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Introduction

Proofs in mathematics are valid arguments that establish the
truth of mathematical statements.

By an argument, we mean a sequence of statements that
end with a conclusion.

By valid, we mean the conclusion must follow from the truth of
the preceding statements, or premises, of the argument. That
is, an argument is valid if and only if it is impossible for all
premises to be true and the conclusion to be false.

To deduce new statements from statements we already have,
we use rules of inference which are templates for constructing
valid arguments. Rules of inference are basic tools for
establishing the truth of statements.
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Valid Arguments

Consider the following argument involving propositions:

"If you have a current password, then you can log onto the
network." "You have a current password." Therefore, "You can
log onto the network."

You would like to determine whether this is a valid argument.
That is, we we would like to determine whether the conclusion
"You can log onto the network" must be true when the
premises "If you have a current password, then you can log
onto the network" and "You have a current password" are both
true.

Before we discuss the validity of this argument, we will look at
its form first. Use p to represent "You have a current
password" and q to represent "You can log onto the network."
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Valid Arguments contd.

Then the argument has the form

(p→ q) p
∴ q

where ∴ is the symbol that denotes "therefore." We know that
when p and q are propositional variables, the statement
((p→ q) ∧ p)→ q is a tautology. In particular, when both
p→ q and p are true.

We say this form of argument is valid because whenever all its
premises are true, the conclusion must also be true.
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Rules of Inference for Proposition Logic

Since using truth table is a tedious approach, we can
establish the validity of some relative simple argument forms
by using rules of inference. These rule of inference can be
used as building blocks to construct more complicated valid
argument forms.

The tautology (p ∧ (p→ q))→ q) is the basis of the rule of
inference called modus ponens, or the law of detachment.
This tautology leads to the following argument form.

p

p→ q

∴ q
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Rules contd.

In particular, modus ponens tells us that if a conditional statement
and the hypothesis of this conditional statement are both true, the
conclusion must also be true.
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Example

Consider the two following arguments.
1 If it rains today, then we will go fishing. It is raining today.

Therefore, we will go fishing. (A valid argument and true
conclusion).

2 If
√

2 > 3
2 , then (

√
2)2 > ( 3

2 )2. We know that
√

2 > 3
2 .

Consequently, (
√

2)2 = 2 > ( 3
2 )2 = 9

4 . (a valid argument, but
false conclusion).
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Some Rules of Inference

There are some other rules of inference can be mentioned here.
They are (not limited to)

Modus Tollens: (¬q ∧ (p→ q))→ ¬p;

Hypothetical Syllogism: ((p→ q) ∧ (q→ r))→ (p→ r);

Addition: p→ (p ∨ r);

Simplification: (p ∧ q)→ p;

Resolution: ((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r).
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Examples

Consider the following argument. If it rains today, then we will
not have jogging today. If we do not have jogging today, then
we will have it tomorrow. Therefore, if it rains today, then we
will have jogging tomorrow. Which rule is used?

Consider also this argument. If you do every problem in this
book, then you will pass discrete mathematics. You passed
discrete mathematics. Therefore, you did every problem in
this book. Is it valid? This is called fallacy of affirming the
conclusion since the compound proposition
((p→ q) ∧ q)→ p is contingency.

Another example is ((p→ q) ∧ ¬p)→ ¬q,which is called as
the fallacy of denying the hypothesis.

by Gede, compiled mostly from Rosen(2013) Foundation 2: MATHEMATICAL REASONING



Rules of Inference
Introduction to Proofs

Introduction
Valid Arguments
Rules of Inference for Proposition Logic
Rules of Inference for Quantified Statements
Combining Rules of Inference

Examples

Consider the following argument. If it rains today, then we will
not have jogging today. If we do not have jogging today, then
we will have it tomorrow. Therefore, if it rains today, then we
will have jogging tomorrow. Which rule is used?

Consider also this argument. If you do every problem in this
book, then you will pass discrete mathematics. You passed
discrete mathematics. Therefore, you did every problem in
this book. Is it valid? This is called fallacy of affirming the
conclusion since the compound proposition
((p→ q) ∧ q)→ p is contingency.

Another example is ((p→ q) ∧ ¬p)→ ¬q,which is called as
the fallacy of denying the hypothesis.

by Gede, compiled mostly from Rosen(2013) Foundation 2: MATHEMATICAL REASONING



Rules of Inference
Introduction to Proofs

Introduction
Valid Arguments
Rules of Inference for Proposition Logic
Rules of Inference for Quantified Statements
Combining Rules of Inference

Examples

Consider the following argument. If it rains today, then we will
not have jogging today. If we do not have jogging today, then
we will have it tomorrow. Therefore, if it rains today, then we
will have jogging tomorrow. Which rule is used?

Consider also this argument. If you do every problem in this
book, then you will pass discrete mathematics. You passed
discrete mathematics. Therefore, you did every problem in
this book. Is it valid? This is called fallacy of affirming the
conclusion since the compound proposition
((p→ q) ∧ q)→ p is contingency.

Another example is ((p→ q) ∧ ¬p)→ ¬q,which is called as
the fallacy of denying the hypothesis.

by Gede, compiled mostly from Rosen(2013) Foundation 2: MATHEMATICAL REASONING



Rules of Inference
Introduction to Proofs

Introduction
Valid Arguments
Rules of Inference for Proposition Logic
Rules of Inference for Quantified Statements
Combining Rules of Inference

Outline

1 Rules of Inference
Introduction
Valid Arguments
Rules of Inference for Proposition Logic
Rules of Inference for Quantified Statements
Combining Rules of Inference

2 Introduction to Proofs
Introduction
Proving Theorems

by Gede, compiled mostly from Rosen(2013) Foundation 2: MATHEMATICAL REASONING



Rules of Inference
Introduction to Proofs

Introduction
Valid Arguments
Rules of Inference for Proposition Logic
Rules of Inference for Quantified Statements
Combining Rules of Inference

Rules of Inference for Quantified Statements

These are the rules:

Universal instantiation: (∀xP(x))→ P(c), for a particular
member c of the domain;

Universal generalization: (P(c)for an arbitrary c)→ ∀xP(x);

Existential instantiation: (∃xP(x))→ P(c), for some element
c of the domain;

Existential generalization:
(P(c)for some element c of the domain)→ ∃xP(x).

by Gede, compiled mostly from Rosen(2013) Foundation 2: MATHEMATICAL REASONING



Rules of Inference
Introduction to Proofs

Introduction
Valid Arguments
Rules of Inference for Proposition Logic
Rules of Inference for Quantified Statements
Combining Rules of Inference

Rules of Inference for Quantified Statements

These are the rules:

Universal instantiation: (∀xP(x))→ P(c), for a particular
member c of the domain;

Universal generalization: (P(c)for an arbitrary c)→ ∀xP(x);

Existential instantiation: (∃xP(x))→ P(c), for some element
c of the domain;

Existential generalization:
(P(c)for some element c of the domain)→ ∃xP(x).

by Gede, compiled mostly from Rosen(2013) Foundation 2: MATHEMATICAL REASONING



Rules of Inference
Introduction to Proofs

Introduction
Valid Arguments
Rules of Inference for Proposition Logic
Rules of Inference for Quantified Statements
Combining Rules of Inference

Rules of Inference for Quantified Statements

These are the rules:

Universal instantiation: (∀xP(x))→ P(c), for a particular
member c of the domain;

Universal generalization: (P(c)for an arbitrary c)→ ∀xP(x);

Existential instantiation: (∃xP(x))→ P(c), for some element
c of the domain;

Existential generalization:
(P(c)for some element c of the domain)→ ∃xP(x).

by Gede, compiled mostly from Rosen(2013) Foundation 2: MATHEMATICAL REASONING



Rules of Inference
Introduction to Proofs

Introduction
Valid Arguments
Rules of Inference for Proposition Logic
Rules of Inference for Quantified Statements
Combining Rules of Inference

Rules of Inference for Quantified Statements

These are the rules:

Universal instantiation: (∀xP(x))→ P(c), for a particular
member c of the domain;

Universal generalization: (P(c)for an arbitrary c)→ ∀xP(x);

Existential instantiation: (∃xP(x))→ P(c), for some element
c of the domain;

Existential generalization:
(P(c)for some element c of the domain)→ ∃xP(x).

by Gede, compiled mostly from Rosen(2013) Foundation 2: MATHEMATICAL REASONING



Rules of Inference
Introduction to Proofs

Introduction
Valid Arguments
Rules of Inference for Proposition Logic
Rules of Inference for Quantified Statements
Combining Rules of Inference

Example

Let we have an example.

Problem: Show that the argument "Everyone in this discrete
mathematics class has taken a course in computer science.
Marla is a student in this class. Therefore, Marla has taken a
course in computer science." is valid.
Solution: Let D(x) denotes "x is in this discrete mathematics
class", and C(x) denote "x has taken a course in computer
science." Then the premises are ∀xD(x)→ C(x) and
D(Marla). The conclusion is C(Marla). The following steps
can be used to establish the conclusion from the premises.

1 ∀x(D(x)→ C(x): Premise;
2 D(Marla)→ C(Marla): Universal instantiation from (1);
3 D(Marla): Premise;
4 C(Marla): Modus ponens from (2) and (3).
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Combining Rules of Inference for Propositions and
Quantified Statements

We have developed rules of inference both for propositions and
quantified statements. Note in the previous example we used both
universal instantiation, a rule of inference for quantified statements,
and modus ponens, a rule of inference for propositional logic. We
will often need to use this combination of rules of inference.
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Combining contd.

Because universal instantiation and modus ponens are used so
often together, this combination of rules is sometimes called
universal modus ponens. The form is

∀[P(x)→ Q(x)]

P(a), where a as a particular element in the domain

∴ Q(a)
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Example

Problem: Show that the premises "A student in this class has
not read the note," and "Everyone in this class passed the first
exam" imply the conclusion "Someone who passed the first
exam has nor read the note."

Solution: Let C(x) be "x is in the class," B(x) be "x has read
the note," and P(x) be "x passed the first exam." The premises
are ∃x[C(x) ∧ ¬B(x)] and ∀x[C(x)→ P(x)]. The conclusion is
∃x[P(x) ∧ ¬B(x)].
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Example contd.

The following steps can be used to establish the conclusion from
the premise.

1 ∃x[C(x) ∧ ¬B(x)]: Premise
2 C(a) ∧ ¬B(a): Existential instantiation from (1)
3 C(a): Simplification from (2)
4 ∀x[C(x)→ P(x)]: Premise
5 C(a)→ P(a): Universal instantiation from (4)
6 P(a): Modus ponens from (3) and (5)
7 ¬B(a): Simplification from (2)
8 P(a) ∧ ¬B(a): Conjunction from (6) and (7)
9 ∃x[P(x) ∧ B(x)]: Existential generalization from (8)
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Example

Problem: Assume that "For all positive integers n, if n is
greater than 4, then n2 is less than 2n" is true. Use universal
modus ponens to show that 1002 < 2100.

Solution: Let P(n) denote "n > 4" and Q(n) denote "n2 < 2n."
The statement "For all positive integers n, if n greater than 4,
then n2 is less than 2n" can be represented by
∀n[P(n)→ Q(n)], where the domain contains all positive
integers. We are assuming that ∀n[P(n)→ Q(n)] is true. Note
P(100) is true because 100 > 4. It follows by universal modus
ponens that Q(n) is true, namely that 1002 < 2100.
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Introduction

In this part we will discuss the notion of proof and describe
methods of constructing proofs.

A proof is a valid argument that establishes the truth of a
mathematical statement. A proof can use the hypotheses of
the theorem, if any, axioms assumed to be true, and
previously proven theorems. Using these ingredients and the
rules of inference, the final step of the proof establishes the
truth of the statement being proved.

In this discussion we move from formal proofs of theorems
toward more informal proofs since formal proofs can
extremely long and hard to follow.
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Introduction contd.

In practice, proofs of theorems designed for human
consumption are almost always informal proofs, where more
than one rule of inference may be used in each step, where
steps may be skipped, where the axioms being assumed and
the rules of inference used are not explicitly stated.

The methods of proof discussed are important not only
because they are used to prove mathematical theorems, but
also for their many applications to computer science.
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Proving Theorems

Formally, a theorem is a statement that can be shown to be true.
Less important theorems sometimes are called propositions. A
theorem may be the universal quantification of a conditional
statement with one or more premises and a conclusion. However,
it may be some other types of logical statement. We demonstrate
that a theorem is true with a proof. A proof is a valid argument that
establishes the truth of a theorem. The statements used in a proof
can include axioms (or postulates), which are statements we
assume to be true, the premises, if any, of the theorem, and
previously proven theorems.
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Proving contd.

A less important theorem that is helpful in the proof of other results
is called lemma. A corollary is a theorem that can be established
directly from a theorem that has been proved. A conjecture is a
statement that is being proposed to be a true statement, usually on
the basis of some partial evidence, a heuristic argument, or
intuition of an expert. When a proof of conjecture is found, the
conjecture becomes a theorem.
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With Quantifiers

Many theorems assert that a property holds for all elements in a
domain, as as the integers or the real numbers. Although the
precise statement of such theorems needs to include a universal
quantifier, the standard convention in mathematics is to omit it. For
example, the statement "If x > y, where x and y are positive real
numbers, then x2 > y2" really means "For all positive real numbers
x and y, if x > y, then x2 > y2." Furthermore, when theorems of this
type are proved, the law of universal instantiation is often used
without explicit mention. The first step of the proof usually involves
selecting a general element of the domain. Subsequent steps
show that this element has the property in the question. Finally,
universal generalization implies that the theorem holds for all
members of the domain. These are some of the methods.
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Direct Proofs

A direct proof of conditional statement p→ q is constructed when
the first step is the assumption that p is true; subsequent steps are
constructed using rules of inferences, with the final step showing
that q must also be true. A direct proof shows that a conditional
statement p→ q is true by showing that if p is true, then q must
also be true, so that the combination p true and q false never
occurs. In a direct proof, we assume that p is true and use axioms,
definitions, and previously proven theorems, together with rules of
inference, to show that q must also be true.
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Example

Problem: Give a direct proof of the theorem "If n is odd, then
n2 is also odd."
Solution: Note this theorem states ∀nP(n)→ Q(n), where
P(n) is "n is odd", and Q(n) is "n2 is odd." We will follow the
usual convention in mathematical proof by showing that P(n)
implies Q(n). To begin with, we assume that the hypothesis of
this conditional is true, namely, we assume that n is odd. By
the definition of odd integer, it follows that n = 2k + 1 for an
integer k. We can square both sides of the equation n = 2k + 1
to obtain a new equation that expresses n2. When we do this,
we find that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.
Since 2k2 + 2k is an integer, by the definition of an odd integer,
we can conclude that n2 is odd. Consequently, we have prove
that if n is odd, then n2 is odd too.
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Proof by Contraposition

Sometimes, attempts at direct proof often reach dead ends. We
need other methods of proving theorems in the form of
∀x(P(x)→ Q(x)). An extremely useful type of indirect proof is
known as proof by contraposition. Proofs by contraposition make
use of the fact that the conditional statement p→ q is logically
equivalent to its contrapositive ¬q→ ¬p
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Example

Problem: Prove that if n is an integer and 3n + 2 is odd, then n
is odd.

Solution: The first step of proof is to assume that the
conclusion is false, namely, assume that n is even. Then by
the definition of even integer, n = 2k for some integer k.
Substituting 2k for n we find that
3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). This tells us that 3n + 2
is even This is the negation of the premise of the theorem.
Since the negation of the conclusion of the conditional
statement implies that the hypothesis is false, then the
conditional statement is true. We have proved the theorem.
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Proofs by Contradiction

Suppose we want to prove that a statement p is true. Furthermore,
suppose that we can find a contradiction q such that ¬p→ q is
true. Because q is false, but ¬p→ q is true, we can conclude that
¬p is false, which means that p is true.

by Gede, compiled mostly from Rosen(2013) Foundation 2: MATHEMATICAL REASONING



Rules of Inference
Introduction to Proofs

Introduction
Proving Theorems

Example

Problem: Prove that
√

2 is irrational.

Solution: Let p be the proposition "
√

2 is irrational." To start a
proof by contradiction, we suppose that ¬p, which says that√

2 is rational. If
√

2 is rational, then there exists integer a and
b , 0 such that

√
2 = a/b and a and b have no common

factors (so that the fraction a/b is in the lowest term). Because√
2 = a/b, then 2 = a2

b2 . Hence, 2b2 = a2. It follows that a2 is
even. We use the fact that if a2 is even, then a must also be
even. Furthermore, since a is even, there exists integer c such
that a = 2c. Thus 2b2 = 4c2. Dividing both sides of this
equation by 2 gives b2 = 2c2. By the definition of even, this
means b2 is even. We conclude that b must be even as well.
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Example contd.

We have now shown that the assumption of ¬p leads to the
equation

√
2 = a/b, where a and b have no common factor, but

both a and b are even. Because our assumption of ¬p lead to the
contradiction that 2 divides both a and b and 2 does not divide both
a and b, ¬p must be false. That is, p is true. We have proved that√

2 is irrational.
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