s true (”false alarm”).

Type II error: H0 isn’t rejected, although it’s false.

The actual attributes of the population distribution(s) and the error types
divide the results to four cases:

H0 is true H0 is false

H0 isn’t rejected The right decision Type II error
H0 is rejected Type I error The right decision

The probability of type I error is called the risk or the level of signifi-
cance of the test and it is often denoted by α. The greatest allowed level
of significance α is often a starting point of hypothesis testing.

The probability of type II error can’t often be calculated, for H0 may
be false in many ways. Often some sort of an (over) estimate is calculated
by assuming a typical relatively insignificant way for H0 to break down.
This probability is usually denoted by β. The value 1 − β is called the
power of the test. The more powerful a test is, the smaller deviation it
notices from H0.

Example. Let’s consider a normally-distributed population, whose ex-
pectation is supposed to be µ0 (hypothesis H0). The population variance
σ2 is considered to be known. If the realized sample mean x is a value that
is in the tail area of the N(µ0, σ

2/n)-distribution and outside a wide in-
terval (µ0− z, µ0 + z), there is a reason to reject H0. Then α is obtained
by calculating the total tail probability for the N(µ0, σ

2/n)-distribution.
By increasing the sample size n the probability α can be made as small The distribution of X

narrows and the tail
probabilities decrease.as wanted.

The value for probability β cannot be calculated, for if the population
expectation isn’t µ0, it can be almost anything. The larger the deviation
between the population expectation and µ0, the smaller the actual β is.
If we however consider a deviation of size d to be good enough reason to
reject H0, with of course |d| > z, we could estimate β by calculating the
probability of the N(µ0 + d, σ2/n) distribution between the values µ0 ±
z. This probability also decreases as the sample size n increases, for
the distribution of X concentrates around an expected value that doesn’t
belong to the interval (µ0 − z, µ0 + z), and the probability of the interval
in question decreases.

By increasing the sample size we can usually make both α and (es-
timated) β decrease as small as wanted. The sensitivity of the test
shouldn’t though be always increased this way. If for example the pop-
ulation values are given to just a few decimals, then the sensitivity (the
sample size) shouldn’t be increased so much that it observes differences
smaller than the data accuracy. Then the test would reject the null
hypothesis very often and become useless!

3.3 One- and Two-Tailed Tests [10.3]

Often a hypothesis concerns some population parameter θ. Because the
parameter is numerical, there are three different types of basic hypotheses
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concerning it: two one-tailed tests and one two-tailed test. The same can
be said for comparing corresponding parameters of two populations. The
testing of hypotheses like this at a risk level α comes back to constructing
the 100(1−α) % confidence intervals for θ. The basic idea is to try to find
a confidence interval that lies in an area where H0 should be rejected. If
this is not possible, there is no reason to reject H0 at the risk level used,
in other words the risk to make the wrong decision is too large.

The one-tailed hypothesis pairs are

H0 : θ = θ0 vs. H1 : θ > θ0

and
H0 : θ = θ0 vs. H1 : θ < θ0,

where the reference value θ0 is given.
The pair H0 : θ = θ0 vs. H1 : θ > θ0 is tested at the level of signifi-

cance α by calculating from the realized sample the lower 100(1− α) %
confidence limit θ̂L for parameter θ in the manner presented earlier. The
null hypothesis H0 is rejected if the reference value θ0 isn’t included in
the obtained confidence interval, in other words if θ0 ≤ θ̂L.

Correspondingly, the pair H0 : θ = θ0 vs. H1 : θ > θ0 is tested
at the level of significance α by calculating from the realized sample the
upper 100(1−α) % confidence limit θ̂U for parameter θ in ways presented
earlier. The null hypothesis H0 is rejected if the reference value θ0 isn’t
included in the obtained confidence interval, in other words θ0 ≥ θ̂U.

All the parameter values aren’t included in one-tailed tests. In above
for example while testing the hypothesis pair H0 : θ = θ0 vs. H1 : θ > θ0
it was assumed that the correct value of the parameter θ cannot be less
than θ0. What if it however is? Then in a way a type II error cannot
occur: H0 is certainly false, but H1 isn’t true either. On the other hand, In terms of testing the

situation just gets better!the lower confidence limit θ̂L decreases and the probability of type I
error α decreases. The case is similar if while testing the hypothesis pair
H0 : θ = θ0 vs. H1 : θ < θ0 the correct value of the parameter θ is greater
than θ0.

Example. The average life span of n = 100 deceased persons was x = [10.3]

71.8 y. According to earlier studies, the population standard deviation
is assumed to be σ = 8.9 y. According to this information, could it be
concluded that the average life span µ of the population is greater than 70
y? The life span is supposed to be normally distributed. The hypothesis
pair to be tested is

H0 : µ = 70 y vs. H1 : µ > 70 y.

The risk of the test is supposed to be α = 0.05, when zα = 1.645. Let’s
calculate the lower 95 % confidence limit for µ

µ̂L = x− zα
σ√
n

= 70.34 y.

The actual life span is thus, with a probability of at least 95 %, greater
than 70.34 y and H0 has to be rejected.
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The hypothesis pair of a two-tailed test is

H0 : θ = θ0 vs. H1 : θ 6= θ0.

In order to test this at the level of significance α let’s first calculate the
two-tailed 100(1 − α) confidence interval (θ̂L, θ̂U) for the parameter θ.
Now H0 is rejected if the reference value θ0 isn’t included in the interval.

Example. A manufacturer of fishing equipment has developed a new [10.4]

synthetic fishing line that he claims has a breaking strength of 8.0 kg
while the standard deviation is σ = 0.5 kg. The deviation is supposed to
be accurate. In order to test the claim, a sample of 50 fishing lines was
taken and the mean breaking strength was found to be x = 7.8 kg. The
risk of the test was supposed α = 0.01. Here the test is concerned with
the two-tailed hypothesis pair H0 : µ = 8.0 vs. H1 : µ 6= 8.0. Now the
100(1 − α) = 99 % confidence interval for the population expectation µ
is (7.62 kg, 7.98 kg), and the value 8.0 kg isn’t included in this interval.
Thus H0 is rejected with the risk 0.01.

3.4 Test statistics [10.4]

If a hypothesis concerns a population distribution parameter θ, the hy-
pothesis testing can be done using the confidence interval for θ. On the
other hand, the testing doesn’t require the confidence interval itself. The
task is only to verify if the value θ = θ0 given by the null hypothesis is
included in the confidence interval or not, and this can be usually done
without constructing the empirical confidence interval, by using a test
statistic. This is the only way to test hypotheses that don’t concern
parameters.

In above, the confidence intervals were constructed by using a random
variable, whose (approximative) distribution doesn’t depend on the pa-
rameter studied: Z (standard normal distribution), T (t-distribution), V
(χ2-distribution), X (binomial distribution) and F (F-distribution). The
confidence interval was obtained by presenting the suitable quantile(s)
of the distribution and by changing the (double) inequality concerning it
(them) to concern the parameter. Thus, if a confidence interval is used
to test a hypothesis, it can be also done straightforward by using the
inequality concerning the ”original” random variable. The test statistic is
then that particular formula that connects the random variable to sample
random variables presented for realized values. The area where the value
of the test statistic leads to rejecting the null hypothesis is the critical
region.

Example. Let’s return to the previous example concerning average life [10.3]

spans. The confidence interval was constructed by using the standard
normally distributed random variable

Z =
X − µ
σ/
√
n
.
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The value that agrees with the null hypothesis µ = µ0 is included in the
confidence interval used when

µ0 > x− zα
σ√
n
,

or when the realized value of Z in accordance with H0

z =
x− µ0

σ/
√
n

is smaller that the quantile zα. Thus, H0 is rejected if z ≥ zα. Here
z is the test statistic and the critical region is the interval [zα,∞). In
the example, the realized value of Z is z = 2.022 and it is greater than
z0.05 = 1.645.

Example. In the example concerning synthetic fishing lines above the [10.4]

realized value of Z is z = −2.83 and it is less than −z0.005 = −2.575.
The critical region consists of the intervals (−∞,−2.575] and [2.575,∞).

All the hypotheses testing based on confidence intervals in previous
chapter can in this way be returned to using a suitable test statistic.
The critical area consists of one or two tail areas restricted by suitable
quantiles.

In certain cases the use of test statistics is somewhat easier that the
use of confidence intervals. This is the case for example when testing hy-
potheses concerning ratios by using binomial distribution. If for example
we’d like to test the hypothesis pair H0 : p = p0 vs. H1 : p > p0 at the
risk α, this could be done by finding the lower confidence limit for p by
solving p̂L from the equation

n∑
i=x

(
n

i

)
p̂iL(1− p̂L)n−i = α.

Like it was noted earlier, this can be numerically challenging. Here the
test variable can be chosen to be x itself and then it can be checked
whether the tail probability is

P(X ≥ x) =
n∑
i=x

(
n

i

)
pi0(1− p0)n−i ≤ α

(in which case H0 is rejected) or not. Testing can be somewhat difficult, If n is large, the binomial
coefficients can be very

large and the powers of p0
very small.

but it is nevertheless easier than calculating the lower confidence limit
p̂L. The critical region consists of the values x1, . . . , n, where

n∑
i=x1

(
n

i

)
pi0(1− p0)n−i ≤ α and

n∑
i=x1−1

(
n

i

)
pi0(1− p0)n−i > α.

Example. A certain vaccine is known to be efficient only in 25 % of the
cases after two years. A more expensive vaccine is claimed to be more
effective. In order to test the claim, n = 100 subjects were vaccinated with In reality, way larger

sample sizes are required in
medical exams.the more expensive vaccine and followed for two years. The hypothesis



CHAPTER 3. TESTS OF HYPOTHESES 37

pair tested is H0 : p = p0 = 0.25 vs. H1 : p > 0.25. The risk is
wanted to be at most α = 0.01. By trial-and-error (web-calculators) or
by calculating with MATLAB we find that now x1 = 36. If the more
expensive vaccine provides immunity after two years in at least 36 cases,
it can be decided that H0 is rejected and find the more expensive vaccine
better than the cheaper vaccine. The calculations on MATLAB are:

>> p_0=0.25;

n=100;

alfa=0.01;

>> binoinv(1-alfa,n,p_0)+1

ans =

36

In a similar way we can test the hypothesis pair H0 : p = p0 vs.
H1 : p < p0. The critical region consists of the values 0, . . . , x1, where

x1∑
i=0

(
n

i

)
pi0(1− p0)n−i ≤ α and

x1+1∑
i=0

(
n

i

)
pi0(1− p0)n−i > α.

In a two-tailed test the hypothesis pair is H0 : p = p0 vs. H1 : p 6= p0 and
the critical area consists of the values 0, . . . , x1 and x2, . . . , n, where

x1∑
i=0

(
n

i

)
pi0(1− p0)n−i ≤

α

2
and

x1+1∑
i=0

(
n

i

)
pi0(1− p0)n−i >

α

2

and
n∑

i=x2

(
n

i

)
pi0(1− p0)n−i ≤

α

2
and

n∑
i=x2−1

(
n

i

)
pi0(1− p0)n−i >

α

2
.

3.5 P-probabilities [10.4]

Many statistical analysts prefer to announce the result of a test with
a P-probability. The P-probability of a hypothesis test is the smallest
risk at which H0 can be rejected based on the sample. In practice, the
P-probability of a one-tailed test is obtained by calculating the tail prob-
ability corresponding the realized statistic (assuming that H0 is true).

Example. If in the vaccine example mentioned above the realized number
of uninfected is x = 38, the P-probability is the tail probability

P =
100∑
i=38

(
100

i

)
0.25i(1− 0.25)100−i = 0.0027.

Calculating with MATLAB this is obtained as follows:

>> p_0=0.25;

n=100;

x=38;

>> 1-binocdf(x-1,n,p_0)

ans =

0.0027
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In two-tailed testing the P-value is obtained by choosing the smaller of
the two tail probabilities corresponding the realized test statistic, and by Usually it is completely

clear which number is
smaller.multiplying the result by two. For example in a two-sided test concerning

ratios the P-probability is the smaller of the values

x∑
i=0

(
n

i

)
pi0(1− p0)n−i and

n∑
i=x

(
n

i

)
pi0(1− p0)n−i

multiplied by two.

Example. In the example concerning synthetic fishing lines above the [10.4]

realized value of the test statistic was z = −2.83. The correspond-
ing (clearly) smaller tail probability is 0.0023 (left tail). Thus, the P-
probability is P = 0.0046.

The P-probability is a random variable (if we consider a sample to
be random) and varies when the test is repeated using different samples.
Ideally, when using the P-probability, a wanted smallest risk α is chosen
beforehand and H0 is rejected if the (realized) P-probability is ≤ α. In
many cases however, no risk α is set beforehand, but the realized value of
the P-probability is calculated and the conclusions are made according to
it. Because at least sometimes the realized P-probability is quite small,
the obtained insight of the risk of the test may be completely wrong in
these cases. For this reason (and others) not every statistician favors the
use of the P-probability.

3.6 Tests Concerning Expectations [10.5–8]

Earlier the testing of the population expectation µ has been presented
when its variance σ2 is known. According to the Central limit theorem
a test statistic can be formulated based on the (approximative) standard
normal distribution, namely the statistic

z =
x− µ0

σ/
√
n
.

The different test situations are the following, when the null hypothesis
is H0 : µ = µ0 and the wanted risk is α:

H1 Critical region P-probability

µ > µ0 z ≥ zα 1− Φ(z)
µ < µ0 z ≤ −zα Φ(z)
µ 6= µ0 |z| ≥ zα/2 2 min

(
Φ(z), 1− Φ(z)

)
Here Φ is the cumulative distribution function of the standard normal
distribution.

Let’s then consider a case where the population distribution is normal
(at least approximatively) and the population variance σ2 is unknown.
The testing of the expectation µ can be done by using the t-distribution
with n− 1 degrees of freedom, and we obtain the test statistic

t =
x− µ0

s/
√
n
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from the realized statistics. Like before, the different test situations are
the following for the null hypothesis H0 : µ = µ0 and the risk α:

H1 Critical region P-probability

µ > µ0 t ≥ tα 1− F (t)
µ < µ0 t ≤ −tα F (t)
µ 6= µ0 |t| ≥ tα/2 2 min

(
F (t), 1− F (t)

)
Here F is the cumulative distribution function of the t-distribution with
n− 1 degrees of freedom.

These tests are used often even when there is no accurate informa- The t-distribution is
namely quite robust in that

respect.tion about the normality of the population distribution, as long as it is
unimodal and nearly symmetric. The result of course isn’t always very
accurate.

Example. In n = 12 households, the annual energy consumption of a [10.5]

vacuum cleaner was measured. The average value was x = 42.0 kWh and
the sample standard deviation s = 11.9 kWh. The distribution is assumed
to be closely enough normal. Could it, according to this information,
be assumed that the expected annual consumption is less than µ0 = 46
kWh? The hypothesis pair to be tested is H0 : µ = µ0 = 46 kWh vs.
H1 : µ < 46 kWh, and the risk of the test may be at most α = 0.05. The
realized value of the test statistic is now t = −1.16, and on the other
hand, −t0.05 = −1.796 (with 11 degrees of freedom). Thus, H0 won’t be
rejected, and the annual consumption cannot be considered to be less than
46 kWh. Even the P-probability is P = 0.135.

When comparing the expectations µ1 ja µ2 of two different popula-
tions, when their variances σ2

1 ja σ2
2 are known, we end up, according

to the Central limit theorem, with the (approximative) standard normal
distribution and the test statistic

z =
x1 − x2 − d0√
σ2
1/n1 + σ2

2/n2

,

where x1 and x2 are the realized sample means, n1 and n2 are the sample
sizes and d0 is the difference of the population expectations given by the
null hypothesis.

For the null hypothesis H0 : µ1−µ2 = d0 and the risk α, the tests are
the following:

H1 Critical region P-probability

µ1 − µ2 > d0 z ≥ zα 1− Φ(z)
µ1 − µ2 < d0 z ≤ −zα Φ(z)
µ1 − µ2 6= d0 |z| ≥ zα/2 2 min

(
Φ(z), 1− Φ(z)

)
If, while comparing population expectations µ1 ja µ2, the population

variances are unknown, but they are known to be equal, we may continue
by assuming that the populations are normally distributed (at least quite
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accurately) and the test statistic is obtained by using the t-distribution
(with n1 + n2 − 2 degrees of freedom)

t =
x1 − x2 − d0

sp
√

1/n1 + 1/n2

,

where

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

(pooled sample variance) and s21, s
2
2 are the realized sample variances.

Then, for the null hypothesis H0 : µ1 − µ2 = d0 and the risk α, the tests
are the following:

H1 Critical region P-probability

µ1 − µ2 > d0 t ≥ tα 1− F (t)
µ1 − µ2 < d0 t ≤ −tα F (t)
µ1 − µ2 6= d0 |t| ≥ tα/2 2 min

(
F (t), 1− F (t)

)
Here again, F is the cumulative distribution function of the t-distribution,
now with n1 + n2 − 2 degrees of freedom.

Example. The abrasive wears of two different laminated materials were [10.6]

compared. The average wear of material 1 was obtained in n1 = 12
tests to be x1 = 85 (on some suitable scale) while the sample standard
deviation was s1 = 4. The average wear of material 2 was obtained in
n2 = 10 tests to be x2 = 81 and the sample standard deviation was s2 = 5.
The distributions are assumed to be close to normal with equal variances.
Could we, at the risk α = 0.05, conclude that the wear of material 1
exceeds that of material 2 by more than d0 = 2 units?

The hypothesis pair to be tested is H0 : µ1 − µ2 = d0 = 2 vs. H1 :
µ1 − µ2 > 2. By calculating from the realized statistics we obtain the
pooled standard deviation sp = 4.48 and the test statistic t = 1.04. The
P-probability calculated from those is P = 0.155 (t-distribution with 20
degrees of freedom). This is clearly greater than the greatest allowed risk
α = 0.05, so, according to these samples, H0 cannot be rejected, and we
cannot claim that the average wear of material 1 exceeds that of material
2 by more than 2 units.

If the population variances cannot be considered to be equal, the test-
ing proceeds similarly but by using the Welch–Satterthwaite-approximation.
The test statistic is then

t =
x1 − x2 − d0√
s21/n1 + s22/n2

,

and the (approximative) t-distribution is used with

v =
(a1 + a2)

2

a21/(n1 − 1) + a22/(n2 − 1)

degrees of freedom, where a1 = s21/n1 and a2 = s22/n2. Like the corre- The Behrens–Fisher-
problem again!
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sponding confidence interval, the usability and utility value of this test
are a controversial subject.

When considering paired observations the test statistic is See section 2.6.

t =
d− d0
s/
√
n
.

The tests are exactly the same as before when considering one sample by
using the t-distribution (with n− 1 degrees of freedom).

3.7 Tests Concerning Variances [10.13]

If a population is normally distributed, its variance σ2 can be tested. The
null hypothesis is then H0 : σ2 = σ2

0, and the test statistic is

v =
(n− 1)s2

σ2
0

,

and by using the χ2-distribution (with n− 1 degrees of freedom), at the
risk α we obtain the tests

H1 Critical region P-probability

σ2 > σ2
0 v ≥ h2,α 1− F (v)

σ2 < σ2
0 v ≤ h1,α F (v)

σ2 6= σ2
0 v ≤ h1,α/2 tai v ≥ h2,α/2 2 min

(
F (v), 1− F (v)

)
where F is the cumulative distribution function of the χ2-distribution
with n−1 degrees of freedom. This test is quite a sensitive to exceptions Unlike the t-distribution,

χ2-distribution isn’t robust
to deviation from normalityfrom the normality of the population distribution. If the population

distribution isn’t close enough to normal, H0 will often be rejected in
vain.

Example. A manufacturer of batteries claims that the life of his batteries [10.13]

is approximatively normally distributed with a standard deviation of σ0 =
0.9 y. A sample of n = 10 of these batteries has a standard deviation of
1.2 y. Could we conclude that the standard deviation is greater than the
claimed 0.9 y? The risk is assumed to be α = 0.05. The hypothesis pair
to be tested is H0 : σ2 = σ2

0 = 0.92 = 0.81 vs. H1 : σ2 > 0.81. The realized
value for the test statistic is v = 16.0. The corresponding P-probability
is obtained from the right side tail probability of the χ2-distribution (with
9 degrees of freedom), and it is P = 0.067. Thus, H0 isn’t rejected. The P-probability is

however quite close to α,
so some doubts may still

remain about the matter.Let there be two normally distributed populations with variances
σ2
1 and σ2

2. The ratio σ2
1/σ

2
2 can be similarly tested by using the F-

distribution. The null hypothesis is of the form H0 : σ2
1 = kσ2

2, where k
is a given value (ratio). The test statistic is Often k = 1, when the

equality of the population
variances is being tested.

f =
1

k

s21
s22
.

By using the F-distribution with n1− 1 and n2− 1 we obtain, at the risk
α, the tests
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H1 Critical region P-probability

σ2
1 > kσ2

2 f ≥ f2,α 1−G(f)
σ2
1 < kσ2

2 f ≤ f1,α G(f)
σ2
1 6= kσ2

2 f ≤ f1,α/2 tai f ≥ f2,α/2 2 min
(
G(f), 1−G(f)

)
where G is the cumulative distribution function of the F-distribution
with n1 − 1 and n2 − 1 degrees of freedom. Like the χ2-distribution, F-
distribution is not robust to exceptions from normality, so the normality
of the population distributions has to be clear. There are also more
robust tests to compare variances, and these are available in statistical
software.

Example. Let’s return to the example above concerning the abrasive [10.6, 10.14]

wear of the two materials. The sample standard deviations that were
obtained are s1 = 4 and s2 = 5. The sample sizes were n1 = n2 = 10.
Could we assume that the variances are equal, as we did? The hypothesis
pair to be tested is thus H0 : σ2

1 = σ2
2 vs. H1 : σ2

1 6= σ2
2 (and so k = 1).

The risk is supposed to be only α = 0.10. Now f1,0.05 = 0.3146 and
f2,0.05 = 3.1789 (with 9 and 9 degrees of freedom) and the critical region
consists of the values that aren’t included in that interval. The realized
test statistic is f = 0.64, and it’s not in the critical region. No proof
about the inequality of the variances was obtained, so H0 isn’t rejected.
(The P-probability is P = 0.517.)

3.8 Graphical Methods for Comparing Means [10.10]

A glimpse to a graphical display obtained from the population often
gives quite a good image about the matter, at least when considering the
expectations. In a graphical display, a usual element is a means diamond
♦. In the middle of it there is the sample mean and the vertices give the
95 % confidence interval (by assuming that the population distribution
is at least nearly normal).

As a some sort of rule of thumb it is often mentioned that if the
quantile box of either of the samples doesn’t include the median of the See section 1.3.

other sample, then the population expectations aren’t equal.

Example. Let’s consider the committed robberies and assaults in 50 This is not an actual
sample, except with

respect to the time span.states of USA during a certain time span, the unit is crimes per 100000
inhabitants. The JMP-program prints the following graphical display:
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The two outliers are New
York and Nevada (Las

Vegas, Reno). The
hook-like (red) intervals

are the shortest halves or
the densest halves of the

sample.

Crime.jmp: Distribution Page 1 of 1
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Distributions

When measuring by using the above mentioned criterion, these two types
of crime don’t occur similarly according to expectations. Additionally,
the distribution of robberies doesn’t seem to be normal.
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χ2-TESTS

By ”χ2-tests” it’s not usually meant the preceding test concerning vari-
ance but a group of tests based on the Pearson-approximation and con-
tingency tables.

Karl (Carl) Pearson
(1857–1936), the ”father”

of statistics

4.1 Goodness-of-Fit Test [10.14]

The population distribution is often assumed to be known, for example a
normal distribution, and its parameters are known. But are the assump-
tions correct? This is a hypothesis and it can be tested statistically.

Let’s begin with a finite discrete distribution. There are a finite num-
ber of possible population cases, say the cases T1, . . . , Tk. The (point)
probabilities of these

P(T1) = p1 , . . . , P(Tk) = pk

are supposed to be known, which is the null hypothesis H0 of the test.
The alternative hypothesis H1 is that at least for one i P(Ti) 6= pi. Actually at least for two,

for p1 + · · ·+ pk = 1.For the test, let’s take a sample with n elements, from which we deter-
mine the realized (absolute) frequencies f1, . . . , fk of the cases T1, . . . , Tk.
These can be also considered to be random variables F1, . . . , Fk and
E(Fi) = npi. The test is based on the fact that the random variable Cf. the expectation of the

binomial distribution, just
merge (pool) cases other

than Ti.
H =

k∑
i=1

(Fi − npi)2

npi

has nearly the χ2-distribution with k− 1 degrees of freedom. This is the A result difficult to prove!

Pearson approximation. As an additional restriction it is however often
mentioned that none of the values np1, . . . , npk should be less than 5. Some people however

claim that 1.5 is already
enough.The test statistic is thus

h =
k∑
i=1

(fi − npi)2

npi

and when testing with it, only the tail of the χ2-distribution is used. The
deviations in the realized frequencies f1, . . . , fk namely result in increas-
ing of h. There are web-based calculators to calculate this test statistic.

44
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Example. Let’s consider a case where a dice is rolled n = 120 times.
The expected probability of each face to occur is of course 1/6, but is
it actually so? The null hypothesis is H0 : p1 = · · · = p6 = 1/6 and
np1 = · · · = np6 = 20. The obtained frequencies of each face are the
following:

Face i 1 2 3 4 5 6
Frequency fi 20 22 17 18 19 24

By calculating from these, we obtain h = 1.70. On the other hand, for
example h0.05 = 11.070 (with 5 degrees of freedom) is much greater and
there is no evidence to reject H0.

The testing of a continuous population distribution is done in a simi-
lar way. Then the range is divided into a finite number of intervals (cases Another widely used test

for continuous distributions
is the Kolmogorov–

Smirnov test, which is not
considered in this course.

T1, . . . , Tk). The probabilities p1, . . . , pk of these, according to the ex-
pected population distribution, are known (if H0 is true) and the testing
is done by using the Pearson-approximation as before.

Example. Let’s consider a case, where the population distribution is
supposed to be a normal distribution: the expectation µ = 3.5 and the
standard deviation σ = 0.7. The range was divided into four intervals,
the probabilities of which are obtained from the N(3.5, 0.72) distribution.
The sample size is n = 40. The following results were obtained:

i 1 2 3 4
Ti (−∞, 2.95] (2.95, 3.45] (3.45, 3.95] (3.95,∞)
pi 0.2160 0.2555 0.2683 0.2602
npi 8.6 10.2 10.7 10.4
fi 7 15 10 8

By calculating from these, the value h = 3.156 is obtained for the test
statistic. Because h0.05 = 7.815 (with 3 degrees of freedom), the null
hypothesis isn’t rejected at the risk α = 0.05.

In above, the supposed population distribution has to be known in
order to calculate probabilities related to it. There are also tests that test
if the distribution is normal or not, without knowing its expectation or
variance. Such a test is the Lilliefors test (and the Geary’s test mentioned Also known as the

Kolmogorov–Smirnov–
Lilliefors test or the

KSL test.

in WMMY). Also a χ2-test similar to that in the preceding example can
be performed using an expectation x estimated from the sample and a
standard deviation s. The number of degrees of freedom is then however Hubert Lilliefors

k − 3 and the precision suffers as well.

4.2 Test for Independence. Contingency

Tables [10.15]

The Pearson-approximation is suitable in many other situations. One
such a situation is the testing of statistical independence of two differ-
ent populations. In order the result to be interesting, the populations
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must of course have some connection. The sampling is made in both the
populations simultaneously .

Let’s also here first consider a population, whose distributions are
finite and discrete. The cases of the population 1 are T1, . . . , Tk and their
(point) probabilities are

These are often presented
as vectors:

p =

p1...
pk

 and q =

q1...
ql

 .

P(T1) = p1, . . . ,P(Tk) = pk.

The cases of the population 2 are S1, . . . , Sl and their (point) probabilities
are

P(S1) = q1, . . . ,P(Sl) = ql.

Additionally, we need the (point) probabilities

This is often presented as
a matrix:

P =

p1,1 · · · p1,l...
...

pk,1 · · · pk,l

 .

P(Ti ∩ Sj) = pi,j (i = 1, . . . , k ja j = 1, . . . , l).

None of these probabilities is however supposed to be known; the
testing is purely based on the values obtained from the samples. Let’s
introduce the following notations.. The frequencies of the cases T1, . . . , Tk
as random variables are F1, . . . , Fk and as realized values in the sample
f1, . . . , fk. The frequencies of the cases S1, . . . , Sl as random variables
are G1, . . . , Gl and as realized values from the sample g1, . . . , gl. The
frequency of the pooled case Ti ∩ Sj as a random variable is Fi,j and as
a realized value from the sample fi,j.

These are presented in a contingency table in the following form, where
n is the sample size:

S1 S2 · · · Sl Σ
T1 f1,1 f1,2 · · · f1,l f1
T2 f2,1 f2,2 · · · f2,l f2
...

...
...

. . .
...

...
Tk fk,1 fk,2 · · · fk,l fk
Σ g1 g2 · · · gl n

A similar table could also be done for frequencies considered to be random
variables.

Population distributions are independent when This is the definition of
independence, in a matrix

form P = pqT.
P(Ti ∩ Sj) = P(Ti)P(Sj) or pi,j = piqj (i = 1, . . . , k ja j = 1, . . . , l).

This independence is now the null hypothesis H0. The alternative hy-
pothesis claims that at least for one index pair i, j there holds pi,j 6= piqj.
Thus, when H0 is true, the frequencies should fulfill the corresponding
equations (cf. the binomial distribution):

E(Fi,j) = npi,j = npiqj =
1

n
E(Fi)E(Gj).

Let’s now form a test statistic like before in goodness-of-fit testing by
considering the frequency fi,j to be realized and the value figj/n given
by the right hand side to be expected, that is according to H0:
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The formula could be
presented in a matrix form

as well.

h =
k∑
i=1

l∑
j=1

(fi,j − figj/n)2

figj/n
.

There are also web-calculators to calculate this test statistic from the
given contingency tables.

According to the Pearson-approximation, the corresponding random
variable

H =
k∑
i=1

l∑
j=1

(Fi,j − FiGj/n)2

FiGj/n
.

has nearly the χ2-distribution, but now with (k − 1)(l − 1) degrees of
freedom. The worse the equations fi,j ∼= figj/n hold, the greater becomes
the value of h. The critical region is again the right tail of the χ2-
distribution in question.

Example. Let’s as an example consider a case where a sample of n = 309
defective products. The product is made in three different production lines
L1, L2 and L3 and there are four different kinds of faults V1, V2, V3

and V4. The null hypothesis here is that the distributions of faults in
terms of fault types and production lines are independent. The obtained
contingency table is

V1 V2 V3 V4 Σ
L1 15(22.51) 21(20.99) 45(38.94) 13(11.56) 94
L2 26(22.90) 31(21.44) 34(39.77) 5(11.81) 96
L3 33(28.50) 17(26.57) 49(49.29) 20(14.63) 119
Σ 74 69 128 38 309

The values in brackets are the numbers figj/n. The realized calculated
value of the test statistic is h = 19.18. This corresponds to the P-
probability P = 0.0039 obtained from the χ2-distribution (with 6 degrees
of freedom). At the risk α = 0.01, H0 can thus be rejected and it can be
concluded that the production line affects the type of the fault.

Here also it’s often recommended that all the values figj/n should be
at least 5. This certainly is the case in the previous example.

The independence of continuous distributions can also be tested in
this manner. Then the ranges are divided into a finite number of intervals,
just like in the goodness-of-fit test, and the testing is done as described
above.

4.3 Test for Homogeneity [10.16]

In the test of independence, the sample is formed randomly in terms of
both populations. A corresponding test is obtained when the number of
elements taken into the sample is determined beforehand for one of the
populations.

If in above, the values are determined for population 2, then the
frequencies g1, . . . , gl are also determined beforehand when the sample
size is n = g1 + · · ·+gl. The null hypothesis is however exactly similar to
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the above mentioned. Only its meaning is different: Here H0 claims that
the distribution of population 1 is similar for different types of elements
S1, . . . , Sl, in other words the population distribution is homogeneous
in terms of element types S1, . . . , Sl. Note that here S1, . . . , Sl aren’t
cases and they don’t have probabilities. They are simply types, in which
the elements of the population 1 can be divided to, and it is determined
beforehand how much each of these types are being taken into the sample.

Now fi,j and Fi,j denote the frequency of the population elements of
the type Sj in the sample. If H0 is true, then the probability that Ti
occurs to elements of the type Sj is the same as the probability to the
whole population, namely pi. In terms of expectations then Cf. the binomial

distribution again.

E(Fi,j) = gjpi =
1

n
E(Fi)gj (i = 1, . . . , k ja j = 1, . . . , l).

The test statistics H and h and the approximative χ2-distribution related
to them are thus exactly the same as before in the test of independence.

Example. As an example we consider a case, where the popularity of a
proposed law was studied in USA. n = 500 people were chosen as follows:
g1 = 200 Democrats, g2 = 150 Republicans and g3 = 150 independent.
These people were asked if they were for or against the proposition or
neither. The question of interest was, are the people with different opin-
ions about the proposition identically distributed in different parties (this
is H0).

The contingency table was obtained

Democrat Republican Independent Σ
Pro 82(85.6) 70(64.2) 62(64.2) 214
Con 93(88.8) 62(66.6) 67(66.6) 222

No opinion 25(25.6) 18(19.2) 21(19.2) 64
Σ 200 150 150 500

From this we can calculate the test statistic h = 1.53. By using the
χ2-distribution (with 4 degrees of freedom) we obtain the P-probability
P = 0.8213. There is practically no evidence to reject the null hypothesis
H0 according to this data.

If k = 2 in the test of homogeneity, we have a special case, which is
about the similarity test of the l binomial distributions’ Bin(n1, p1), . . . ,
Bin(nl, pl) parameters p1, . . . , pl . Then g1 = n1, . . . , gl = nl and the null
hypothesis is

The common parameter
value p is not assumed to

be known.

H0 : p1 = · · · = pl (= p).

The alternative hypothesis H1 claims that at least two of the parameters
aren’t equal.

In order to examine the matter, we perform tests and obtain the
numbers of realized favorable cases x1, . . . , xl. The contingence table is
in this case of the form

Bin(n1, p1) Bin(n2, p2) · · · Bin(nl, pl) Σ
Favorable x1 x2 · · · xl x

Unfavorable n1 − x1 n2 − x2 · · · nl − xl n− x
Σ n1 n2 · · · nl n



CHAPTER 4. χ2-TESTS 49

where x = x1 + · · · + xl and n = n1 + · · · + nl. The test proceeds
similarly as before by using an approximative χ2-distribution (now with
(2−1)(l−1) = l−1 degrees of freedom). The test statistic can be written
in various forms:

h =
l∑

i=1

(xi − xni/n)2

xni/n
+

l∑
i=1

(
ni − xi − (n− x)ni/n

)2
(n− x)ni/n

=
l∑

i=1

(xi − xni/n)2
( 1

xni/n
+

1

(n− x)ni/n

)
=

l∑
i=1

(xi − xni/n)2

x(n− x)ni/n2
=

l∑
i=1

(xi − nix/n)2

ni(x/n)(1− x/n)
.

The last form is perhaps most suitable for manual calculation, and from
it the reason why we end up to χ2-distribution can be seen. If the null Cf. the distribution of the

sample variance of a
normally distributed

population.

hypothesis H0 is true, the realized x/n is nearly p, and the random vari-
able

Xi − nip√
nip(1− p)

is, by the normal approximation of the binomial distribution, nearly the
standard normal distribution.

Example. Let’s consider, as an example, a situation before an election,
where three different studies gave to a party the supporter numbers x1 =
442, x2 = 313 and x3 = 341 while the corresponding sample sizes were
n1 = 2002, n2 = 1532 and n3 = 1616. Could these studies give every
party the same percentage of support (H0)? By calculating we obtain
the realized test statistic h = 1.451 and the corresponding P-probability
P = 0.4841 (χ2-distribution with 2 degrees of freedom). According to
this, there is practically no reason to doubt that the percentages of support
given by the different studies wouldn’t be equal.



Chapter 5

MAXIMUM LIKELIHOOD
ESTIMATION

5.1 Maximum Likelihood Estimation [9.14]

Many of the estimators above can be obtained by a common method. If
the values to be estimated are the parameters θ1, . . . , θm of the population
distribution, and the density function of the distribution is f(x; θ1, . . . , θm), The parameters are

included in the density
function so that the

dependence on them would
be visible.

then we try to obtain formulas for the estimators Θ̂1, . . . , Θ̂m by using
the sample elements X1, . . . , Xn considered to be random variables, or
at least a procedure, by which the estimates θ̂1, . . . , θ̂m can be calculated
from the realized sample elements x1, . . . , xn.

Because the sample elements X1, . . . , Xn are taken independently in a
random sampling, they all have the same density function and the density
function of their pooled distribution is the product

g(x1, . . . , xn; θ1, . . . , θm) = f(x1; θ1, . . . , θm) · · · f(xn; θ1, . . . , θm).

In maximum likelihood estimation or MLE, the estimators Θ̂1, . . . , Θ̂m

are determined so that

g(X1, . . . , Xn; θ1, . . . , θm) = f(X1; θ1, . . . , θm) · · · f(Xn; θ1, . . . , θm)

obtains its greatest value when

θ1 = Θ̂1 , . . . , θm = Θ̂m.

Similarly, the estimates θ̂1, . . . , θ̂m are obtained when we maximize

g(x1, . . . , xn; θ1, . . . , θm) = f(x1; θ1, . . . , θm) · · · f(xn; θ1, . . . , θm).

The basic idea is to estimate the parameters so that the density proba-
bility of the observed values is the greatest.

In maximum likelihood estimation the notation

L(θ1, . . . , θm;X1, . . . , Xn) = f(X1; θ1, . . . , θm) · · · f(Xn; θ1, . . . , θm)

and similarly

L(θ1, . . . , θm;x1, . . . , xn) = f(x1; θ1, . . . , θm) · · · f(xn; θ1, . . . , θm)

50
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and it’s called the likelihood function or the likelihood. It’s often easier
to maximize the logarithm of the likelihood

l(θ1, . . . , θm;X1, . . . , Xn) = lnL(θ1, . . . , θm;X1, . . . , Xn)

= ln
(
f(X1; θ1, . . . , θm) · · · f(Xn; θ1, . . . , θm)

)
= ln f(X1; θ1, . . . , θm) + · · ·+ ln f(Xn; θ1, . . . , θm),

the loglikelihood (function) and similarly

l(θ1, . . . , θm;x1, . . . , xn) = ln f(x1; θ1, . . . , θm) + · · ·+ ln f(xn; θ1, . . . , θm).

With these notations, the result of estimation can be succinctly writ-
ten in the form

(θ̂1, . . . , θ̂m) = argmax
θ1,...,θm

L(θ1, . . . , θm;x1, . . . , xn)

or
(θ̂1, . . . , θ̂m) = argmax

θ1,...,θm

l(θ1, . . . , θm;x1, . . . , xn).

5.2 Examples [9.14]

Example. The value to be estimated is the parameter λ of the Poisson [9.19]

distribution. The density function of the distribution is

f(x;λ) =
λx

x!
e−λ.

The likelihood (for the random variable sample) is thus

L(λ;X1, . . . , Xn) =
λX1

X1!
e−λ · · · λ

Xn

Xn!
e−λ =

λX1+···+Xn

X1! · · ·Xn!
e−nλ

and the corresponding loglikelihood is

l(λ;X1, . . . , Xn) = − ln(X1! · · ·Xn!) + (X1 + · · ·+Xn) lnλ− nλ.

To find the maximum we set the derivative with respect to λ to zero The case X1 = · · · = Xn
= 0 must be considered
separately. Then Λ̂ = 0.∂l

∂λ
=

1

λ
(X1 + · · ·+Xn)− n = 0,

and solve it to obtain the maximum likelihood estimator:

Λ̂ =
1

n
(X1 + · · ·+Xn) = X.

By using the second derivative we can verify that we found the maximum.
Similarly, we obtain as the maximum likelihood estimate the sample mean This is of course natural

since the expectation is λ.

λ̂ = x.
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Example. The population distribution is a normal distribution N(µ, σ2), [9.20]

whose parameters are in this case θ1 = µ and θ2 = σ2. The density
function is then

f(x;µ, σ2) =
1√
2π σ

e−
1

2σ2
(x−µ)2 .

and the likelihood (this time for the realized sample) is

L(µ, σ2;x1, . . . , xn) =
1√
2π σ

e−
1

2σ2
(x1−µ)2 · · · 1√

2π σ
e−

1
2σ2

(xn−µ)2

=
1

(2π)n/2(σ2)n/2
e−

1
2σ2

((x1−µ)2+···+(xn−µ)2)

and the corresponding loglikelihood is

l(µ, σ2;x1, . . . , xn) = −n
2

ln 2π− n
2

lnσ2− 1

2σ2

(
(x1−µ)2+· · ·+(xn−µ)2

)
.

To maximize, let’s set the partial derivatives with respect to µ:n and σ2 Here the variable
is σ2, not σ.to zero:

∂l

∂µ
=

1

σ2

(
(x1 − µ) + · · ·+ (xn − µ)

)
=

1

σ2
(x1 + · · ·+ xn − nµ) = 0

∂l

∂σ2
= − n

2σ2
+

1

2(σ2)2
(
(x1 − µ)2 + · · ·+ (xn − µ)2

)
= 0.

By solving the first equation, we obtain a familiar estimate for µ

µ̂ =
1

n
(x1 + · · ·+ xn) = x.

By inserting this in the second equation we obtain the maximum likelihood
estimate for σ2

σ̂2 =
1

n

n∑
i=1

(xi − x)2.

By examining the second partial derivatives, we can verify that this is the
maximum.

Surprisingly the result concerning σ2 isn’t the earlier used sample
variance s2. Because

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

is an unbiased estimate for σ2, the maximum likelihood estimate of σ2

for a normal distribution N(µ, σ2)

1

n

n∑
i=1

(Xi −X)2

is thus a little biased. This proves, that it’s not
favorable in all cases that
the estimate is unbiased.
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Example. Let’s consider, as an example, a case where the population
distribution is a uniform distribution over the interval [a, b], whose end-
points are unknown. If the realized sample values are x1, . . . , xn, the most
natural estimates would seem to be min(x1, . . . , xn) for the endpoint a and
max(x1, . . . , xn) for the endpoint b. But are these the maximum likelihood
estimates?

The density function of the distribution is now

f(x; a, b) =


1

b− a
, when a ≤ x ≤ b

0 otherwise.

It is clear that in order to maximize the likelihood

L(a, b;x1, . . . , xn) = f(x1; a, b) · · · f(xn; a, b)

we have to choose endpoint estimates â and b̂ such that all the sample
elements are included in the interval [â, b̂], otherwise the likelihood would
be = 0 and that’s not the greatest possible. Under this condition, the
likelihood is

L(a, b;x1, . . . , xn) =
1

(b− a)n

and it achieves its greatest value when b− a is the smallest possible. The If under consideration was
a uniform distribution over

the open interval (a, b),
the maximum likelihood
estimates wouldn’t exist

at all.

estimates {
â = min(x1, . . . , xn)

b̂ = max(x1, . . . , xn)

are thus confirmed to be also the maximum likelihood estimates.



Chapter 6

MULTIPLE LINEAR
REGRESSION

6.1 Regression Models [12.1]

In linear (multiple) regression, a phenomenon is considered to be modeled
mathematically in the form

y = β0 + β1x1 + · · ·+ βkxk + ε.

The different components in the model are the following:

1. x1, . . . , xk are the inputs of the model. These are given different
names depending on the situation and the field of application: in-
dependent variables, explanatory variables, regressors, factors or ex- ”Regressor” in the

following.ogenous variables.

2. y is the output of the model. It’s also given different names, for
example the depending variable, response or endogenous variable. ”Response”in the following.

3. β0, β1, . . . , βk are the parameters of the model or the coefficients
of the model. They are fixed values, that are estimated from the
obtained sample data when constructing the model. The parameter
β0 is the intercept.

4. ε is a random variable, whose expectation is = 0 and which has
a variance σ2, the error term. The response y is thus a random
variable and its expectation is β0 + β1x1 + · · ·+ βkxk and variance
is σ2.

The model functions so that its input are the regressors and its output
is the value of the response, which is affected by the realized value of the
error term.

The linearity of the model means that it’s linear with respect to its
parameters. Regressors may very well depend on one another. A usual Correspondingly, we could

consider and use nonlinear
regression models.model is for example a polynomial model

y = β0 + β1x+ β2x
2 + · · ·+ βkx

k + ε,

where the regressors are the powers of the single parameter x. Note that
this as well is a linear model for it is linear with respect to its parameters.

54
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6.2 Estimating the Coefficients. Using Ma-

trices [12.2–3]

In order to fit the model, its parameters are estimated by using the sample
data. The following n ordered k-tuples are chosen for the regressors

The indices are chosen
with the matrix

presentation in mind.

x1 x2 · · · xk
x1,1 x1,2 · · · x1,k
x2,1 x2,2 · · · x2,k

...
...

...
xn,1 xn,2 · · · xn,k

Let’s perform n experiments by using each k-tuples as an input and let’s
denote the obtained response values y1, y2, . . . , yn. The latter can be
consider to be either realized values or random variables. The regressor
k-tuples don’t have to be distinct, the same tuple can be used more than This may be even an

advantage, for it improves
the estimator of the

variance σ2.

once.
From the table above we see that a matrix presentation could be very

useful. Let’s now denote

Note especially the first
column in the matrix X.X =


1 x1,1 x1,2 · · · x1,k
1 x2,1 x2,2 · · · x2,k
...

...
...

. . .
...

1 xn,1 xn,2 · · · xn,k

 , y =


y1
y2
...
yn

 and ε =


ε1
ε2
...
εn


and moreover for the parameters

β =


β0
β1
...
βk

 .

With these markings we can write the results of the whole experiment
series simply in the form

Data model.y = Xβ + ε

Here ε1, . . . , εn are either realized values of the random variable ε or inde- To avoid confusion, these
different interpretations

aren’t denoted differently
unlike in the previous

chapters. That is, lower
case letters are used to

denote also random
variables. The case can be

found out by its context.

pendent random variables that all have the same distribution as ε. Note
that if ε1, . . . , εn are considered to be random variables, then y1, . . . , yn
have to be considered similarly and then yi depends only on εi.

Furthermore, note that if y1, . . . , yn are considered to be random vari-
ables or y is considered a random vector, then the expectation (vector)
of y is Xβ. The matrix X is on the other hand a given matrix, which is There is a whole field of

statistics on how to make
the best possible choice

of X, experimental design.

usually called the data matrix. In many applications the matrix X is de-
termined by circumstances outside the statistician’s control, even though
it can have a significant influence on the success of parameter estimation.

The idea behind the estimation of the parameters β0, β1, . . . , βk (that
is vector β) is to fit the realized output vector y as well as possible to
its expectation, that is Xβ. This can be done in many ways, the most
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usual of which the least sum of squares. Then we choose the parameters
β0, β1, . . . , βk, or the vector β so that

N(β0, β1, . . . , βk) = ‖y −Xβ‖2 =
n∑
i=1

(yi − β0 − β1xi,1 − · · · − βkxi,k)2

obtains its least value. Thus we obtain the parameter estimates

β̂0 = b0 , β̂1 = b1 , . . . , β̂k = bk,

in the form of vector β̂ = b, where

b =


b0
b1
...
bk

 .

The estimates b0, b1, . . . , bk are obtained by setting the partial deriva-
tives of N(β0, β1, . . . , βk) with respect to the parameters β0, β1, . . . , βk
equal to 0 and by solving for them from the obtained equations. These
equations are the normal equations. The partial derivatives are

∂N

∂β0
= −2

n∑
i=1

1 · (yi − β0 − β1xi,1 − · · · − βkxi,k),

∂N

∂β1
= −2

n∑
i=1

xi,1(yi − β0 − β1xi,1 − · · · − βkxi,k),
...

∂N

∂βk
= −2

n∑
i=1

xi,k(yi − β0 − β1xi,1 − · · · − βkxi,k).

When setting these equal to 0, we may cancel out the factor −2, and a
matrix form equation is obtained for b

XT(y −Xb) = 0 or (XTX)b = XTy.

If XTX is non-singular (invertible) matrix, as it’s assumed in the follow- If XTX is singular or
nearly singular

(multicollinearity),
statistical programs warn

about it.

ing, we obtain the solution

b = (XTX)−1XTy.

Estimation requires thus a lot of numerical calculations. There are
web-calculators for the most common types of problems, but large prob-
lems have to be calculated with statistical programs.

Example. Let’s fit the regression model [12.4]

Note that the regressors
are independent and

similarly indexed
parameters!

y = β0 + β1x1 + β2x2 + β1,1x
2
1 + β2,2x

2
2 + β1,2x1x2 + ε.

Terms in a product form, like x1x2 here, are called interaction terms.
Here x1 is sterilization time (min) x2 sterilization temperature (◦C). The
output y is the number of (organic) pollutants after sterilization. The
test result are the following:
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x2
x1 75 ◦C 100 ◦C 125 ◦C

15 min 14.05 10.55 7.55
15 min 14.93 9.48 6.59
20 min 16.56 13.63 9.23
20 min 15.85 11.75 8.78
25 min 22.41 18.55 15.93
25 min 21.66 17.98 16.44

By calculating from these we obtain the data matrix X (remember that
we should calculate all the columns corresponding to the five regressors).
The result is a 18 × 6-matrix, from which here are a few rows and the
corresponding responses:

X =



1 15 75 152 752 15 · 75
1 15 100 152 1002 15 · 100
1 15 125 152 1252 15 · 125
...

...
...

...
...

...
1 20 75 202 752 20 · 75
...

...
...

...
...

...

 , y =



14.05
10.55
7.55
...

16.56
...

 .

In JMP-program, the data is inputed using a data editor or read from a
file. The Added columns can easily be calculated in the editor (or formed
when estimating):

XTX is thus a 6 × 6-matrix. The numerical calculations are natu-
rally also here done by computers and statistical programs. The obtained
parameter estimates are

b0 = 56.4411 , b1 = −2.7530 , b2 = −0.3619 , b1,1 = 0.0817 ,

b2,2 = 0.0008 , b1,2 = 0.0031.
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The (a little trimmed) print of the JMP-program is the following: A lot of other information
is included here, to which

we’ll return later.

From the result we could conclude that the regressor x22 in the model
isn’t necessary and there’s not much combined effect between regressors
x1 and x2, but conclusions like this have to be statistically justified!

6.3 Properties of Parameter Estimators [12.4]

In the random variable interpretation, the obtained parameters bi are
considered to be random variables (estimators) that depend on the ran-
dom variables εi according to the vectorial equation

b = (XTX)−1XTy = (XTX)−1XT(Xβ + ε) = β + (XTX)−1XTε.

Because E(ε1) = · · · = E(εn) = 0, from the equation above we can
quite clearly see that E(bi) = βi, in other words the parameter estimators
are unbiased. Furthermore, by some short matrix calculation we can note
that the (k + 1)× (k + 1)”-matrix C = (cij), where

C = (XTX)−1,

and the indexes i and j go through values 0, 1, . . . , k, contains the infor-
mation about the variances of the parameter estimators and about their
mutual covariances in the form

var(bi) = ciiσ
2 and cov(bi, bj) = cijσ

2.

An important estimator/estimate is the estimated response

ŷi = b0 + b1xi,1 + · · ·+ bkxi,k
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and the residual obtained from it

ei = yi − ŷi.

The residual represents that part of the response that couldn’t be ex-
plained with the estimated model. In the vector form, we correspondingly
obtain the estimated response vector

ŷ = Xb = X(XTX)−1XTy

and from it the residual vector

Here In is a n× n identity
matrix.

e = y − ŷ = y −X(XTX)−1XTy =
(
In −X(XTX)−1XT

)
y.

The matrices presented above, by the way, have their own customary
names and notations:

Multiplying with H
projects the data matrix of

the response vector into
column space of the data

matrix, multiplying with P
projects into its orthogonal

complement.

H = X(XTX)−1XT a (hat matrix) and

P = In −X(XTX)−1XT = In −H (a projection matrix).

By a little calculation we can note that HT = H and PT = P, and that
H2 = H and P2 = P. H and P are in other words symmetric idempotent
matrices. Additionally, PH is a zero matrix. With these notations then

ŷ = Hy and e = Py.

The quantity

‖e‖2 =
n∑
i=1

e2i =
n∑
i=1

(yi − ŷi)2

is the sum of squares of errors, denoted often by SSE. By using it we
obtain an unbiased estimator for the error variance σ2. For this, let’s
expand the SSE. Firstly

e = Py =
(
In −X(XTX)−1XT

)
(Xβ + ε) = Pε.

Furthermore

SSE = eTe = (Pε)TPε = εTPTPε = εTPε = εTε− εTHε.

If we denote H = (hij), then we obtain

SSE =
n∑
i=1

ε2i −
n∑
i=1

n∑
j=1

εihijεj.

For the expectation of the SSE (unbiased), we should remember that
E(εi) = 0 and var(εi) = E(ε2i ) = σ2. Furthermore, because εi and εj are
independent when i 6= j, then they are also uncorrelated, in other words

cov(εiεj) = E(εiεj) = 0.

Thus,

E(SSE) =
n∑
i=1

E(ε2i )−
n∑
i=1

n∑
j=1

hijE(εiεj) = nσ2 − σ2

n∑
i=1

hii.
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The sum on the right hand side is the sum of the diagonal elements of
the hat matrix or its trace trace(H). One nice property about the trace
is that it’s commutative, in other words trace(AB) = trace(BA). By
using this we may calculate the sum in question

Let’s choose A = X and
B = (XTX)−1XT.

n∑
i=1

hii = trace(H) = trace
(
X(XTX)−1XT

)
= trace

(
(XTX)−1XTX

)
= trace(Ik+1) = k + 1

and then
E(SSE) = (n− k − 1)σ2.

Thus,

E
( SSE

n− k − 1

)
= σ2,

and finally we obtain the wanted unbiased estimate/estimator

σ̂2 =
SSE

n− k − 1
.

It’s often denoted the mean square error

MSE =
SSE

n− k − 1

is almost always available in the printout of a statistical program, as well
as the estimated standard deviation

√
MSE = RMSE. In the example ”root mean square of error”

above we obtain MSE = 0.4197 and RMSE = 0.6478.
There are two other sums of squares that are usually in a printout of

statistical programs:

SST =
n∑
i=1

(yi − y)2 , where y =
1

n

n∑
i=1

yi,

the total sum of squares and

SSR =
n∑
i=1

(ŷi − y)2,

the sum of squares of regression. These sums of squares, by the way,
have a connection, which can be found by a matrix calculation (will be
omitted here):

SST = SSE + SSR.

The corresponding mean squares are

MST =
SST

n− 1
(the total mean square) and

MSR =
SSR

k
(the mean square of regression).

At least the MSR is usually in the printouts of the programs.
As a matter of fact, there is a whole analysis of variance table or

ANOVA-table in the printouts of the programs:
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Source of Degrees of Sums of Mean F
variation freedom squares squares

Regression

Residual

Total variation

k

n− k − 1

n− 1

SSR

SSE

SST

MSR

σ̂2 = MSE

(MST)

F =
MSR

MSE

Note the sum:

n− 1 =
k + (n− k − 1).

The quantity F in the table is a test statistic, with which, with some
assumptions about normality, the significance of the regression can be
tested by using the F-distribution (with k and n − k − 1 degrees of
freedom), as we’ll see. There is also usually the realized P-probability of
the test in the table. The ANOVA-table of the example above is

Data: Fit Least Squares Page 1 of 1

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.986408

0.980745

0.647809

13.99556

      18

Summary of Fit

Model

Error

C. Total

Source

   5

  12

  17

DF

 365.47657

   5.03587

 370.51244

Sum of Squares

 73.0953

  0.4197

Mean Square

174.1791

F Ratio

  <.0001

Prob > F

Analysis of Variance

Lack Of Fit

Pure Error

Total Error

Source

   3

   9

  12

DF

 0.9211722

 4.1147000

 5.0358722

Sum of Squares

0.307057

0.457189

Mean Square

  0.6716

F Ratio

  0.5906

Prob > F

0.9889

Max RSq

Lack Of Fit

Intercept

Aika

Lämpötila

Aika*Aika

Lämpötila*Lämpötila

Aika*Lämpötila

Term

56.441111

   -2.753

-0.361933

0.0817333

0.0008133

  0.00314

Estimate

7.994016

0.550955

0.110191

0.012956

0.000518

0.001832

Std Error

  7.06

 -5.00

 -3.28

  6.31

  1.57

  1.71

t Ratio

<.0001

0.0003

0.0065

<.0001

0.1425

0.1123

Prob>|t|

Parameter Estimates

Aika

Lämpötila

Aika*Aika

Lämpötila*Lämpötila

Aika*Lämpötila

Source

  1

  1

  1

  1

  1

Nparm

  1

  1

  1

  1

  1

DF

 10.477893

  4.527502

 16.700844

  1.033611

  1.232450

Sum of Squares

 24.9678

 10.7886

 39.7965

  2.4630

  2.9368

F Ratio

  0.0003

  0.0065

  <.0001

  0.1425

  0.1123

Prob > F

Effect Tests

Response Vaste

and the mentioned estimate σ̂2 = MSE = 0.4197 from it.

6.4 Statistical Consideration of Regression [12.5]

A regression model is considered insignificant if all the parameters β1, . . . , βk Note that β0 isn’t
included.are equal to zero. In that case, the chosen regressors have no effect on

the response. Similarly, a single regressor xi is insignificant if the corre-
sponding parameter βi is equal to zero. When testing the significance,
there has to be some (sort of) distribution presented in order to calcu-
late the probabilities. Because of this it’s assumed that all the random
variables εi have a N(0, σ2)-distribution. In most of the cases, this is a
natural assumption.

When testing the significance of the whole model, the null hypothesis
is

H0 : β1 = · · · = βk = 0.

The alternative hypothesis, for one, claims that at least one of the pa-
rameters β1, . . . , βk is 6= 0. It can be shown that if H0 is true, then the The presented results

concerning distributions
are difficult to prove.quantity (random variable) in above mentioned ANOVA-table

F =
MSR

MSE

is F-distributed with k and n − k − 1 degrees of freedom. The critical
region is the right tail, for the insignificance of the model decreases the
SSR and increases the SSE.

If H0 isn’t rejected, the model isn’t too useful, even though the pa-
rameters would have been estimated. In the above mentioned example,
for F we obtain a value 174.1791 (with 5 and 12 degrees of freedom) and
the corresponding P-probability is close to zero. Thus, the model is very
significant.
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There is a test that uses the t-distribtution to test single parameters.
The test is very similar to the t-tests presented earlier. It can be namely
shown that if βi = β0,i, where β0,i is known, then the random variable

Remember from above
RMSE =

√
MSE and the

matrix
C = (cij) = (XTX)−1.

Ti =
bi − β0,i

RMSE
√
cii

has the t-distribution with n − k − 1 degrees of freedom. Let’s set the
null hypothesis H0 : βi = 0 (that is, choose β0,i = 0), and the alternative Any null hypothesis

H0 : βi = β0,i could be of
course tested this way.

We can also calculate the
100(1− α) % confidence

limits for βi:
bi ± tα/2RMSE

√
cii.

hypothesis H1 : βi 6= 0. The testing is performed in a usual way by us-
ing the t-distribution and the realized test statistic ti, usually two-sided.
Statistical programs usually print all these tests and the corresponding
P-probabilities. In the example above all the test results are in the pa-
rameter estimation section:

There are also the
estimated deviations of the

parameter estimators
RMSE

√
cii (in the column

”Std Error”).

We can for example test the hypothesis H0 : β2 = 0, when the realized
value for the test statistic is t2 = −3.28. The corresponding P-probability
is obtained from the t-distribution (with 12 degrees of freedom) and it’s
P = 0.0065. Thus, H0 is rejected and we’ll come to a conclusion that the
regressor x2 (temperature) is useful in the model. The regressors x22 and
x1x2 correspondingly aren’t shown to be useful in the tests. The other
regressors (including the constant term) are, however, seen to be useful..

We have to note that these tests for different parameters aren’t inde-
pendent, for the parameter estimates aren’t (usually) independent. Thus,
excluding many regressors as a result of the tests may sometimes lead to
unexpected results.

The obtained model with its estimated parameters and error vari-
ances can be used to calculate the response with new regressor tuples,
with which the experiments haven’t been performed. Then we can either
include the simulated error term or leave it out. The latter option is
useful among other things when the error arises only from the measure-
ments and doesn’t exist in the modeled phenomenon. Let’s take a new
interesting regressor combination under consideration

Note the 1 added for the
constant term.

x1 = x0,1 , . . . , xk = x0,k or x0 =


1
x0,1

...
x0,k

 ,

Let’s then consider a case, where the error term is excluded. Then
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the true response is

y0 = β0 +
k∑
i=1

βix0,i = xT
0β

(a number), whereas the estimated response is

ŷ0 = b0 +
k∑
i=1

bix0,i = xT
0 b.

Because apparently (in the random variable interpretation)

E(ŷ0) = E(b0) +
k∑
i=1

E(bi)x0,i = β0 +
k∑
i=1

βix0,i = y0,

the obtained respond estimator is unbiased. With matrix calculation we
may notice that

var(ŷ0) = σ2xT
0 (XTX)−1x0.

Additionally, it can be shown that the random variable

T0 =
ŷ0 − y0

RMSE
√

xT
0 (XTX)−1x0

has the t-distribution with n−k−1 degrees of freedom. Thus, we obtain,
in a way familiar from the above, the 100(1− α) % confidence limits for
y0

ŷ0 ± tα/2RMSE
√

xT
0 (XTX)−1x0.

Similarly, if the error term is included, then the correct respond is the Cf. the prediction interval
in section 2.3.random variable

A capital letter is used
here for clarity.

Y0 = β0 +
k∑
i=1

βix0,i + ε0 = xT
0β + ε0,

where ε0 is a N(0, σ2)-distributed random variable independent of b. Ap-
parently, E(Y0) = xT

0β and var(Y0) = σ2, and furthermore

Like before, ŷ0 = xT
0b.

E(ŷ0 − Y0) = E(ŷ0)− E(Y0) = 0

and (because of the independence)

var(ŷ0 − Y0) = var(ŷ0) + var(Y0) = σ2xT
0 (XTX)−1x0 + σ2.

The random variable

T0 =
ŷ0 − Y0

RMSE
√

1 + xT
0 (XTX)−1x0

has now the t-distribution with n− k − 1 degrees of freedom and for y0,
the realized value of Y0, we obtain by using it the 100(1−α) % prediction
interval

ŷ0−tα/2RMSE
√

1 + xT
0 (XTX)−1x0 < y0 < ŷ0+tα/2RMSE

√
1 + xT

0 (XTX)−1x0.
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6.5 Choice of a Fitted Model Through Hy-

pothesis Testing [12.6]

If the earlier presented F-test finds the model insignificant, in other words
the null hypothesis H0 : β1 = · · · = βk = 0 can’t be rejected, there’s not It would then be of the

form ”response = constant
+ deviation”.much use for the model. On the other hand, even if the F-test would find

the model to be significant, it’s still not always very good for different
reasons:

• Perhaps a good enough collection of regressors wasn’t included in
the model. This case is tested with the lack-of-fit-test. The null
hypothesis H0 is that the model is suitable, in other words it has ad-
equately many regressors and it couldn’t be significantly improved
in that matter. If this null hypothesis is rejected, there is a reason
to examine whether more regressors could be found for the model.
The lack-of-fit-testing is usually done only if many tests are per- It can be done also in

other cases.formed with the same regressor combinations. In that case, many
statistical programs perform the test automatically. The lack-of-fit-
test is as well based on the F-distribution and the programs print
the test statistic and the realized P-probability of the test.

In the example above, replicated tests are performed and JMP does
the lack-of-fit-test:
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Max RSq

Lack Of Fit
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Term
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  0.00314

Estimate
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0.012956
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  0.1123

Prob > F
Effect Tests

Response Vaste

In the test, the P-probability obtained was 0.5906, which is so large
that H0 isn’t rejected, and thus we may consider the model to have
adequately many regressors.

• On the other hand, not too many regressors should be included in
the model. An over-fitted model namely explains a part of its error, In an extreme case, even

completely!which of course can’t be the purpose.

• A method widely used to measure how much the model explains the
examined phenomenon is to calculate the coefficient of (multiple)
determination

R2 =
SSR

SST
= 1− SSE

SST
.

The square root of the coefficient R is often called the multiple
correlation coefficient. This name arises from the

fact that R is the Pearson
sample correlation

coefficient of the observed
y1, . . . , yn and the

predicted ŷ1, . . . , ŷn
responses. See section 7.5.

A value of R2 close to 1 tells that the model can explain a great
deal of the variation of the response. This is especially important if
the response is, in one way or another, related to energy or power.

On the other hand, if the model is significant, even a small coeffi-
cient of determination (like 0.1 – 0.2) may be useful, if for example
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there is a cheap method to partly remove an expensive fault. Such
a case would be encountered if a lot of tests are performed. If the
model explains even a little the respond, the F-test finds the model
significant, even if the coefficient of determination was small.

On the other hand, if there are few experiments, the coefficient of
determination can be relatively large, although the F-test finds the
model insignificant. The F-test isn’t very strong if there are only a
few experiments and/or they aren’t planned well.

• Many people prefer the adjusted coefficient of determination over
R2 The choice between these

two coefficients is
somewhat a matter of

opinion, statistical
programs usually print

both of them.

R2
adj = 1− MSE

MST
= 1− n− 1

n− k − 1

SSE

SST
,

with which the effect of degrees of freedom is tried to be taken into
account better.

• In the example above we obtained the coefficient of determination
to be R2 = 0.9864, which is very good:
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With a coefficient this good there is a danger of over-fitting and
there maybe might be reason to exclude some regressors or increase
the number of tests.

6.6 Categorical Regressors [12.8]

In above, the regressors are considered to be continuous or at least their
values are numerical. Categorical regressors are classification variables.
Their ”values” or levels are classes (for example names, colors, or some-
thing like that), which have no numerical scale.

The categorical regressors z1, . . . , zl can be included in the regres-
sion model in addition to or instead of the ”ordinary” continuous regres-
sors x1, . . . , xk in the following manner. If the mi levels of the regres- In fact, continuous

regressors aren’t
necessarily needed at all.sor zi are Ai,1, . . . ,Ai,mi , then we introduce mi − 1 ”ordinary” regressors

zi,1, . . . , zi,mi−1. In the data matrix the levels of zi and the values obtained
by the new regressors are connected as follows:

zi zi,1 zi,2 · · · zi,mi−1
Ai,1 1 0 · · · 0
Ai,2 0 1 · · · 0
...

...
...

...
Ai,mi−1 0 0 · · · 1
Ai,mi 0 0 · · · 0
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The values of the new regressors zi,1, . . . , zi,mi−1 are then either = 0 or They are dichotomy
variables.= 1. The whole regression model is thus

Note the indexing of the
new variables!

y = β0 + β1x1 + · · ·+ βkxk +
l∑

i=1

(βi,1zi,1 + · · ·+ βi,mi−1zi,mi−1) + ε

and it’s fitted in the familiar way. The used levels of categorical regressors
are of course recorded while performing tests, and they are encoded into
a data matrix in the presented way.

The encoding method presented earlier is just one of the many possi-
ble. For example JMP-program uses a different encoding:

zi zi,1 zi,2 · · · zi,mi−1
Ai,1 1 0 · · · 0
Ai,2 0 1 · · · 0
...

...
...

...
Ai,mi−1 0 0 · · · 1
Ai,mi −1 −1 · · · −1

This can be seen from the estimated parameters.

Example. Here the response y is the number of particles after cleaning. [12.9]

In the model there are included one continuous regressor x1, the pH of the
system, and one three-leveled categorical regressor z1, the used polymer
(P1, P2 or P3). The model is The encoding used here is

z1 z1,1 z1,2
P1 1 0
P2 0 1
P3 0 0

y = β0 + β1x1 + β1,1z1,1 + β1,2z1,2 + ε.

n = 18 tests were performed, six for each level of z1. Estimation gives
then the values

b0 = −161.8973 , b1 = 54.2940 , b1,1 = 89.9981 , b1,2 = 27.1657,

to the parameters, from which it can be concluded that the polymer P1 has Because of the encoding,
the level of polymer P3 is a

reference level.the greatest effect and the polymer P3 the second greatest. The obtained
estimate for error variance is MSE = 362.7652. The F-test (with 3
and 14 degrees of freedom) gives the P-probability, which is nearly zero,
thus, the model is very significant. The coefficient of determination is
R2 = 0.9404, which is very good. The P-probabilities of the t-tests of
parameter estimates (with 14 degrees of freedom) are small and all the
regressors are necessary in the model:

0.0007 , ∼= 0 , ∼= 0 , 0.0271.

The data is input into the JMP program in the form
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The encoding in JMP is different, as it was noted. On the other hand,

The encoding that JMP
uses here is

z1 z1,1 z1,2
P1 1 0
P2 0 1
P3 −1 −1the user need not do the encoding, for the program makes the encoding

automatically after obtaining the information about the types of variables.
The obtained (a bit trimmed) printout is

There are no replications,
so the lack-of-fit-test isn’t

printed.

The parameter estimates are now

b0 = −122.8427 , b1 = 54.2940 , b1,1 = 50.9435 , b1,2 = −11.8889.

The comparing between different polymers can be done in that case as
well. This doesn’t affect on the F-test or the coefficient of determination
or the MSE-value. Instead, the t-tests change, their P-probabilities are
now

0.0055 , ∼= 0 , ∼= 0 , 0.0822.
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There might be some product-form interaction terms between the new
regressors obtained from the categorical regressors, as well between them
and the ”old” regressors, or some other calculated regressors.

6.7 Study of Residuals [12.10]

By using the residual, there are many ways to study after the model-
fitting the goodness of the model or if the assumptions used when for-
mulating the model are true. Clearly exceptional or failed experimental
situations turn up as residuals with large absolute values, outliers. Cf. the example in section

1.3.The most simple way is to plot the residuals for example as a function
of the predicted response, in other words the points (ŷi, ei) (i = 1, . . . , n).
If the obtained point plot is somewhat ”curved”, then there is clearly an
unexplained part in the response and more regressors are needed:

If again, the plot is somewhat ”necked” or ”bulged” or ”wedge-shaped”,
then the assumption concerning the similarity of the distribution of the heteroscedasticity

error term concerning variance isn’t true, and a bigger change is required
in modeling:

The realized residuals can also be plotted as a function of order of exper-
iments, in other words the points (i, ei) (i = 1, . . . , n), and examine the
plot similarly as before.

In the example in section 6.2 the residual vs. the predicted respond
is quite usual (the upper plot), as well is the residual vs. the order of
tests (the lower picture):
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Here one of the residuals is
exceptionally large, maybe

it’s an outlier?

There is some suspicious
regularity here.

6.8 Logistical Regression [12.12]

In above, the response y has always been continuous. Logistical Regres-
sion allows a multileveled categorical response. The model doesn’t then
predict the response to the given regressor values, but gives the proba-
bilities of the different alternatives. Let’s begin with a case, where the
respond is two-leveled or a binary response. Let’s denote the two differ-
ent levels of response by A and B and the probability of A by p (, which
depends on the values of the regressors).

Accordingly to its name, the logistical regression uses a logistical dis-
tribution, whose cumulative distribution function is

F (z) =
1

1 + e−z
.

The idea is that the parameters β0, β1, . . . , βk of the formula

A logit.β0 + β1x1 + · · ·+ βkxk

are estimated so that the probability obtained from the logistical distri-
bution

F (β0 + β1x1 + · · ·+ βkxk) =
1

1 + e−β0−β1x1−···−βkxk

is the probability p of the level A of the respond y for the used regressor
combination.
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Experiments are performed (n of them) for different regressor com-
binations (data matrix X) and the obtained responses y1, . . . , yn (levels
A and B) are recorded. The pooled probability of the realized levels is
then, because of the independence of the to experiments, the product

L(β0, . . . , βk) = L1(β0, . . . , βk) · · ·Ln(β0, . . . , βk),

where

Li(β0, . . . , βk) =


pi =

1

1 + e−β0−β1xi,1−···−βkxi,k
, if yi = A

1− pi =
e−β0−β1xi,1−···−βkxi,k

1 + e−β0−β1xi,1−···−βkxi,k
, if yi = B

(i = 1, . . . , n).

As it can be noted already from the notation, the maximum likelihood See chapter 5.

estimate is going to be used and L(β0, . . . , βk) is the likelihood function.
The estimates of the parameter values b0, b1, . . . , bk are chosen so that Other estimation methods

than MLE can be used and
the results may then

sometimes be different.

L(β0, . . . , βk) or the corresponding loglikelihood function

l(β0, . . . , βk) = lnL(β0, . . . , βk)

obtains its largest value when β0 = b0, β1 = b1, . . . , βk = bk. By setting
the partial derivatives equal to zero we obtain a system of equations,
whose solution usually requires a lot of numerical computation. The
number of tests performed is usually large as well. Statistical programs
are needed then, and there are also web-calculators for the most simple
cases.

As a result of estimation we obtain the probability p̂0 for A to happen
when regressors have the values x1 = x0,1, . . . , xk = x0,k:

p̂0 =
1

1 + e−b0−b1x0,1−···−bkx0,k
.

The data obtained from the tests is often given in the following form.
If there are l pcs. of different regressor combinations (that is, different
rows of X), then the number of tests performed n1, . . . , nl are given to
each combination and the numbers v1, . . . , vl of the realized response val-
ues A as well (or the realized numbers of both realized response values).

Example. Here the effect of the level of a certain toxin x1 on insects is [12.15]

being studied. In the test, the numbers of all insects and died insects are
recorded for each tested level of toxin. The results are the following:

Level of Number Number
Test toxin of all of died

x1 insects insects
1 0.10 47 8
2 0.15 53 14
3 0.20 55 24
4 0.30 52 32
5 0.50 46 38
6 0.70 54 50
7 0.95 52 50
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Statistical programs (i.a. JMP) can usually handle the data in this In fact, this would become
a data matrix with

n = 359 rows.form, certain variables just have to be marked as frequency variables. The
JMP-print is

The progress of the
numerical solution of the
system of equations with
Newton’s method can be

seen here.

The estimated parameters are

There’s

p =
1

1 + eβ0+β1x1+···+βkxk

in the JMP-model.

b0 = −1.7361 ja b1 = 6.2954

(JPM gives these with opposite signs). The probability of an insect to die
p̂0 for the given level x1 = x0,1 is obtained (estimated) from the formula

p̂0 =
1

1 + e1.7361−6.2954x0,1
.

The significance of the estimated model can be tested with an approx-
imative χ2-test, the likelihood-ratio test. The significance of the estimated
parameters, in particular is tested often with the Wald’s χ2-test. In the Abraham Wald

(1902–1950)preceding example the χ2 test statistic of the estimated model given by
the significance test is 140.1223 (with 1 degree of freedom), for which the
corresponding P-probability is very nearly = 0. Thus, the model is very P ∼= 10−32

significant. The parameter testing with the Wald’s χ2-test additionally
shows that both of them are very significant.

An interesting quantity is often the odds ratio of the response level A The logarithm of the odds
ratio is the above

mentioned logit.p

1− p
,

which is predicted to be eb0+b1x0,1+···+bkx0,k .
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A multileveled response is considered similarly. If the levels of a re- multinomial logistical
regressionsponse are A1, . . . ,Am, then the corresponding probabilities are obtained

from the parameters in the following way:

P(y = A1) =
1

1 +
∑m

j=2 e
−β(j)

0 −β
(j)
1 x1−···−β(j)

k xk
and

P(y = Ah) =
e−β

(h)
0 −β

(h)
1 x1−···−β(h)

k xk

1 +
∑m

j=2 e
−β(j)

0 −β
(j)
1 x1−···−β(j)

k xk
(h = 2, . . . ,m).

There are in total (m − 1)(k + 1) parameters β
(j)
i . The estimation is

customarily done with the maximum likelihood estimation method by
forming a likelihood function as a product of these probabilities.

This idea has many variants. Instead of the logistical distribution
other distributions can be used as well, for example the standard nor- A probit model.

mal distribution. Furthermore, logistical models may include categorical
regressors (when encoded properly), interaction terms and so on.



Chapter 7

NONPARAMETRIC
STATISTICS

Nonparametric tests are tests that don’t assume a certain form of the
population distributions and are focused on the probabilities concerning
the distribution. Because the (approximative) normality required by the Such methods were already

the χ2-tests considered in
chapter 4.t-tests isn’t always true or provable, it’s recommendable to use the cor-

responding nonparametric tests instead. Please however note that these
tests measure slightly different quantities.

7.1 Sign Test [16.1]

By a sign test, the quantiles q(f) of a continuous distribution are being See section 1.3.

tested. Recall that if X is the corresponding random variable, then q(f)
is a number such that P

(
X ≤ q(f)

)
= f , in other words the population

cumulation in the quantile q(f) is f . The null hypothesis is then of the
form

H0 : q(f0) = q0,

where f0 and q0 are given values. The alternative hypothesis is then one
of the three following:

H1 : q(f0) < q0 , H1 : q(f0) > q0 or H1 : q(f0) 6= q0.

Let’s denote by f a value such that exactly q(f) = q0. The null hypothesis
can then be written in the form H0 : f = f0 and the above mentioned
alternative hypotheses are correspondingly of the form

H1 : f0 < f , H1 : f0 > f or H1 : f0 6= f.

In order to test hypothesis, let’s take a random sample x1, . . . , xn.
Let’s form a corresponding sign sequence s1, . . . , sn, where

si = sign(xi) =


+, if xi > q0

0 , if xi = q0

−, if xi < q0.

Because the sample data is often, in one way or another, rounded, let’s
leave elements xi, for which si = 0, outside the sample and continue

73
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with the rest of them. After that, si is always either + or −. Let’s now Theoretically, the
probability, that exactly

Xi = q0, is zero.denote the sample size by n. When considered to be random variables,
the sample is X1, . . . , Xn and the signs are S1, . . . , Sn. The number of
minus signs Y has then, if H0 is true, the binomial distribution Bin(n, f0)
and the testing of the null hypothesis can be done similarly as in section There are also web-

calculators, but they
mostly test only the

median.

3.4.

Example. The recharging time (in hours) of a battery-powered hedge [16.1]
trimmer was studied. The sample consists of 11 times:

1.5 , 2.2 , 0.9 , 1.3 , 2.0 , 1.6 , 1.8 , 1.5 , 2.0 , 1.2 , 1.7.

The distribution of recharging time is unknown, except that it’s contin-
uous. We want to test, could the median of recharging time be q0 = 1.8
h. The hypothesis pair to be tested is then H0 : q(0.5) = 1.8 h vs.
H1 : q(0.5) 6= 1.8 h, in other words H0 : f = 0.5 vs. H1 : f 6= 0.5,
where q(f) = 1.8 h (and f0 = 0.5).

Because one of the realized sample elements is exactly 1.8 h, it’s left
out and we continue with the remaining n = 10 elements. The sign
sequence s1, . . . , s10 is now

− , + , − , − , + , − , − , + , − , −.

The realized number of the minus signs is y = 7. The P-probability of
the binomial distribution test is the smaller of the numbers

7∑
i=0

(
10

i

)
0.5i(1− 0.5)10−i and

10∑
i=7

(
10

i

)
0.5i(1− 0.5)10−i

(it’s the latter) multiplied by two, that is P = 0.3438. The null hypothesis
isn’t rejected in this case. The calculations on MATLAB:

>> X=[1.5,2.2,0.9,1.3,2.0,1.6,1.8,1.5,2.0,1.2,1.7];

>> P=signtest(X,1.8)

P =

0.3438

Example. 16 drivers tested two different types of tires R and B. The [16.2]

gasoline consumptions, in kilometers per liter, were measured for each
car and the results were:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
R 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2 5.7 6.9 6.8 4.9
B 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.9 6.0 4.9 5.3 6.5 7.1 4.8
si + − + + − + 0 + + 0 + + + + − +

The sign sequence calculated from the difference of the consumptions is
included. In two cases the results were equal and these are left out. Then
there are n = 14 cases and the realized number of minus signs is y = 3.
Thus, the population consists of the differences of gasoline consumption.
The null hypothesis is H0 : q(0.5) = 0, in other words that the median
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difference of consumption is = 0, and the alternative hypothesis is H1 :
q(0.5) > 0. In other words, the hypothesis pair H0 : f = 0.5 vs. H1 :
f < 0.5, where q(f) = 0 (and f0 = 0.5), is being tested with the binomial
test. The obtained P-probability of the test is the tail probability of the
binomial distribution

3∑
i=0

(
14

i

)
0.5i(1− 0.5)14−i = 0.0287.

At the risk α = 0.05, the null hypothesis has to be rejected then, and
conclude that when considering the median of the differences of consump-
tions, the tire type R is better. The calculations on MATLAB:

>> D=[4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2 5.7 6.9 6.8 4.9;

4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.9 6.0 4.9 5.3 6.5 7.1 4.8];

>> P=signtest(D(1,:),D(2,:))

P =

0.0574

>> P/2

ans =

0.0287

7.2 Signed-Rank Test [16.2]

If we confine ourselves to certain kinds of distributions and certain quan-
tiles, we may perform stronger tests. One of such tests is the (Wilcoxon)

Frank Wilcoxon (1892–
1965), a pioneer in

nonparametric statistics

signed-rank test. There, in addition to the assumption that the popula-
tion distribution is continuous, the population distribution is assumed to
be symmetric as well. Furthermore, we can only test the median.

In the following, let’s denote the median of the population distribution
by µ̃. By the above mentioned symmetry it’s meant that the population
density function f fulfills the condition f(µ̃ + x) = f(µ̃ − x). The null
hypothesis is H0 : µ̃ = µ̃0, where µ̃0 is a given value. If the obtained
sample is x1, . . . , xn, we proceed as follows:

1. Let’s subtract µ̃0 from the sample elements and obtain the numbers

di = xi − µ̃0 (i = 1, . . . , n).

If some di = 0, the sample value xi is left out.

2. Let’s order the numbers d1, . . . , dn in increasing order due to their
absolute values and give each number ki a corresponding sequence
number. If there are numbers equal by their absolute values in
the list, their sequence number will be the mean of the original
consecutive sequence numbers. If for example exactly four of the
numbers d0, . . . , dn have a certain same absolute value and their
original sequence numbers are 6, 7, 8 and 9, the sequence number
(6 + 7 + 8 + 9)/4 = 7.5 is given to them all.
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3. Let’s calculate the sum of the sequence numbers of all the positive
numbers di. Thus we obtain the value w+. Similarly, let’s calculate
the sum of the sequence numbers of all the negative numbers di,
and we obtain the value w−.

4. Let’s denote w = min(w+, w−).

In the random variable consideration we would correspondingly obtain
W+, W− and W .

In testing, the different alternatives are:

• If actually µ̃ < µ̃0, w+ tends to be small and w− large. This case
then leads to rejecting H0 in favor of the alternative hypothesis
H1 : µ̃ < µ̃0.

• Similarly, if actually µ̃ > µ̃0, w+ tends to be large and w− small and
H0 is rejected in favor of the alternative hypothesis H1 : µ̃ > µ̃0.

• Furthermore, if either of the values w+ and w− is small, when w is
small, it suggests that µ̃ 6= µ̃0 and H0 should be rejected in favor
of the alternative hypothesis H1 : µ̃ 6= µ̃0.

It’s laborious to calculate the exact critical values for different risk levels There are web-calculators
for this test. Note however

that different programs
announce the signed-rank

sum a bit differently.

(when H0 is true) and they are even nowadays often read from tables.
For large values of n however, the distribution(s) of W+ (and W−) are
nearly normal, in other words

W+ ≈ N
(n(n+ 1)

4
,
n(n+ 1)(2n+ 1)

24

)
.

Because of symmetry reasons, it’s probably quite clear that E(W+) =
n(n+ 1)/4, for the sum of all sequence numbers is as a sum of an arith-
metic series 1 + 2 + · · ·+ n = n(n+ 1)/2. The variance is more difficult
to work out.

Example. Let’s return to the previous example concerning recharging [16.3]

time, but let’s now do it using the signed-rank test. The obtained numbers Now we have to assume
that the distribution is

symmetric.
di and their sequence numbers ri are

i 1 2 3 4 5 6 7 8 9 10
xi 1.5 2.2 0.9 1.3 2.0 1.6 1.5 2.0 1.2 1.7
di −0.3 0.4 −0.9 −0.5 0.2 −0.2 −0.3 0.2 −0.6 −0.1
ri 5.5 7 10 8 3 3 5.5 3 9 1

By summing from these, we obtain the realized values w+ = 13 and
w− = 42, so w = 13. The corresponding P-probability is P = 0.1562
(MATLAB) and thus, null hypothesis isn’t rejected in this case either. MATLAB-command

P=signrank(X,1.8)The print of JMP is:
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The t-test result is here
similar to the signed-rank

test result.

Example. Certain psychology test results are being compared. We want [16.4]

to know if the result is better when the test subject is allowed to practice
beforehand with similar exercises, or not. In order to study the matter,
n = 10 pairs of test subjects were chosen, and one of the pair was given
a few similar exercises, the other wasn’t. The following results (scores)
were obtained:

i 1 2 3 4 5 6 7 8 9 10
Training 531 621 663 579 451 660 591 719 543 575

No training 509 540 688 502 424 683 568 748 530 524

According to the chosen null hypothesis H0, the median of the differences Note that the medians of
the scores aren’t tested

here! Usually the median
of difference isn’t the same

as the difference of
medians.

is µ̃0 = 50. The alternative hypothesis H1 is chosen to be the claim that
the median is < 50. This is a one-sided test we consider here then. For
the test, let’s calculate the table

i 1 2 3 4 5 6 7 8 9 10
di 22 81 −25 77 27 −23 23 −29 13 51

di − µ̃0 −28 31 −75 27 −23 −73 −27 −79 −37 1
ri 5 6 9 3.5 2 8 3.5 10 7 1

from which we can see that w+ = 10.5. The corresponding P-probability
is P = 0.0449 (MATLAB). Thus, H0 can be rejected at the risk α = 0.05 MATLAB-command

P=signrank(D(1,:)-50,
D(2,:))/2

and it can be concluded that practicing beforehand doesn’t increase the
test result by (at least) 50, when concerning the median of the differences.
The print of JMP is:

Here, the t-test result is
somewhat different to the

signed-rank test result.



CHAPTER 7. NONPARAMETRIC STATISTICS 78

7.3 Mann–Whitney test [16.3]

The Mann–Whitney test compares the medians of two continuous popu- Henry Mann (1905–2000)
Ransom Whitney

(1915–2001)
lation distributions. The test is called also U-test or (Wilcoxon) rank-sum
test or just Wilcoxon test. Let’s denote the population medians by µ̃1

and µ̃2. The null hypothesis is then H0 : µ̃1 = µ̃2. Actually the null hy- Thus, the test doesn’t
finally solve the Behrens–
Fisher-problem, although
it’s often claimed do so.

pothesis is that the population distributions are the same—when they of
course have the same median—because with this assumption the critical
limits etc. are calculated.

The Mann–Whitney test reacts sensitively to the difference of the
population medians, but much more weakly to many other differences
in population distributions. For this reason, it’s not quite suitable to
test the similarity of two populations, although it’s often recommended.
Many people think that the test has to be considered a location test,
when the distributions, according to the hypotheses H0 and H1, are of
the same form, only in different locations.

In order to perform the test, let’s take two samples from a population

x1,1, . . . , x1,n1 and x2,1, . . . , x2,n2 .

Let the sample size n1 be the smaller one. Let’s now proceed as follows: If they are unequal—only
to make the calculations

easier.1. Let’s combine the samples as a pooled sample

x1,1, . . . , x1,n1 , x2,1, . . . , x2,n2 .

2. Let’s order the elements in the pooled sample in increasing order
and give them the corresponding sequence numbers

r1,1, . . . , r1,n1 , r2,1, . . . , r2,n2 .

If there are duplicate numbers in the pooled sample, when their
sequence numbers are consecutive, let’s give all those numbers a
sequence number, which is the mean of the original consecutive
sequence numbers. If for example exactly three elements of the
pooled sample have a certain same value and their original sequence
numbers are 6, 7 and 8, let’s then give to all of them the sequence
number (6 + 7 + 8)/3 = 7.

3. Let’s sum the n1 sequence numbers of the first sample. Thus we
obtain the value w1 = r1,1 + · · ·+ r1,n1 .

4. Correspondingly, by summing the n2 sequence numbers of the sec-
ond sample we obtain the value w2 = r2,1 + · · · + r2,n2 . Note that
as a sum of an arithmetic series we have

w1 + w2 =
(n1 + n2)(n1 + n2 + 1)

2
,

from which w2 can easily be calculated, when w1 is already ob-
tained.

5. Let’s denote w = min(w1, w2).
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In random variable consideration we would obtain the corresponding ran-
dom variables W1, W2 and W . Often, instead of these, values

u1 = w1−
n1(n1 + 1)

2
, u2 = w2−

n2(n2 + 1)

2
and u = min(u1, u2),

are used and the corresponding random variables are U1, U2 and U . The name ”U-test” arises
from here.In testing, the following cases may occur:

• If actually µ̃1 < µ̃2, w1 tends to be small and w2 large. This case
often leads to rejecting H0 in favor of the alternative hypothesis
H1 : µ̃1 < µ̃2.

• Similarly, if actually µ̃1 > µ̃2, w1 tends to be large and w2 small and
H0 is rejected in favor of the alternative hypothesis H1 : µ̃1 > µ̃2.

• Furthermore, if either of the values w1 and w2 is small, when w is
small, it suggests that µ̃1 6= µ̃2 and H0 should be rejected in favor
of the alternative hypothesis H1 : µ̃1 6= µ̃2.

In a similar way, the values u1, u2 and u could be used in the test.
It’s laborious to calculate the exact values for different risk proba-

bilities (when H0 is true) and they are even nowadays often read from
tables. For large values of n1 and n2 the distribution(s) of W1 (and W2)
are nearly normal, in other words

W1 ≈ N
(n1(n1 + n2 + 1)

2
,
n1n2(n1 + n2 + 1)

12

)
.

There are web-calculators for this test as well.

Example. The nicotine contents of two brands of cigarettes A and B [16.5]

were measured (mg). The hypothesis pair to be tested is H0 : µ̃A = µ̃B

vs. H1 : µ̃A 6= µ̃B. The following results were obtained, also the sequence
numbers of the pooled sample are included:

i 1 2 3 4 5 6 7 8 9 10
xA,i 2.1 4.0 6.3 5.4 4.8 3.7 6.1 3.3 – –
rA,i 4 10.5 18 14.5 13 9 16 8 – –
xB,i 4.1 0.6 3.1 2.5 4.0 6.2 1.6 2.2 1.9 5.4
rB,i 12 1 7 6 10.5 17 2 5 3 14.5

The sample sizes are nA = 8 and nB = 10. By calculating we obtain
wA = 93 and wB = 78, so w = 78. (Similarly we would obtain uA = 57,
uB = 23 and u = 23.) From this, the obtained P-probability is P = 0.1392
(MATLAB) and there is no reason to reject H0. The print of JMP is: MATLAB-command

P=ranksum(X_A,X_B)

These are approximations.
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7.4 Kruskal–Wallis test [16.4]

The Kruskal–Wallis test is a generalization of the Mann–Whitney test for William Kruskal (1919–
2005), Allen Wallis

(1912–1998)the case, where there can be more than two populations to be compared.
Let’s denote the medians of the populations (k of them) similarly as be-
fore by µ̃1, . . . , µ̃k. Like the Mann–Whitney test, the Kruskal–Wallis test
compares population distributions according to their medians yet when
calculating critical values, it’s assumed that the population distributions
are the same. The essential null hypothesis is

H0 : µ̃1 = · · · = µ̃k.

In order to perform the test, let’s take a sample from each of the pop-
ulations. These samples are then combined as a pooled sample and its
elements are ordered in increasing order, just like in the Mann–Whitney
test. Especially, duplicate values are handled similarly as before. By
calculating the sums of sequence numbers of the elements of each popu-
lation, we obtain the rank sums w1, . . . , wk and the corresponding random
variables W1, . . . ,Wk. Let’s denote the sample size of the j:th population
by nj and n = n1 + · · ·+ nk.

It’s very laborious to calculate the exact critical value of the test,
at least for greater values of k. The test is usually performed with the
information that (when H0 is true) the random variable

H =
12

n(n+ 1)

k∑
j=1

W 2
j

nj
− 3(n+ 1)

is approximately χ2-distributed with k − 1 degrees of freedom. This
approximation can also be used in the Mann–Whitney test (where k = 2) JMP did this in the

previous example.The (approximative) P-probability of the test corresponding the realized
value of H

h =
12

n(n+ 1)

k∑
j=1

w2
j

nj
− 3(n+ 1)

is then obtained from the tail probability of the χ2-distribution (with
k − 1 degrees of freedom that is). Again, there are web-calculators for
this test, at least for smaller values of k.

Example. The propellant burning rates of three different types of mis- [16.6]

siles A, B and C were studied. The results (coded) are presented below,
there are also the sequence numbers included:

i 1 2 3 4 5 6 7 8 w
xA,i 24.0 16.7 22.8 19.8 18.9 – – –
rA,i 19 1 17 14.5 9.5 – – – 61
xB,i 23.2 19.8 18.1 17.6 20.2 17.8 – –
rB,i 18 14.5 6 4 16 5 – – 63.5
xC,i 18.4 19.1 17.3 17.3 19.7 18.9 18.8 19.3
rC,i 7 11 2.5 2.5 13 9.5 8 12 65.5
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Here the calculated test statistic is h = 1.6586 and the corresponding
P-probability obtained from the χ2 distribution (with 2 degrees of freedom)
and H0 isn’t rejected. Thus, the missile types are similar in propellant
burning rates when measuring with medians. The print of JMP is:

The calculations with MATLAB are:

Note the slight difference
compared to the previous

one! JMP calculates a
fixed test variable. It’s

advantageous if there are
many duplicate values.

So does MATLAB!

>> X=[24.0 16.7 22.8 19.8 18.9];

>> Y=[ 23.2 19.8 18.1 17.6 20.2 17.8];

>> Z=[18.4 19.1 17.3 17.3 19.7 18.9 18.8 19.3];

>> group=[ones(1,length(X)) 2*ones(1,length(Y)) 3*ones(1,length(Z))];

>> P=kruskalwallis([X Y Z],group)

P =

0.4354

7.5 Rank Correlation Coefficient [16.5]

If two populations are connected element by element, their relation is
often represented by a value obtained from the sample, the (Pearson)
correlation coefficient r. In order to calculate this, let’s take an n-element
random sample from both populations counterpart by counterpart:

x1,1, . . . , x1,n and x2,1, . . . , x2,n.

In order to calculate r, let’s first calculate the sample variance

q =
1

n− 1

n∑
i=1

(x1,i − x1)(x2,i − x2),

which is an (unbiased) estimate of the population distributions’ covari-
ance. Here x1 is the sample mean of the first sample and x2 of the second.
From this we obtain the mentioned sample correlation coefficient

r =
q

s1s2
,

where s21 is the sample variance of the first sample s22 of the second. This An additional assumption
is of course that s1, s2 6= 0.is used when studying the (linear) dependence of population distributions

similarly as the actual correlation coefficient corr(X, Y ). Also the values See the course Probability
Calculus.of r belong to the interval [−1, 1].

The rank correlation coefficient of two populations is a similar non-
parametric quantity. For it, let’s order the elements of both populations



CHAPTER 7. NONPARAMETRIC STATISTICS 82

separately in increasing order and give them sequence numbers like be-
fore:

r1,1, . . . , r1,n and r2,1, . . . , r2,n.

Possible duplicate values are handled as before. For both samples, the
mean of the sequence numbers is Cf. an arithmetic series.

r =
1

n
(1 + 2 + · · ·+ n) =

n+ 1

2
.

Furthermore, we obtain the sum of squares of the sequence numbers,
supposing that there are no duplicate values:

n∑
i=1

r21,i =
n∑
i=1

r22,i = 12 + 22 + · · ·+ n2 =
1

6
n(n+ 1)(2n+ 1).

The Spearman rank correlation coefficient is then simply the sample cor- An additional assumption
is that all the sequence

numbers in either
population are not all the

same.

Charles Spearman (1863–
1945)

relation coefficient obtained from the sequence numbers, in other words

rS =

n∑
i=1

(r1,i − r)(r2,i − r)√
n∑
i=1

(r1,i − r)2
√

n∑
i=1

(r2,i − r)2
.

This is easier to calculate if (as it’s now assumed) there are no dupli-
cate numbers in the samples. By proceeding similarly as with the sample
variances, we see that

n∑
i=1

(r1,i − r)(r2,i − r) =
n∑
i=1

r1,ir2,i − n r 2 =
n∑
i=1

r1,ir2,i −
1

4
n(n+ 1)2

and

n∑
i=1

(r1,i − r)2 =
n∑
i=1

r21,i −
1

4
n(n+ 1)2 = (12 + 22 + · · ·+ n2)− 1

4
n(n+ 1)2

=
1

6
n(n+ 1)(2n+ 1)− 1

4
n(n+ 1)2 =

1

12
n(n2 − 1),

similarly to the other sample. By using these and with a little calculation,
we obtain a simpler formula for the rank correlation coefficient

rS =
12

n(n2 − 1)

n∑
i=1

r1,ir2,i − 3
n+ 1

n− 1
.

The sum of squares of differences of the sequence numbers di = r1,i− r2,i
can be unified to the sum

∑n
i=1 r1,ir2,i included in the formula:

∑
i=1

d2i =
n∑
i=1

(r21,i − 2r1,ir2,i + r22,i) = −2
n∑
i=1

r1,ir2,i +
1

3
n(n+ 1)(2n+ 1).
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thus, with a little further calculation and by using these differences, we
can formulate rS in a simpler way:

rS = 1− 6

n(n2 − 1)

n∑
i=1

d2i .

This ”easy”formula holds exactly only when there are no duplicate sample Oddly enough, it’s often
used even when there are

duplicate values. The
result isn’t necessarily very

exact then.

values.
Unlike the Pearson correlation coefficient, the Spearman correlation

coefficient is able to measure also nonlinear correlation between popula-
tions, at least at some level. It can be used for ordinal-valued population
distributions (discrete categorical distribution, whose levels can be or-
dered.)

Example. In an earlier example the rank correlation coefficient of the
two types of tires A and B rS = 0.9638 is high as it should be, for the cars
and drivers are the same in one test pair. Also the (Pearson) sample cor-
relation coefficient r = 0.9743 is high. This is calculated with MATLAB
as follows:

>> D=[4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2 5.7 6.9 6.8 4.9;

4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.9 6.0 4.9 5.3 6.5 7.1 4.8];

>> corr(D(1,:)’,D(2,:)’,’type’,’Spearman’)

ans =

0.9638

>> corr(D(1,:)’,D(2,:)’,’type’,’Pearson’)

ans =

0.9743

Another widely used rank correlation coefficient is the Kendall corre-
lation coefficient.



Chapter 8

STOCHASTIC
SIMULATION

Stochastic simulation and the generation of random numbers are top-
ics that are not considered in WMMY. In the following there is a brief
overview of some basic methods.

8.1 Generating Random Numbers

Stochastic simulation is a term used to describe methods that, at one
point or another, involve the use of generated random variables. These
random variables may come from different distributions, but usually they
are independent. The generation of random variables — especially fast
and exact generation — is a challenging field of numerical analysis. The
methods to be presented here are simple but not necessarily fast or precise
enough for advanced applications. Practically all statistical programs,
including MATLAB, have random number generators for the most com-
mon distributions. There are also web-based generators, but they aren’t
always suitable for solving “real” simulation problems.

8.1.1 Generating Uniform Distributions

Independent random variables uniformly distributed over the interval
[0, 1) are generated with methods involving number theory. In the fol-
lowing it is assumed that such random numbers are available. We have
to note that these random number generators are completely determin-
istic programs that have no contingency. However, generated sequences ”pseudo-random numbers”

of numbers have most of the properties of “real” random numbers
Random variables uniformly distributed over the open interval (0, 1)

are obtained by rejecting the generated 0-values. Samples in [0, 1] can
be obtained by for example rejecting all the values that are > 0.5 and by
multiplying the result by two. Furthermore, if U is uniformly distributed
over the interval [0, 1), then 1−U is uniformly distributed over the interval
(0, 1]. Thus, the type of the interval doesn’t matter.

It’s quite easy to obtain uniformly distributed random variables over
half-open intervals other than [0, 1). If namely U is uniformly distributed

84
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over the interval [0, 1), then (b − a)U + a is uniformly distributed over
the interval [a, b). Other kinds of intervals are considered similarly.

8.1.2 Generating Discrete Distributions

Finite distributions can be easily generated. If the possible cases of a
finite distribution are T1, . . . , Tm and their probabilities are correspond-
ingly p1, . . . , pm (where p1, . . . , pm > 0 and p1 + · · · + pm = 1), then the
following procedure generates a random sample from the desired distri-
bution:

1. Generate random number u from the uniform distribution over the
interval [0, 1).

2. Find an index i such that p0 + · · ·+ pi ≤ u < p0 + · · ·+ pi+1, with
the convention that p0 = 0.

3. Output Ti+1.

This method works well in particular when generating a discrete uni-
form distribution, for which p1 = · · · = pn = 1/n. This way we can for
example take a random sample from a finite population by numbering
its elements.

A binomial distribution Bin(p, n) can basically be generated as a fi-
nite distribution using the above mentioned method, but this is usually
computationally too heavy. It’s easier to generate n cases of a finite dis-
tribution such that the possible cases are T1 and T2 and P(T1) = p. The Bernoulli distribution

realization of the binomially distributed random number x is then the
realization of the number of T1 cases.

The Poisson distribution is more difficult to generate. With the pa-
rameter λ the possible values x of the Poisson-distributed random vari-
able X are the integers 0, 1, 2, . . . and

P(X = x) =
λx

x!
e−λ.

On way to generate the values x ofX is to use the exponential distribution
(whose generation will be considered later). If the random variable Y
has the exponential distribution with the parameter λ, then its density
function is λe−λy (when y ≥ 0 and = 0 elsewhere). With a simple
calculation we note that

P(Y ≤ 1) = 1− e−λ = 1− P(X = 0) = P(X ≥ 1).

It’s more difficult to show a more general result (the proof is omitted
here) that if Y1, . . . , Yk are independent exponentially distributed random
variables (each of them with the parameter λ) and Wk = Y1 + · · · + Yk,
then

P(Wk ≤ 1) = 1−
k−1∑
i=0

λi

i!
e−λ = 1− P(X ≤ k − 1) = P(X ≥ k).
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Thus,

P(X = k−1) = P(X ≥ k−1)−P(X ≥ k) = P(Wk−1 ≤ 1)−P(Wk ≤ 1).

From this we may conclude that the following procedure produces a ran-
dom number x from the Poisson distribution with parameter λ:

1. Generate independent exponentially distributed random variables
with the parameter λ until their sum is ≤ 1.

2. When the sum first time exceeds 1, look at the number k of gener-
ated exponentially distributed random variables.

3. Output x = k − 1.

8.1.3 Generating Continuous Distributions with the
Inverse Transform Method

If the cumulative distribution function F of the continuous random vari-
able X has an inverse F−1 (in a domain where its density function is
6= 0), then the values x of X can be generated starting from an uni-
form distribution. This method is attractive provided that the values of
the inverse function in question can be computed quickly. This Inverse
transform method is:

1. Generate random number u from the uniform distribution over the
interval [0, 1). (The corresponding random variable is U).

2. Calculate x = F−1(u) (i.e. u = F (x) and for random variables
U = F (X)).

3. Output x.

The procedure is based on the following observation. Being a cumulative
distribution function, the function F is non-decreasing. Let G denote
the cumulative distribution function of U in the interval [0, 1), that is,
G(u) = u. Then

P(X ≤ x) = P
(
F (X) ≤ F (x)

)
= P

(
U ≤ F (x)

)
= G

(
F (x)

)
= F (x).

The method can also be used to generate random numbers for an em-
pirical cumulative distribution function obtained from a large sample, by
linearly interpolating between the cdf values. That is, by using an ogive.

Let’s consider as an example the exponential distribution that was
used earlier when generating the Poisson distribution. If X has the ex-
ponential distribution with the parameter λ, then its cumulative distri-
bution function is F (x) = 1 − e−λx (when x ≥ 0). The inverse function
F−1 can be easily found: If y = 1− e−λx, then

x = F−1(y) = −1

λ
ln(1− y).
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Thus, for every random number u uniformly distributed over the interval
[0, 1) we obtain an exponentially distributed random number x with the
parameter λ by the transformation

x = −1

λ
ln(1− u).

In order to generate a normal distribution N(µ, σ2), it’s enough to
generate the standard normal distribution. If namely the random vari-
able Z has the standard normal distribution, then the random variable
X = σZ + µ has the N(µ, σ2)-distribution. The cumulative distribution
function of the standard normal distribution is

Φ(x) =
1√
2π

x∫
−∞

e−
1
2
t2dt

Its inverse Φ−1 (the quantile function) cannot be formulated using the
”familiar” functions nor it is easy to calculate numerically. The result
mentioned in section 1.3,

Φ−1(y) = q0,1(y) ∼= 4.91
(
y0.14 − (1− y)0.14

)
,

gives some sort of approximation. A much better approximation is for
example

Φ−1(y) ∼=

{
w − v, when 0 < y ≤ 0.5

v − w, when 0.5 ≤ y < 1,

where

w =
2.515517 + 0.802853v + 0.010328v2

1 + 1.432788v + 0.189269v2 + 0.001308v3

and

v =
√
−2 ln

(
min(y, 1− y)

)
.

Distributions obtained from the normal distribution can be generated
in the way they are obtained from the normal distribution. For exam-
ple, for the χ2-distribution with n degrees of freedom we can generate n
independent standard normal random numbers z1, . . . , zn and calculate

v = z21 + · · ·+ z2n.

For the t-distribution with n degrees of freedom, we can generate n + 1
independent standard normal random numbers z1, . . . , zn+1 and calculate

t =
zn+1

√
n√

z21 + · · ·+ z2n
.

For the F-distribution with n1 and n2 degrees of freedom, we can generate
n1+n2 independent standard normal random numbers z1, . . . , zn1+n2 and
calculate

f =
z21 + · · ·+ z2n1

z2n1+1 + · · ·+ z2n1+n2

n2

n1

.
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8.1.4 Generating Continuous Distributions with the
Accept–Reject Method

The accept–reject method can be used when generating a random number
x such that the density function f of the corresponding distribution is
6= 0 only in a certain finite interval [a, b] (not necessarily in the whole
interval) and is in this interval limited by the number c. The procedure
is:

1. Generate a random number u that is uniformly distributed over the
interval [a, b]

2. Generate independently a random number v that is uniformly dis-
tributed over the interval [0, c].

3. Repeat step 2, if necessary, until v ≤ f(u). (Recall that f is
bounded above by c, that is, f(u) ≤ c.)

4. Output x = u.

The method works because of the following reasons:

• The generated pairs (u, v) of random numbers are uniformly dis-
tributed over the rectangle a ≤ u ≤ b, 0 < v ≤ c.

• The algorithm retains only pairs (u, v) such that v ≤ f(x), and
they are uniformly distributed over the region A : a ≤ u ≤ b,
0 < v ≤ f(u).

• Because f is a probability density function, the area of the region
A is

b∫
a

f(u) du = 1,

so the density function of the retained pairs has the value = 1
inside the region A (and = 0 outside of it). (Recall that the density
function f was = 0 outside the interval [a, b].)

• The distribution of the random number u is a marginal distribution
of the distribution of the pairs (u, v). The density function of u is
thus obtained by integrating out the variable v, i.e. See the course Probability

Statistics.

f(u)∫
0

1 dv = f(u).

• Thus, the output random number x has the correct distribution.

The accept–reject method can be used also when the domain of the
density function is not a finite interval. In that case, we have to choose
an interval [a, b] outside of which the probability is very small.
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There are also other variants of the method. A problem with the
above mentioned basic version often is that the density function f of
X has one or more narrow and high peaks. Then there will be many
rejections in the third phase and the method is slow. This can be fixed
with the following idea. Let’s find a random variable U whose density
function g is = 0 outside the interval [a, b], whose values we can rapidly
generate, and for which

f(x) ≤Mg(x)

for some constant M . By choosing a g that “imitates” the shape of f In the basic version above
U has a uniform

distribution over the
interval [a, b] and
M = c(b− a).

better than a straight horizontal line, there will be fewer rejections. The
procedure itself is after this the same as before, except that the first two
steps are replaced with

1’. Generate a random number u that is distributed over the interval
[a, b] according to the density g. Here the interval [a, b]

could be an infinite
interval, (−∞,∞) for

example.2’. Generate independently a random number w that is uniformly dis-
tributed over the interval [0, 1], and set v = wMg(u).

The justification of the method is almost the same, the generated pairs
of random numbers (u, v) are uniformly distributed over the region a ≤ The density function is

1/M in that region.u ≤ b, 0 < v ≤ Mg(u) and so on, but the proof requires the concept of
a conditional distribution, and is omitted.

8.2 Resampling

Resampling refers to a whole set of methods whose purpose is, by simula-
tion sampling, to study statistical properties of a population that would
otherwise be difficult to access.

The basic idea is the following: Let’s first take a comprehensive large
enough sample of the population to be studied. This is done thoroughly
and with adequate funding. After that, let’s take a very large number
of smaller samples from this base sample, treating it as a population.
Because the whole base sample is saved on a computer, this can be done
very rapidly. Nevertheless, resampling is usually computationally very
intensive. Thus we may obtain a very large number of samples from a
statistic (sample quantile, sample median, estimated proportion, sample In many cases, the

distribution of such a
statistic would be

impossible to derive with
analytical methods.

correlation coefficient and so on) corresponding to a certain sample size.
By using the samples we can actually obtain quite a good approximation
for the whole distribution of the statistic in question in the original pop-
ulation as quite accurate empirical density and cumulative distribution
functions. A more modest goal would for example be just a confidence
interval for the statistic.

8.3 Monte Carlo Integration

Nowadays stochastic simulation is often called Monte Carlo simulation,
although the actual Monte Carlo method is a numerical integration method.
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Let’s consider a case where a function of three variables f(x, y, z) should
be integrated possibly over a complicated bounded three-dimensional
body K, in other words we should numerically calculate the integral∫

K

f(x, y, z) dx dy dz

with a reasonable precision. Three-dimensional integration with, say,
Simpson’s method would be computationally very slow.

A Monte Carlo method for this problem would be the following. It’s
assumed that there is a fast way to determine whether or not a given
point (x, y, z) lies inside the body K and that the body K lies entirely
inside a given rectangle P : a1 ≤ x ≤ a2, b1 ≤ y ≤ b2, c1 ≤ z ≤ c2. Let’s
denote the volume of K by V . Then the method is

1. The sample that is gathered in the method is denoted by O. Ini-
tially it’s empty.

2. Generate a random point r = (x, y, z) from the rectangle P . This is
simply done by generating three independent uniformly distributed
random numbers x, y and z over the intervals [a1, a2], [b1, b2] and
[c1, c2] respectively.

3. Repeat step 2. until the point r lies inside the body K. (The test
for belonging to the body was supposed to be fast.)

4. Calculate f(r) and add it to the sample O.

5. Calculate the sample mean x of the current sample O. If it has
remained relatively unchanged (within the desired accuracy toler-
ance) in the past few iterations, stop and output V x. Otherwise
return to step 2. and continue.

The procedure works because after many iterations the sample mean x
approximates fairly well the expectation of the random variable f(X, Y, Z)
when the triplet (X, Y, Z) is uniformly distributed over the body K. The
corresponding density function is then = 1/V inside the body K (and
= 0 outside of it), and the expectation of f(X, Y, Z) is

E
(
f(X, Y, Z)

)
=

∫
K

f(x, y, z)
1

V
dx dy dz,

so by multiplying by V the desired integral is obtained.

Example. Let’s calculate the integral of the function f(x, y, z) =
ex

3+y3+2z3 over the unit sphere x2 + y2 + z2 ≤ 1. The exact value is
4.8418 (Maple), the result MATLAB gives after a million iterations of
Monte Carlo approximation is 4.8429.

In fact, the volume V can also be obtained with the Monte Carlo
method. This procedure is:

1. There are two counters n and l in the method. Initially n = l = 0.
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2. Generate a random point r from the rectangle P and increment
counter n by one.

3. If the point r lies inside the body K, increment counter l by one.

4. If p = l/n hasn’t changed significantly within the last few iterations,
stop and output p · (a2 − a1)(b2 − b1)(c2 − c1). Otherwise return to Note that

(a2 − a1)(b2 − b1)(c2 − c1)

is the volume of the
rectangle P.

step 2. and continue.

There are many variations of this basic method, such as generalisa-
tion to higher dimensions and so on. In general, Monte Carlo integration
requires a large number of iterations in order to achieve reasonable pre-
cision.



Appendix

TOLERANCE INTERVALS

The tables are calculated with the Maple program. The table gives the
value to the coefficient k. First for the two-sided tolerance interval:

k: γ = 0.1 γ = 0.05 γ = 0.01
n α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
5 3.4993 4.1424 5.3868 4.2906 5.0767 6.5977 6.6563 7.8711 10.222
6 3.1407 3.7225 4.8498 3.7325 4.4223 5.7581 5.3833 6.3656 8.2910
7 2.9129 3.4558 4.5087 3.3895 4.0196 5.2409 4.6570 5.5198 7.1907
8 2.7542 3.2699 4.2707 3.1560 3.7454 4.8892 4.1883 4.9694 6.4812
9 2.6367 3.1322 4.0945 2.9864 3.5459 4.6328 3.8596 4.5810 5.9803
10 2.5459 3.0257 3.9579 2.8563 3.3935 4.4370 3.6162 4.2952 5.6106
11 2.4734 2.9407 3.8488 2.7536 3.2727 4.2818 3.4286 4.0725 5.3243
12 2.4139 2.8706 3.7591 2.6701 3.1748 4.1555 3.2793 3.8954 5.0956
13 2.3643 2.8122 3.6841 2.6011 3.0932 4.0505 3.1557 3.7509 4.9091
14 2.3219 2.7624 3.6200 2.5424 3.0241 3.9616 3.0537 3.6310 4.7532
15 2.2855 2.7196 3.5648 2.4923 2.9648 3.8852 2.9669 3.5285 4.6212
16 2.2536 2.6822 3.5166 2.4485 2.9135 3.8189 2.8926 3.4406 4.5078
17 2.2257 2.6491 3.4740 2.4102 2.8685 3.7605 2.8277 3.3637 4.4084
18 2.2007 2.6197 3.4361 2.3762 2.8283 3.7088 2.7711 3.2966 4.3213
19 2.1784 2.5934 3.4022 2.3460 2.7925 3.6627 2.7202 3.2361 4.2433
20 2.1583 2.5697 3.3715 2.3188 2.7603 3.6210 2.6758 3.1838 4.1747
21 2.1401 2.5482 3.3437 2.2941 2.7312 3.5832 2.6346 3.1360 4.1125
22 2.1234 2.5285 3.3183 2.2718 2.7047 3.5490 2.5979 3.0924 4.0562
23 2.1083 2.5105 3.2951 2.2513 2.6805 3.5176 2.5641 3.0528 4.0044
24 2.0943 2.4940 3.2735 2.2325 2.6582 3.4888 2.5342 3.0169 3.9580
25 2.0813 2.4786 3.2538 2.2151 2.6378 3.4622 2.5060 2.9836 3.9147
26 2.0693 2.4644 3.2354 2.1990 2.6187 3.4375 2.4797 2.9533 3.8751
27 2.0581 2.4512 3.2182 2.1842 2.6012 3.4145 2.4560 2.9247 3.8385
28 2.0477 2.4389 3.2023 2.1703 2.5846 3.3933 2.4340 2.8983 3.8048
29 2.0380 2.4274 3.1873 2.1573 2.5693 3.3733 2.4133 2.8737 3.7721
30 2.0289 2.4166 3.1732 2.1450 2.5548 3.3546 2.3940 2.8509 3.7426
31 2.0203 2.4065 3.1601 2.1337 2.5414 3.3369 2.3758 2.8299 3.7148
32 2.0122 2.3969 3.1477 2.1230 2.5285 3.3205 2.3590 2.8095 3.6885
33 2.0045 2.3878 3.1360 2.1128 2.5167 3.3048 2.3430 2.7900 3.6638
34 1.9973 2.3793 3.1248 2.1033 2.5053 3.2901 2.3279 2.7727 3.6405
35 1.9905 2.3712 3.1143 2.0942 2.4945 3.2761 2.3139 2.7557 3.6185
36 1.9840 2.3635 3.1043 2.0857 2.4844 3.2628 2.3003 2.7396 3.5976
37 1.9779 2.3561 3.0948 2.0775 2.4748 3.2503 2.2875 2.7246 3.5782
38 1.9720 2.3492 3.0857 2.0697 2.4655 3.2382 2.2753 2.7105 3.5593
39 1.9664 2.3425 3.0771 2.0623 2.4568 3.2268 2.2638 2.6966 3.5414
40 1.9611 2.3362 3.0688 2.0552 2.4484 3.2158 2.2527 2.6839 3.5244
41 1.9560 2.3301 3.0609 2.0485 2.4404 3.2055 2.2424 2.6711 3.5085
42 1.9511 2.3244 3.0533 2.0421 2.4327 3.1955 2.2324 2.6593 3.4927
43 1.9464 2.3188 3.0461 2.0359 2.4254 3.1860 2.2228 2.6481 3.4780
44 1.9419 2.3134 3.0391 2.0300 2.4183 3.1768 2.2137 2.6371 3.4638
45 1.9376 2.3083 3.0324 2.0243 2.4117 3.1679 2.2049 2.6268 3.4502
46 1.9334 2.3034 3.0260 2.0188 2.4051 3.1595 2.1964 2.6167 3.4370
47 1.9294 2.2987 3.0199 2.0136 2.3989 3.1515 2.1884 2.6071 3.4245
48 1.9256 2.2941 3.0139 2.0086 2.3929 3.1435 2.1806 2.5979 3.4125
49 1.9218 2.2897 3.0081 2.0037 2.3871 3.1360 2.1734 2.5890 3.4008
50 1.9183 2.2855 3.0026 1.9990 2.3816 3.1287 2.1660 2.5805 3.3899
55 1.9022 2.2663 2.9776 1.9779 2.3564 3.0960 2.1338 2.5421 3.3395
60 1.8885 2.2500 2.9563 1.9599 2.3351 3.0680 2.1063 2.5094 3.2968
65 1.8766 2.2359 2.9378 1.9444 2.3166 3.0439 2.0827 2.4813 3.2604
70 1.8662 2.2235 2.9217 1.9308 2.3005 3.0228 2.0623 2.4571 3.2282
75 1.8570 2.2126 2.9074 1.9188 2.2862 3.0041 2.0442 2.4355 3.2002
80 1.8488 2.2029 2.8947 1.9082 2.2735 2.9875 2.0282 2.4165 3.1753
85 1.8415 2.1941 2.8832 1.8986 2.2621 2.9726 2.0139 2.3994 3.1529
90 1.8348 2.1862 2.8728 1.8899 2.2519 2.9591 2.0008 2.3839 3.1327
95 1.8287 2.1790 2.8634 1.8820 2.2425 2.9468 1.9891 2.3700 3.1143
100 1.8232 2.1723 2.8548 1.8748 2.2338 2.9356 1.9784 2.3571 3.0977
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And then for the one-sided tolerance interval

k: γ = 0.1 γ = 0.05 γ = 0.01
n α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
5 2.7423 3.3998 4.6660 3.4066 4.2027 5.7411 5.3617 6.5783 8.9390
6 2.4937 3.0919 4.2425 3.0063 3.7077 5.0620 4.4111 5.4055 7.3346
7 2.3327 2.8938 3.9720 2.7554 3.3994 4.6417 3.8591 4.7279 6.4120
8 2.2186 2.7543 3.7826 2.5819 3.1873 4.3539 3.4972 4.2852 5.8118
9 2.1329 2.6499 3.6414 2.4538 3.0312 4.1430 3.2404 3.9723 5.3889
10 2.0656 2.5684 3.5316 2.3546 2.9110 3.9811 3.0479 3.7383 5.0737
11 2.0113 2.5026 3.4434 2.2753 2.8150 3.8523 2.8977 3.5562 4.8290
12 1.9662 2.4483 3.3707 2.2101 2.7364 3.7471 2.7767 3.4099 4.6330
13 1.9281 2.4024 3.3095 2.1554 2.6705 3.6592 2.6770 3.2896 4.4720
14 1.8954 2.3631 3.2572 2.1088 2.6144 3.5845 2.5931 3.1886 4.3372
15 1.8669 2.3289 3.2118 2.0684 2.5660 3.5201 2.5215 3.1024 4.2224
16 1.8418 2.2990 3.1720 2.0330 2.5237 3.4640 2.4594 3.0279 4.1233
17 1.8195 2.2724 3.1369 2.0017 2.4862 3.4144 2.4051 2.9627 4.0367
18 1.7995 2.2486 3.1054 1.9738 2.4530 3.3703 2.3570 2.9051 3.9604
19 1.7815 2.2272 3.0771 1.9487 2.4231 3.3308 2.3142 2.8539 3.8924
20 1.7652 2.2078 3.0515 1.9260 2.3960 3.2951 2.2757 2.8079 3.8316
21 1.7503 2.1901 3.0282 1.9053 2.3714 3.2628 2.2408 2.7663 3.7766
22 1.7366 2.1739 3.0069 1.8864 2.3490 3.2332 2.2091 2.7285 3.7268
23 1.7240 2.1589 2.9873 1.8690 2.3283 3.2061 2.1801 2.6940 3.6812
24 1.7124 2.1451 2.9691 1.8530 2.3093 3.1811 2.1535 2.6623 3.6395
25 1.7015 2.1323 2.9524 1.8381 2.2917 3.1579 2.1290 2.6331 3.6011
26 1.6914 2.1204 2.9367 1.8242 2.2753 3.1365 2.1063 2.6062 3.5656
27 1.6820 2.1092 2.9221 1.8114 2.2600 3.1165 2.0852 2.5811 3.5326
28 1.6732 2.0988 2.9085 1.7993 2.2458 3.0978 2.0655 2.5577 3.5019
29 1.6649 2.0890 2.8958 1.7880 2.2324 3.0804 2.0471 2.5359 3.4733
30 1.6571 2.0798 2.8837 1.7773 2.2198 3.0639 2.0298 2.5155 3.4465
31 1.6497 2.0711 2.8724 1.7673 2.2080 3.0484 2.0136 2.4963 3.4214
32 1.6427 2.0629 2.8617 1.7578 2.1968 3.0338 1.9984 2.4782 3.3977
33 1.6361 2.0551 2.8515 1.7489 2.1862 3.0200 1.9840 2.4612 3.3754
34 1.6299 2.0478 2.8419 1.7403 2.1762 3.0070 1.9703 2.4451 3.3543
35 1.6239 2.0407 2.8328 1.7323 2.1667 2.9946 1.9574 2.4298 3.3343
36 1.6182 2.0341 2.8241 1.7246 2.1577 2.9828 1.9452 2.4154 3.3155
37 1.6128 2.0277 2.8158 1.7173 2.1491 2.9716 1.9335 2.4016 3.2975
38 1.6076 2.0216 2.8080 1.7102 2.1408 2.9609 1.9224 2.3885 3.2804
39 1.6026 2.0158 2.8004 1.7036 2.1330 2.9507 1.9118 2.3760 3.2641
40 1.5979 2.0103 2.7932 1.6972 2.1255 2.9409 1.9017 2.3641 3.2486
41 1.5934 2.0050 2.7863 1.6911 2.1183 2.9316 1.8921 2.3528 3.2337
42 1.5890 1.9998 2.7796 1.6852 2.1114 2.9226 1.8828 2.3418 3.2195
43 1.5848 1.9949 2.7733 1.6795 2.1048 2.9141 1.8739 2.3314 3.2059
44 1.5808 1.9902 2.7672 1.6742 2.0985 2.9059 1.8654 2.3214 3.1929
45 1.5769 1.9857 2.7613 1.6689 2.0924 2.8979 1.8573 2.3118 3.1804
46 1.5732 1.9813 2.7556 1.6639 2.0865 2.8903 1.8495 2.3025 3.1684
47 1.5695 1.9771 2.7502 1.6591 2.0808 2.8830 1.8419 2.2937 3.1568
48 1.5661 1.9730 2.7449 1.6544 2.0753 2.8759 1.8346 2.2851 3.1457
49 1.5627 1.9691 2.7398 1.6499 2.0701 2.8690 1.8275 2.2768 3.1349
50 1.5595 1.9653 2.7349 1.6455 2.0650 2.8625 1.8208 2.2689 3.1246
55 1.5447 1.9481 2.7126 1.6258 2.0419 2.8326 1.7902 2.2330 3.0780
60 1.5320 1.9333 2.6935 1.6089 2.0222 2.8070 1.7641 2.2024 3.0382
65 1.5210 1.9204 2.6769 1.5942 2.0050 2.7849 1.7414 2.1759 3.0039
70 1.5112 1.9090 2.6623 1.5812 1.9898 2.7654 1.7216 2.1526 2.9739
75 1.5025 1.8990 2.6493 1.5697 1.9765 2.7481 1.7040 2.1321 2.9474
80 1.4947 1.8899 2.6377 1.5594 1.9644 2.7326 1.6883 2.1137 2.9237
85 1.4877 1.8817 2.6272 1.5501 1.9536 2.7187 1.6742 2.0973 2.9024
90 1.4813 1.8743 2.6176 1.5416 1.9438 2.7061 1.6613 2.0824 2.8832
95 1.4754 1.8675 2.6089 1.5338 1.9348 2.6945 1.6497 2.0688 2.8657
100 1.4701 1.8612 2.6009 1.5268 1.9265 2.6839 1.6390 2.0563 2.8496
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