MATHEMATICAL REASONING (MATHEMATICAL LOGICS)

Alee 2012 Reasoning. To learn the AIEEE Short Cuts and Reasoning Go Through the Given Exercise.

1. The negation of the statement
"If I become a teacher, then I will open a school", is :
(1) I will become a teacher and I will not open a school.
(2) Either I will not become a teacher or I will not open a school.
(3) Neither I will become a teacher nor I will open a school.
(4) I will not become a teacher or I will open a school.

Ans. (1)
Sol :
Let poI become a teacher
q : I will open a school

Negation of $\mathrm{p} \rightarrow \mathrm{q}$ is $\sim(\mathrm{p} \rightarrow \mathrm{q})=\mathrm{p}$

ie. I will become a teacher and will not open a school.

INTRODUCTION

The dictionary meanigof 'fogic' is the 'science of reasoning'. The language of mathematics is very neat and study of logiftheyghe use of mathematical symbols is called mathematical logic. The mathematical logic is also called 'symbolic logic'. Since symbols are abstract and neutral, they
propounded by British mathematician George Boole. On this account, the mathematical logic is also called Boolean logic.

STATEMENT

An sentence is called a statement if it is either true or false but not both.
Statements are denoted by letters p, q, r........
Illustrations, (i) $2+6=8$ is a statement because it is true.
(ii) Calcutta is in England is a statement because it is false.
(iii) 'Where are you going?' is not a statement because it is neithertrue nor false.
(iv) ' 7 divides 92 ' is a statement because it is false.
(v) 'Two individuals are always related’ is a stanembecause it is false.
(vi) 'Today is Sunday' is not a statement because in innether true nor false. On the other hand, the sentence, 'On monday it can that is Sunday' is a statement because it is a false sentence.

(vii) 'The equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ always 'has real roots' is not a statement because it is neither true nor false, (\because This equation may also admit non-real roots).
(viii) 'The equation $a x^{2}+b+c+c=0$ where $a, b, c \in R, b^{2}-4 a c \geq 0$ has real roots' is a statement because it is rue.
TRUTH VALUE OF ASTATEMENT
We kngw th a statement is either true or false. The truth or falsity of a statement is called its ryth rane, If a statement is true then its truth value is denoted by ' T ' and if a statement is false then its truth value is denoted by ' F '.

Illustrations, (i) The truth value of the statement ' $2+3=6$ ' is F , because this statement is false.

(ii) The truth value of the statement ' 64 is the square of 8 ' is T, because this statement is true.

WORKING RULES FOR SOLVING PROBLEMS

 Rule I. A sentence is a statement if it is either true or false but not Rule II. The truth or falsity of a statement is its truth value.
Exercise 1

1. Which of the following sentences are statements:
(i) 10 divided by 2 gives 5 .
(ii) It max rintoday,
(iv) Hefisint honest.

(iii) London is in America.
(v) The square root of 16 is 4 .
(vii) $x^{2}-5 x+6=0$ when $x=6$.
(ix) 4 is a prime number.
2. Write the truth values of theydrowing statements:
(i) $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ may hay mon -real roots.
integers.
(iii) The intersection ed two non-empty sets is always non-empty.
(iv) The capital of America is New York.

3.

(iii),
(v),
(vii),
(viii),
(ix)
2.
(i) T
(ii) F
(iii) F
(iv) T
(v) T.

USE OF VENN-DIAGRAMS FOR FINDING TRUTH VALUES OF STATEMENTS Students are familiar with Venn-diagrams. These diagrams are used very frequently in the problems of 'set theory'. Venn-diagrams can also be used for deciding the truthfulness of statements.

1. Represent the truth of each of the following statements by means et Venn-diagram :
(i) Some teachers are scholars.
(ii) Some quadratic equations have two real roots.
(iii) All human beings are mortal and x is not a human being.
(i) Let T = Set of all teachers and $\mathrm{S}=$ set per all scholars.

Since the given statement: 'some teachers dye scholars' is true, we have $\mathrm{T} \cap \mathrm{S} \neq \phi$ and $\mathrm{T} \cap \mathrm{S}$ $\subseteq \mathrm{S}$.

TAStes

\therefore Either $\mathrm{T} S \mathrm{SO}$

Sol.

The Truth ot the given statement is shown in the adjoining, Venn-diagrams:
(ii) $<$ ec $Q=$ set of all quadratic equations and $Q^{*}=$ set of all quadratic equations having real
roots.
Since the given statement: 'some quadratic equations have two real roots is true, we have Q* $\subset \mathrm{Q}$.

The truth of the given statement is shown in the adjoining Venh=diagrayn.
(iii) Let $\mathrm{H}=$ set of all human being and $\quad \mathrm{M}=$ set of all mortals.

Since the given statement: 'all human beings areprortand x is, not a human being' is true, we have
(i) $\mathrm{H} \subset \mathrm{M}, \mathrm{x} \in \mathrm{M}-\mathrm{H} \quad$ or
(ii) $\mathrm{H} \subset \mathrm{M}$, M

The truth of the given statementrshownity the following Venn-diagrams.

(i) $H \subset M, X \in M$

2. Find the truth vatae of the statement: 'Every hexagon is a polygon'. Justify your answer by using a Venhedagram.

We know that a polygon is a plane figure bounded by three or more sides.
\therefore Every hexagon is also a polygon.
\therefore The given statement is true and thus its truth value is ' T '.

Let P: set of all polygons and H : set of all hexagons.
$\therefore \mathrm{H} \subset \mathrm{P}$. These sets are shown in the adjoining Venn- diagram
3. By using a Venn-diagram, find the truth values of the, following statements:
(i) Every triangle is a polygon.
(ii) Every polygon is a triangle.
(iii) There exists a polygon whichistatrjangle.
(iv) There cannot be a triangle which is blot a polygon.

Sol.

Let T and P be respectively the sets of all triangles and polygons.
$\therefore \mathrm{T} \subset \mathrm{P}$
the sets T, P areshom, ,
(i) Since $T \subset$ R every triangle is a polygon.

\therefore The statement 'Every triangle is a polygon' is true and its truth value is T,
(ii) Since $T \subset P$, there exists an element x such that $x \notin T$ arid $x \in P$.
$\therefore \quad$ Every polygon is not a triangle.
\therefore The statement 'Every polygon is a triangle' is false and its truth value is F.
(iii) Since $T \subset P$, there exists an element x such that $x \notin T$
\therefore There exists a polygon, namely x, which is notatranghe.
\therefore The statement 'there exists a polygon which is hnot a tryangle' is true and its truth value is
T.
(iv) Since $T \subset P$, each and every element of isan element of P.
\therefore There cannot be a triangle whichis not polygon.
$\therefore \quad$ The statement 'there cannqebe a triangle which is not a polygon' is true and its truth value is T .

4. Under the assumption: alt teachers are honest', find, by using Venn-diagrams, whether the following sentences are statements or not?
(i) A honest person need not be a teacher.
(ii) Everyhonest berson is a teacher.

Sol.

Let $\mathrm{T}=$ set of all teachers
and $\mathrm{H}=$ set of all honest persons.
The given assumption is : 'all teachers are honest'.
$\therefore \mathrm{T} \subseteq \mathrm{H}$.
Two cases arises :

Case I. T $\subset \mathbf{H}$

Case II. $\mathbf{T}=\mathbf{H}$

(i) the sentence is: 'a honest person need not be neapher'

In case I, the sentence is true, because there exittsa honest person x who is not a teacher.
In case II, the sentence is true, because veryhinstyperson is a teacher.
\therefore Given sentence is a statement.
(ii) The sentence is : 'every honest pessonisa teacher'.

In case I, the sentence is false, hecause x is a honest person and is not a teacher.

\therefore Given sentence is netrystatement.
(iii) The sentence there are some honest persons who are not teachers'.

In case I, the sentencels true, because x is a honest person who is not a teacher.
In case in the sentence is false, because, we cannot find a honest person who is not a teacher.

WORKING RULES FOR SOLVING PROBLEMS

Rule I. In a Venn-diagram, universal set is shown by a rectangle.
Rule II. In a Venn-diagram, the subsets of universal set are shown by circles or ellipse r.

1. Represent the truth of each of the following statements by means of Venn-diaghams :
(i) Some students are smokers.
(ii) Every rational number is a real number.

(iii) Every rational number is a real number and every real numberisa complex number.
(iv) All teachers are scholars and all scholars are teachers.
(v) All natural numbers are real numbers and x is not a ratarannamber.

Sol:

(i) A = set of all smokers
(ii) $Q=$ set ofalurational numbers.
$B=$ set of all students.

Or

(iii) $Q=$ set of all ratio numbers.

(iv) $\mathrm{T}=$ set of all teachers.
$S=$ set of all scholars.

(v) $\mathrm{N}=$ set of all natural numbers.
$R=$ set of all real numbers.

2. Find the truth value of the statement. 'Ever Sgutare is a polygon'. Justify your answer by
2. Find the truth value
using a Venn-diagram.

Ans: T
3. Find the truth value of the statement : Every integer is a rational number'. Justify your answer by using a verin-dyagram.
Ans: T

4. By using Ven diagrams, find the truth values of the following statements:
(i) Every fentateperson is a human being.
(ii) Ever human being is a female person.

(iv) There cannot be a female person who is not a human being.

Ans:
(i) $\mathrm{T}(\mathrm{ii}) \mathrm{F}$
(iii) T
(iv) T
5. By using Venn-diagrams, find the truth values of the following statements.
(i) There exists a rational number which is not a complex number.
(ii) Every rational number is a complex number.
(iii) There cannot be a rational number which is not a complexrumbey.
(iv) Every complex number is a rational number.

Ans:
(i) F (ii) T
(iii) T
(iv) F

6. Under the assumption: 'all wives are faithor, frod by using Venn-diagrams, whether the following sentences are statements het?
(i) Every faithful person is a wife
(ii) A faithful person need not be a wife y
(iii) There are some faithful persons who are not wives.

Ans:
(i) No
(ii) Yes

A table indi ating the truth values of one or more statements is called a truth table.
The trut 'rables for one statement ' p ', two statements ' p, q ', three statements ' $\mathrm{p}, \mathrm{q}, \mathrm{r}$ ' are shown below in figure (i), (ii), (iii) respectively :

p
T
F
(i)

p	q
T	T
T	F
F	T
F	F

(ii)

p	q	r
T	T	T
T	T	F
T	F	T
F	T	T
T	F	
F	T	
F	F	
F	F	

In case of n statements, there are 2^{n} distinct possible arrangements of trath values of the statements.The second row of figure (ii) represent the caseynery is true and q is false. Similarly, the fourth row of figure (iii) represent the ease when p is false, q is true and r is true.

NEGATION OPERATION

If p is any statement, then the denial of stentent p s called the negation of statement p and is written as $\sim \mathrm{p}$. The negation of statentpry formed by inserting the word 'not' in por by writing 'It is false that \qquad ' before p .

Illustrations, (i) Let p be the statement: 4 is a factor of 12 .
$\therefore \sim \mathrm{p}$ can be written as. 'is is nt a factor of 12 ' or as 'it is false that 4 is a factor of 12 . Here truth value of p is T and that of $\sim p$ is F.
(ii) Let q be therstatement: 'Jaipur is in Bangla Desh'.
$\therefore \sim$ ©Can be wrytten as : 'Jaipur is not in Bangla Desh' or as 'it is false that Jaipur is in

Heretryty value of q is F and that of $\sim \mathrm{q}$ is T .

The truth value of negation of a statement is always opposite to the truth value of the original statement.

p	$\sim p$
T	F
F	T

Let p be any statement. The truth values of p and $\sim \mathrm{p}$ can also be shomintherm of actable, called truth table. In the truth table, the first line states rif true then $\sim p$ is false and the second line states that if p is false then $\sim p$ is trade

Write the negation of the following statements :
(i) $3+7=10$
(iii) All doctors are men

Sol.
(i) $3+7 \neq 10$.
(ii) $8>15$.
(iii) All doctors are not men.
(iv) Shimla is not in H.P.
(ii) $8 \leq 15$
(iv) Shimla is in $1 . P$.

2. Find the truth va re of the statement $\sim p$ if the statement p is:
(i) $\log _{a} m n=\log _{a}$ logan
(iii) $2^{\left(3^{2}\right)} \neq$
(ii) $(3+9)-7=4$

(iv) 7.3 is an irrational number.
$\therefore \quad \sim \mathrm{p}$ is $\log _{\mathrm{a}} \mathrm{mn} \neq \log _{\mathrm{a}} \mathrm{m}-\log _{\mathrm{a}} \mathrm{n}$.
Since $\log _{a} m n=\log _{a} m+\log _{a} n$, truth value of $\sim p$ is T.
Remark. It would be wrong to write $\sim p$ as $\log _{a} m n=\log _{a} m+\log _{a} n$.
(ii) we have p: $(3+9)-7=4$.
$\therefore \quad \sim \mathrm{p}$ is $(3+9)-7 \neq 4$
Since $(3+9)-7=12-7=5$ and $5 \neq 4$, the truth value of $\sim \mathrm{p}$ is T.
(iii) We have $\quad \mathrm{p}: 2^{\left(3^{2}\right)} \neq\left(2^{3}\right)^{2}$
$\therefore \sim \mathrm{p}$ is $2^{\left(3^{2}\right)}=\left(2^{3}\right)^{2}$
Since $2^{(3)^{2}}=2^{9}=512$ and $\left(2^{3}\right)^{2}=(8)^{2}=64$ and $58=64$, ne y yuth value of $\sim \mathrm{p}$ is F .
(iv) We have p:7.3 is an irrational number.
$\therefore \quad \sim \mathrm{p}$ is 7.3 is not an irrational number.
Since $7.3 \in \mathrm{Q}$, the truth value of \sim

BASIC LOGICAL CONNECTIVES
A statement whose truth valuen not explicitly depend on another statement is called a simple statement.

For example, 'the cub 44 if 64 ' is a simple statement.If two or more simple statements are combined by thense of wards as : 'and', 'or', 'if then', 'if and only if', then the resulting statement is calted acompound statement. Simple statements which on combining form a compoundstatement are called component state ments of the compound statement under consideration. The compound statement S consisting of component statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$, is
written as $S(p, q, r,$.$) .$
Remark. A simple statement is not a combination of two or more statements, whereas a compound statement is a combination of two or more simple statements.

Illustrations,
(i) Ram is healthy and he has blue eyes.
(ii) Mohan is in class XI or 4 is a factor of 8 .
(iii) If Bombay is in India then $3+7=12$.
(iv) Bombay is in India if and only if $3+7=12$.

The truth values of above compound statements would depend upon the truth values of the constituent statements.The word 'and', 'or', 'ifthen', 'iil/and only if are called basic logical connectives and are denoted by the symbols statements obtained by using basic logiconnectives $\wedge, \vee, \rightarrow, \leftrightarrow$ are called conjunction, disjunction, conditional statemert, condtional statement respectively. This can be shown in tabular form given below:

Now we 今halistuly each basic logical connective in detail.

If two statements are combined by using the logical connective 'and ', then the resulting statement is called a conjunction. The conjunction of statements p and q is denoted $\mathrm{by} \mathrm{p} \wedge$ q.

For example, let
p : Monsoon is very good this year
and q : The rivers are rising, then their conjunction $\mathrm{p} \wedge \mathrm{q}$ denotes the st dement: 'Monsoon is very good this year and the rivers are rising.

The conjunction $\mathrm{p} \wedge \mathrm{q}$ is defined to be true when p and q are b t λt the, otherwise it is false.

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

The adjoining truth table represents the tyuthylues of the conjunction $\mathrm{p} \wedge \mathrm{q}$. In the truth table, the first line say that if p is true, axis true then $p \wedge q$ is true. The other lines have analogous meaning.
3. Let p and q stand fore statements : 'Nitid is intelligent' and 'Nitin is hardworking' respectively. Describe the following statements:
(i) $p \wedge q$,

Sol.

\circ

(iii) $\mathrm{p} \wedge \sim \mathrm{q}$,
(iv) $\sim \mathrm{p} \wedge \sim \mathrm{q}$.
(i) $\mathrm{p} \wedge \mathrm{q}:$ Nitid is intelligent and Nitin is hardworking.
(ii) $\sim \mathrm{p} \wedge \mathrm{q}$: Nitin is not intelligent and Nitin is hardworking.
(iii) $\mathrm{p} \wedge \sim \mathrm{q}:$ Nitin is intelligent and Nitin is not hardworking.
(iv) $\sim \mathrm{p} \wedge \sim \mathrm{q}:$ Nitin is not intelligent and Nitin is not hardworking.
4. Find the truth values of the following statements.
(i) 2 divides 4 and $3+7=10$
(ii) 2 divides 7 and $8+10=18$
(iii) 7 divides 14 and $8+2=12$
(iv) 3 divides 16 and $2+5$

Sol.
We know that the conjunction $\mathrm{p} \wedge \mathrm{q}$ of p and q is true only when. p and q are both true.
(i) Truth value of ' 2 divides 4 ' is T .

Truth value of $3+7=10$ is T .
\therefore Truth value of ' 2 divides 4 and $3+=10^{\prime}$ is T
(ii) Truth value of ' 2 divides 7 '
Truth value of ' $8+10=18$ ' is T .
(ii) Truth value of ' 2 divides 7 '
Truth value of ' $8+10=18$ ' is T .

\therefore Truth value of ' 2 divides and $8+10=18$ ' is F .
(iii) Truth value of '7 divides 14) is T.

Truth value of ' $8+2=12$ ' 1 ' F.
\therefore Truth valued d bides 14 and $8+2=12$ is F.
(iv) Tenth value of ' 3 divides 16 ' is F.

Thatiovalue d fy $2+5=8$ ' is F .
\therefore Trutbyalue of ' 3 divides 16 and $2+5=8$ ' is F.
5. Find the truth values of :
(i) $\sim \mathrm{P} \wedge \mathrm{q}$
(ii) $\sim(p \wedge q)$.

Sol.
(i) Truth values of $\sim \mathbf{p} \wedge \mathbf{q}$
(ii)

Truth values of

| p | q | $\sim(p \wedge q)$ |
| :---: | :---: | :---: | :---: |
| T | T | F |
| T | F | T |
| F | T | T |
| F | F | T |

If two statements are combring bysing the logical connective 'or', then the resulting statement is called a disiznction.
The disjunction and $\mathrm{q}: 4$ is apintegery hen their disjunction $\mathrm{p} \vee \mathrm{q}$ denotes the statement: ' $8 \leq 10$ or 4 is an integer'

The disjunction $\mathrm{p} \vee \mathrm{q}$ is defined to be true if at least one of p and q is true. The adjoining I
truth table represents the truth values of the disjunction $p \vee q$ otherwise it is false. In the truth table, the first line says that if p is true, q is true then $\mathrm{p} \vee \mathrm{q}$ is true. The other lines have analogous meaning.

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Remark. The disjunction $\mathrm{p} \vee \mathrm{q}$ is false only when p and q are $\hat{\mathrm{h}}$ th false.
6. Let p and q stand for the statements 'Kama is tall' and ind is beautiful' respectively.

Describe the following statements :
(i) $p \vee q$
(ii) $\sim p \vee q$
(iii) $p \vee \sim p$
(iv) pp $\vee \sim q$.

Sol.
We have
and q : Simla is beautiful.
(i) $\mathrm{p} \vee \mathrm{q}:$ Kama is tall or Bimlan beautiful.
(ii) $\sim \mathrm{p} \vee \mathrm{q}:$ Kama is not ta (1D) Bm ala is beautiful.
(iii) $\mathrm{p} \vee \sim \mathrm{q}:$ Kama is t(11) br simla is not beautiful.
(iv) $\sim \mathrm{p} \vee \sim \mathrm{q}:$ Kamasingt tall or Simla is not beautiful.
7. Find the roth values of:

 following statements :
(i) ~p,
(ii) $\sim q$,
(iii) $\mathrm{p} \wedge \mathrm{q}$,
(iv) $p \vee q, \quad(y)) \sim p \wedge q$,
(vi) $p \vee \sim q(v i i) \sim p \vee \sim q$,

$$
\text { (viii) } \sim \mathrm{p} \wedge \sim \mathrm{q}
$$

Sol.

We have p : It is hot

and
(i) $\sim \mathrm{p}$: It is not hot or It spat it is hot.
(ii) $\sim \mathrm{q}$: It is not hum
(iii) $\mathrm{p} \wedge \mathrm{q}$: It is hdeandbumid.
(iv) $\mathrm{p} \vee \mathrm{q}: \mathrm{It}$ ishroq on /t is humid.
(v) \sim An it not hot and it is humid.
(vii p$) \sim \mathrm{q}:$ It is hot or it is not humid.
(vii) $\sim \mathrm{p} \vee \sim \mathrm{q}:$ It is not hot or it is not humid.
(viii) $\sim \mathrm{p} \wedge \sim \mathrm{q}$: It is not hot and it is not humid.
9. Find the truth values of the following compound statements :
(i) Honesty is best policy or $3<7$
(iii) Honesty is worst policy or $5 \geq 3$
(ii) Honesty is best policy
(iv) Honesty is worst policy or

Sol.
We know that the disjunction $\mathrm{p} \vee \mathrm{q}$ of p and q is true only when at leqge one of p and q is
true.
(i) Truth value of 'Honesty is best policy' is T.

Truth value of ' $3<7$ ' is T.
\therefore Truth value of 'Honesty is best policy or $\alpha \approx 7$ 'is.'
(ii) Truth value of 'Honesty is best p

Truth value of ' $4>7$ ' is F.

\therefore Truth value of 'Honesty is best policy or $4>7$ ' is T .
(iii) Truth value of 'Honesty is nexstypolicy' is F.

Truth value of ' $5 \geq 3$ '

\therefore Truth value of 'Honest yd worst policy or $5 \geq 3$ ' is T.
(iv) Truth value f Honesty is worst policy' is F. Truth \quad glue $8 f$ ' 11 - 9 ' is F.
\therefore Truth varurey of 'Honesty is worst policy or $11<9$ ' is F.
10. Find the truth values of the following compound statements;
(i) $4+2=6$ and $9+7=15$
(iii) $5+3=2$ or $5 \times 3=15$
(ii) 3 divides 9 and Ch. of $\log 273.5$ is 2
(iv) 4 divides 17 or $3+4=7$.

Sol.
(i) Truth value of ' $4+2=6$ ' is T.

Truth value of ' $9+7=15$ ' is F.
\therefore Truth value of ' $4+2=6$ and $9+7=15$ ' is F.
(ii) Truth value of ' 3 divides 9 ' is T.

Truth value of ' Ch . of $\log 273.5$ is 2 ' is T .
\therefore Truth value of ' 3 divides 9 and Ch. of $\log 273.5$ is 2 ' is T
(iii) Truth value of ' $5+3=2$ ' is F.

Truth value of ' $5 \times 3=15$ ' is T .
\therefore Truth value of ' $5+3=2$ or $5 \times 3=$ s ' is T.
(iv) Truth value of ' 4 divides 17 s

Truth value of ' $3+4=7$ ' is T
\therefore Truth value of '4 divides 1 ar y $4=7$ ' is T.
11. Find the truth values
(i) $\sim(p \vee \sim q)$

Sol.

12. Write down the truth table for the compound statement $(\sim p \vee q) \wedge(\sim \mathrm{p} \wedge \sim q)$.

Sol:

13. Find the truth values of the following compound statements:

(i)

Truth values of $(p \vee \sim r) \wedge(q \vee \sim r)$

WORKING RULES FOK SOLVINGRROBLEMS

Rule I. A truth table indicates the truth Valuef on mber of statements and their compound statements in copery forts.

Rule II. If there are n statements, then thereaye 2^{n} rows in the truth table.
Rule III. The negation $\sim p$ of the statement p is the denial of p.
Rule IV. The conjunction of statexents p and q is denoted by $p \wedge q$ and is true only when p and q are btryfruof
Rule V. The disjunction one of p and (iv true)

Exercise

1. Write the negation of the following statements:
(ii) 14 divide 27 .
(iii) Chandjgarh is in Gujarat.
(iv) $7>3$.
(v) Product of 3 and 4 is 22 .

Ans:
(i) The square of 4 is not 16 (ii) 14 does not divide 27.
(iii) Chandigarh is not in Gujarat.
(iv) $7 \leq 3$.
(v) Product of 3 and 4 is not 22
2. Find the truth value of the statement $\sim \mathrm{p}$ if the statement p is:
(i) $5+7=12$
(ii) $\log _{2} 8=4$
(iii) $3 \times 4=14$
(iv) $7-3=4$.

Ans:
(i) F
(ii) T
(iii) T
(iv) F
3. Find the truth values of the statement $\sim \mathrm{p}$ the statement p is:
(i) For complex numbers z_{1} and $z_{2}, \mid z_{1} z_{2}$
(i) For complex numbers z_{1}
(ii) Real part of $(1+2 i)^{3}$ is 4
(iii) $\tan \left(-315^{\circ}\right)=1$

(iv) $\sec ^{2} 45^{\circ}+\operatorname{cosec}^{2} 45^{\circ}=2$

Ans:
(i) F
(ii) T

(iii) b)
(iv) T
4. Let p and q sand for the statements : 'Lucknow is in U.P.' and ' 4 divides 12 ' respectively. Describe the follonyng statements:

(iii) $\sim \mathrm{p} \wedge \mathrm{q}(\mathrm{iv}) \sim \mathrm{p} \vee \mathrm{q}(\mathrm{v}) \mathrm{p} \wedge \sim \mathrm{q}$
(vi) $p \vee \sim q \quad(v i i) \sim p \wedge \sim q$

Ans:
(i) Lucknow is in U.P. and 4 divides 12.
(iii) Lucknow is not in U.P. and 4 divides 12.
(ii) Lucknow is in U.P. or 4 divides 12. (iv) Lucknow is not in U.P. on 4 divides
12.
(v) Lucknow is in U.P. and 4 does not divide 12. (vi) Lucknow is in U.P. orders, 12.
(vii) Lucknow is not in U.P. and 4 does not divide 12.
(viii) Lucknow is not in U.P. or 4 does not divide 12.
5. Let p and q stand for the statements : ' $2+3=5$ ' and ' $3+7=0$ respectively. Describe the following statements:
(i) $\mathrm{p} \wedge \mathrm{q}$
(ii) $\sim \mathrm{p} \wedge \mathrm{q}$
(v) $p \vee q$
(vi) $\sim p \vee q$

Ans:
(i) $2+3=5$ and $3+7=8$

(iii) $\mathrm{p} \wedge \sim \mathrm{q}$

(iii) $2+3=5$ and $3+7 \neq 8$ (iv) $2+3 \neq 5$ and $3+7 \neq 8$
(v) $2+3=5$ or $3+7=8$
(vii) $2+3 \neq 5$ or $3+7 \neq 8$

6. If p be any statement, then write the truth tables of the statements:
(i) $\sim \sim \mathrm{p}$

Ans:

p	$\sim p$	(i)	$(i i)$
T	F	T	F
F	T	F	T

7. If p and q be any statements, then write the truth tables of the following corfpoungd statements:
(i) $\mathrm{p} \wedge \sim \mathrm{q}$ (ii) $\sim \mathrm{p} \wedge \sim \mathrm{q}$.

Ans:

p	q	(i)	$(i i)$
T	T	F	F
T	F	T	F
F	T	F	F
F	F	F	T

8. If p and q be any statements, then write tables of the following compound statements:
(i) $p \vee \sim q$
(ii) $\sim p \vee \sim q$.

Ans:

9. Find the truth values of the following compound statements:
(i) $2+4+2 \times 3=6$
(ii) It is false that $2+5=8 \wedge 2 \times 5=20$
(iii) It s false that $5-2=3 \wedge 4 \times 3=12$
(iv) $2+5=25 \wedge$ It is false that $5+3=8$.

Ans:
(i) T
(ii) F
(iii) F
(iv) F
10. Find the truth values of the following compound statements :
(i) Real part of $(4+i)^{2}=15 \vee$ Roots of $x^{2}-5 x+6=0$ are 2,3
(ii) $\cot \left(-135^{\circ}\right)=1 \vee \sec 450^{\circ}=\frac{1}{2}$
(iii) It is false that $\sin ^{2} \theta+\cos ^{2} \theta=1 \vee \sec ^{2} \theta-\tan ^{2} \theta=1$
(iv) $\left(2^{2}\right)^{4}=64 \vee \log _{625} 25=2$.

Ans:
(i) T
(ii) T
(iii) T
11. Find the truth values of the following compound statements:
(i) $\sim(\mathrm{p} \wedge \sim \mathrm{q})$
(ii) $\sim(\sim \mathrm{p} \wedge \sim \mathrm{q})$.

Ans:

12. Find the truth values of the following compound statements:
(i) $(p \wedge q) \vee \sim(p \vee q) \quad$ iii) $(\sim p \vee q) \wedge(\sim p \wedge \sim q)$.

Ans: \bigcirc

p	q	(i)	(ii)
T	T	T	F
T	F	F	F
F	T	F	F
F	F	T	T

13. Find the truth values of the following compound statements :
(i) $\mathrm{p} \wedge(\mathrm{q} \wedge \mathrm{r})$
(ii) $(p \vee q) \vee r$
(iii) $\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$
(iv) $(p \wedge q) \vee r$.
Ans

14. Find the truth values of the foltowing opmpound statements:
(i) $(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{r}$
(ii) $\sim \mathrm{p} \vee(\mathrm{q} \wedge \sim \mathrm{r})$

\&ONDIVIONAL STATEMENT

If two statements are combined by using the logical connective 'if \qquad then', then the resulting statement is called a conditional statement.

The conditional statement of two statements p and q (in this order) is denoted by p \rightarrow.
For example,

statement: 'If $2+5=7$, then 9 is an integer'.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

The conditional statement $\mathrm{p} \rightarrow \mathrm{q}$ is defined to be tryeereept in case p is true and q is false. The adjoining truth table represents the auth Remark. The truth values of the condition gl statement $\mathrm{q} \rightarrow \mathrm{p}$ are not same as that of $\mathrm{p} \rightarrow \mathrm{q}$.

1. Example 1. Let p and q stand for statements ' Bhopal is in M.P.' and ' $3+4=7$ ' respectively. Describe the follonting conditional statements:
(i) $P \rightarrow q$

(iii) $p \longrightarrow \sim q$

Sol.
We have

(ii) $\sim \mathrm{p} \rightarrow \mathrm{q}$: If Bhopal is not in M.P. then $3+4=7$.
(iii) $p \rightarrow \sim q$: If Bhopal is in M.P. then $3+4 \neq 7$.
(iv) $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$: If Bhopal is not in M.P. then $3+4 \neq 7$.
2. Find the truth values of :
(i) $\sim p \rightarrow q$
(ii) $\sim(p \rightarrow q)$.

Sol.
(i) Truth values of $\sim \mathbf{p} \rightarrow \mathbf{q}$

(i) $p \rightarrow q$
(iv) $q \rightarrow \sim p$

Sol.
We have

and

(i) \rightarrow) IR 3 divide 15 then $5-1=4$.
(ii) $q \rightarrow$ pelf 5-1 $=4$ then 3 divide 15 .
(iii) $\mathrm{p} \rightarrow \sim \mathrm{q}$: If 3 divide 15 then $5-1 \neq 4$.
(iv) $q \rightarrow \sim$ p : If 5-1 $=4$ then 3 does not divide 15 .
(v) $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$: If 3 does not divide 15 then $5-1 \neq 4$.
(vi) $\sim \mathrm{q} \rightarrow \sim \mathrm{p}:$ If $5-1 \neq 4$ then 3 does not divide 15 .
4. Let p and q stand for the statements 'God is great' and 'work is worship respectively.

Find the truth values of the following conditional statements:
(i) $p \rightarrow q$
(ii) $p \rightarrow \sim q$
(iii) $q \rightarrow \sim p$
(iv) $\sim \mathrm{p} \rightarrow \mathrm{q}$
(v) $\sim q \rightarrow p$
(vi) $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$.

Sol.
We have p: God is great and q : Work is workshop.
$\therefore \mathrm{p}$ and q are both true.
$\therefore \quad \sim \mathrm{p}$ and $\sim \mathrm{q}$ are both false.
(i) The truth value of $\mathrm{p} \rightarrow \mathrm{q}$ is T

(ii) The truth value of p

(iii) The truth value of P
(iv) The truth value rt $\rightarrow \mathrm{q}$ is T .
(v) The truth of $\mathrm{F} \mathrm{q} \rightarrow \mathrm{p}$ is T.
$(\because \mathrm{p}$ is true, $\sim \mathrm{q}$ is false)
$(\because \mathrm{q}$ is true, $\sim \mathrm{p}$ is false)
$(\because \sim \mathrm{p}$ is false, q is true $)$
$(\because \sim \mathrm{q}$ is false, p is true)
(vi) The truth value of $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$ is T . ($\because \sim \mathrm{p}$ is false, $\sim \mathrm{q}$ is false)

(i) $\sim p \rightarrow(q \rightarrow p)$
(ii) $(p \rightarrow q) \rightarrow(p \wedge q)$.

Sol.
(i) \quad Truth values of $\sim \mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})$

p	q	$\sim p$	$q \rightarrow p$	$\sim p \rightarrow(q \rightarrow p)$
T	T	F	T	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

(ii)

Truth values of $(p \rightarrow q) \rightarrow(p \wedge q)$

If two statements are combined by using the logical connective 'if and only if', then the resulting statement is called a biconditional statement.
The conditional statement of two statement andes denoted by $\mathrm{p} \leftrightarrow \mathrm{q}$.
For example, let p : 2 divides 4 and q : (divides 15 , then biconditional statement $\mathrm{p} \leftrightarrow \mathrm{q}$ denotes the statement: ' 2 divides 4 if and anvil 5 divides 15 '.

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

The biconditional statement $\Rightarrow q$ is defined to be true only when p and q have same truth value. The adjoining tel th table represents the truth values of the biconditional statement $\mathrm{p} \leftrightarrow \mathrm{q}$.
Remark. The biconditional statement $p \leftrightarrow q$ is false only when p and q have opposite truth values

6. bet㐱andq-stand for the statements 'Meena speaks Hindi' and 'Heena speaks English' respectively. Describe the following biconditional statements:
(i) $p \leftrightarrow q$,
(ii) $q \leftrightarrow p$,
(iv) $\sim p \leftrightarrow q$,
(v) $\sim q \leftrightarrow \sim p$.
(iii) $p \leftrightarrow \sim q$,

Sol:

We have p:Meena speaks Hindi.
and
q: Heena speaks English.
(i) $\mathrm{p} \leftrightarrow \mathrm{q}:$ Pena speaks Hindi if and only if Heena speaks English.
(ii) $\mathrm{q} \leftrightarrow \mathrm{p}:$ Heena speaks English if and only if Pena speaks Hindi.
(iii) $p \leftrightarrow \sim p$: Meena speak Hindi if and only if Heena does not speak English.
(iv) $\sim \mathrm{p} \leftrightarrow \mathrm{q}:$ Pena does not speak Hindi if and only if Heena spear.
(v) $\sim \mathrm{q} \leftrightarrow \sim \mathrm{p}$: Heena does not speak English if and only if Meena does not speak Hindi.
7. Find the truth values of:
(i) $\sim \mathrm{p} \leftrightarrow \mathrm{q}$
(ii) $\sim(p \leftrightarrow q)$.

Sol : (i)
Truth values of $\sim p \leftrightarrow q$

p	q	$\sim p$
T	T	F
T	F	F
F	T	T
F	F	T

(ii)

p	q	p	$\sim(p \leftrightarrow q)$
T	T	T	F
T	F	T	T
F	T	F	F
F	F	T	

8. Let p and q stand for (De statement ' $2 \times 4=8$ ' and ' 4 divides 7 ' respectively. Find the truth values of the followingbliconditional statements :
(i) $p \leftrightarrow q$
(iii) $\sim q \leftrightarrow p$

Sol :
We have and

$\therefore \mathrm{p}$ is trine andes false
\therefore pis farseand $\sim \mathrm{q}$ is true.
(i) The truth value of $p \leftrightarrow q$ is F.
(ii) The truth value of $\sim \mathrm{p} \leftrightarrow \mathrm{q}$ is T .

$$
\begin{aligned}
& (i i) \sim p \leftrightarrow q \\
& (i v) \sim p \leftrightarrow \sim q
\end{aligned}
$$

(iii) The truth value of $\sim \mathrm{q} \leftrightarrow \mathrm{p}$ is $\mathrm{T} . \quad(\because \sim \mathrm{q}$ is true, p is true)
(iv) The truth value of ! $\mathrm{p} \leftrightarrow \sim \mathrm{q}$ is $\mathrm{F} . \quad(\because \sim \mathrm{p}$ is false, $\sim \mathrm{q}$ is true)
9. Find the truth values of :
(i) $(\mathrm{p} \leftrightarrow \sim \mathrm{q}) \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})$
(ii) $(\mathrm{p} \rightarrow \mathrm{q}) \mathrm{v} \sim(\mathrm{p} \leftrightarrow \sim \mathrm{q})$.

Sol : (i)
Truth values of $(\mathrm{p} \leftrightarrow \sim \mathrm{q}) \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})$

p	q	$\sim q$	$p \leftrightarrow \sim q$	$q \rightarrow p$	$(p \leftrightarrow \sim q) \leftrightarrow(q \rightarrow p)$
T	T	F	F	T	F
T	F	T	T	T	T
F	T	F	T	F	F
F	F	T	F	T	F

(ii) Truth values of $(\mathrm{p} \rightarrow \mathrm{q}) \vee \sim(\mathrm{p} \leftrightarrow \sim \mathrm{q})$

p	q	$\sim q$	$p \rightarrow q$	$p \leftrightarrow \sim q$	$\sim(p \leftrightarrow \sim q)$	$(p \rightarrow q) \vee \sim(p \leftrightarrow \sim q)$
T	T	F	T	F	T	T
T	F	T	F	T	F	T
F	T	F	T	T	F	T
F	F	T	T	F	T	T

10. Find the truth values of the compound statement $(\mathrm{p} \leftrightarrows \mathrm{q}) \rightarrow[(\mathrm{q} \rightarrow \mathrm{r}) \rightarrow(\mathrm{p} \rightarrow \mathrm{q})]$. Sol:

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(q \rightarrow r) \rightarrow(p \rightarrow q)$	
T						
T	T	F	T	F	F	T
T	F	T	F	T	T	T
F	T	T	T	T	T	T
T	F	F	F	T	T	T
F	T	F	T	F	T	T
F	F	T	T	T	T	
F	F	F	T	T	T	

WORKING RULES FOR SOLVING PROBLEAS
Rule I. The conditional statements of tement p and q (in this order) is denoted of $p \rightarrow q$ and is true except when p is true and q is false.
Rule II. The biconditional statementot tatemehts p and q is denoted by $p \leftrightarrow q$ and is true only when p

Exercise

1. If statement andeare respectively : ' $4+5=9$ ' and ' $2+3=5$ ' then write the conditional statements:
(i) $p \rightarrow q$

(ii) $p \rightarrow \sim q$
(iii) $\backslash x y=9$ ' then ' $2+3=5$ '
(iii) $\sim p \rightarrow q$
(iv) $\sim \mathrm{p} \rightarrow \sim \mathrm{p}$.
(ii) If ' $4+5=9$ ' then ' $2+3 \neq 5$ '
(iv) If ' $2+3 \neq 5$ ' then ' $4+5 \neq 9$ '.
2. If statements p and q are respectively : ' $3<4$ ' and ' $7>5$ ' then write the biconditional statements:
(i) $\mathrm{p} \leftrightarrow \mathrm{q}$
(ii) $\sim \mathrm{p} \leftrightarrow \mathrm{q}$
(iii) $\mathrm{p} \leftrightarrow \sim \mathrm{q}$
(iv) $\sim \mathrm{p} \leftrightarrow \sim \mathrm{q}$.

Ans:
(i) ' $3<4$ ' if and only if ' $7>5$ '
(iii) ' $3<4$ ' if and only if ' $7 \leq 5$ '
(ii) ' $3 \geq 4$ ' if and only if ' $7>5$
(iv) ' $3 \geq 4$ ' if and only i
3. If truth values of statements p and q are T and T respectively then-write the truth values of :
(i) $\mathrm{p} \rightarrow \mathrm{q}$
(ii) $\mathrm{p} \rightarrow \sim \mathrm{q}$
(iii) $\sim(\mathrm{p} \leftrightarrow \sim \mathrm{q})$

Ans:
(i) T
(ii) F
(iii) T

4. If truth values of statements p and q are T and F respectively then write the truth values of :
(i) $p \rightarrow q$
(ii) $p \rightarrow \sim q$

Ans: (i) F
(ii) T
(iii)

(iv) $\sim(\sim p \leftrightarrow \sim q)$.
(iv) T
5. If p and q stand for the statement : Q is a natural number' and ' 5 divides 10 ' respectively then find the truth arresofthe following compound statements :
(i) $\mathrm{p} \rightarrow \sim \mathrm{q}$
(ii) $\sim p \rightarrow q$
(iii) $\sim p \rightarrow \sim p$
(iv) $\sim \mathrm{q} \rightarrow \sim \mathrm{p}$
(v) $\mathrm{p} \leftrightarrow \mathrm{q}$
(vi) $p \leftrightarrow q ?^{q}$
(vii) $p \leftrightarrow \sim q$
(viii) $\sim \mathrm{p} \leftrightarrow \sim \mathrm{q}$.

Ans:
(i) T
(ii) T

(iv) T
(v) F
(vi) T
(vii) T
(viii) F
6. Find the truth values of the following compound statements :
(i) $\mathrm{p} \leftrightarrow \sim \mathrm{q}$

Ans:

p	q	(i)	(ii)
T	T	F	T
T	F	T	T
F	T	T	T
F	F	T	F

7. Find the truth values of the following compound statements :
(i) $\sim \mathrm{p} \leftrightarrow \mathrm{q}$
(ii) $\sim \mathrm{p} \leftrightarrow \sim \mathrm{q}$.

Ans:

p	q	(i)	(ii)
T	T	F	T
T	F	T	F
F	T	T	F
F	F	F	T

8. Find the truth values of the following compound statements:
(i) $(p \wedge q) \rightarrow \sim p$
(ii) $(p \wedge q) \rightarrow(p \vee q)$.
Ans:

p	q	${ }^{(i)}$	(ii)
T	T	F	T
T	F	T	T
F	T	T	T
F	F	T	T

9. Find the truth va of the compound statement: $(\mathrm{p} \rightarrow \mathrm{q}) \leftrightarrow(\sim \mathrm{q} \rightarrow \sim \mathrm{p})$.

10. Find the truth values of the compound statement: $\mathrm{l} \wedge \mathrm{m}$ where $\mathrm{l}=\sim \mathrm{q} \rightarrow \sim \mathrm{r} . \mathrm{m}=\sim \mathrm{r}$
$\rightarrow \sim \mathrm{q}$.
Ans:

q	r	$l \wedge m$
T	T	T
T	F	F
F	T	F
F	F	T

11. Find the truth values of the compound statement: $(p \rightarrow q)$ Ans:

p	q	r	$(p \rightarrow q) \rightarrow r$
T	T	T	T
T	T	F	F
T	F	T	T
F	T	T	T
T	F	F	T
F	T	F	F
F	F	T	T
F	F	F	F

12. Find the truth values of the compormad statement: $(p \vee q) \leftrightarrow r$.

A compound statement is called a tautology if it is always true for all possible truth values of its component statements.

A tautology is also called a theorem or a logically valid statement pattern.

CONTRADICTION

A compound statement is called a contradiction if it is always false for all pessibletyuth values of its components statements.

A contradictions is also called a fallacy.
Remark. (i) The negation of a tautology is a contradiction.
(ii) The negation of a contradiction is a tautology.

1. Show that:
(i) $p \rightarrow(p \vee q)$ is a tautology
(ii) $(p \vee q) \wedge(\sim \sim q)$ a contradiction.

Sol:

\therefore For all possible truth values of p and a , the compound statement: $\mathrm{p} \rightarrow(\mathrm{pvq})$ is true.
$\therefore \mathrm{p} \rightarrow(\mathrm{pvq})$ is a tautology.
(ii) Truth values of $(p \vee Q \wedge(d) \sim q)$

p	q	\sim	$\sim \sim q$	$p \vee q$	$\sim p \wedge \sim q$	$(p \vee q) \wedge(\sim p \wedge \sim q)$
T	T	-	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
O	F	T	T	F	T	F

false.
$\therefore(\mathrm{p} \vee \mathrm{q}) \wedge(\sim \mathrm{p} \wedge \sim)$ is a contradiction.
2. Show that $\left(\mathrm{p}^{\wedge} \mathrm{q}\right) \mathrm{v}(\sim \mathrm{p}) \mathrm{v}(\mathrm{p} \wedge \sim \mathrm{q})$ is a tautololgy.

Sol :

\therefore For all possible truth values of p and q, the compound statement: $(p \wedge q) \vee(\sim p) v(p \wedge \sim$
$\mathrm{q})$ is true.
$\therefore(\mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p}) \mathrm{v}(\mathrm{p} \wedge \sim \mathrm{q})$ is a tautology.
3. Show that $[(\mathrm{p} \vee \mathrm{q}) \vee \mathrm{r}] \leftrightarrow[\mathrm{p} v(\mathrm{q} v \mathrm{r})]$ is attentorgy

Sol:

Truth values of $[(p \mathbf{v q}) \mathbf{v r}] \leftrightarrow[p \mathrm{p}(\mathrm{q} \nmid r)\}$

p	q	r	$p \vee q$	$(p \vee q) \vee r$	$q \vee r$	$T \vee$	$[(p \vee q) \vee r] \leftrightarrow[p \vee(q \vee r)]$
T							
T	T	F	T	T	T	T	T
T	F	T	T	T	T	T	T
F	T						
T	F	F	T	T	F	T	T
F	T	F	T		T	T	T
F	F	T	F	T	T	T	T
F	F	F	F	T	F	F	T

\therefore For all possible try (q v r)] is true.
$\therefore[(\mathrm{p} \mathrm{vq}) \mathrm{vr}] \leftrightarrows \mathrm{v}(\mathrm{d} \mathrm{vr})]$ is a tautology.
4. Show t(at $[(\mathrm{p}) \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})] \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$ is a tautology.

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \rightarrow q) \wedge(q \rightarrow r)$	$p \rightarrow r$	$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
T							
T	T	F	T	F	F	F	\bar{T}
T	F	T	F	T	F	T	T

F	T						
T	F	F	F	T	F	F	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

\therefore For all possible truth values of p and q the compound statement $[(p \rightarrow q) \rightarrow(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is true.
$\therefore \quad[(p \rightarrow q) \rightarrow(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is a tautology.

Rule II. If a compound statement is false for all possible truth values optics compress statements, then it is a fallacy.

Exercise

1. Show that:
(i) $p \vee \sim p$ is a tautology
2. Show that :
(i) $(p \wedge q) \rightarrow p$ is a tautology
3. Show that :
(i) $(p \wedge q) \rightarrow(p \vee q)$ is a serology
4. Show that :
(i) $(p \wedge q) \wedge \sim(p \vee q$ if a fancy
(iii) $(p \wedge q) \wedge(\sim p \diamond q)$ is 2 fallacy.
5. Show that :

6. Find which of the following compound statements are tautologies and which are fallacies :
(i) $(p \wedge q) \wedge(\sim(p \wedge q))$
(ii) $((\sim q) \wedge p) \vee(p \vee \sim p)$
(iii) $(p \wedge \sim q) \wedge((\sim p) \vee q)$
(iv) $((\sim p) \vee q) \vee(p \wedge \sim q)$.
7. Show that :
(i) $((\sim p) \wedge q) \wedge(q \wedge r)) \wedge \sim q$ is a tautology.
8. Show that :
(i) $[(p \leftrightarrow q) \wedge((q \rightarrow r) \wedge r)] \rightarrow r$ is a tautology.

ANSWERS

6. (i) Fallacy
(iii) Fallacy

LOGICAL EQUIVALENCE

Answers

Two compound statement $S_{1}(p, q, r, \ldots$.$) and S_{2}(p, q, r$. of components statements p, q, r, are called logically equivalent or simply equiverle or equal if they have indentical truth values and we write $S_{1}(p, q, r, \ldots) \neq S_{2}(p, 1, r)$

1. Show that the compound statemen $(\mathrm{p}\langle\mathrm{q} . \wedge \sim \mathrm{q}$ and $\sim \mathrm{p} \wedge \mathrm{q}$ are logically equivalent. Sol:

Truth values of $(\mathbf{p} \vee \mathbf{q}) \wedge \sim \mathbf{p}$

Truth values $0 \rightarrow p=4$

p	q	$\sim p$	$\sim p \wedge q$
T	T	F	F
T	F	F	F
F	T	T	T
F	F	T	F

$\therefore(\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{p}$ and $\sim \mathrm{p} \wedge \mathrm{q}$ have identical truth values.

$$
\therefore(\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{p} \equiv \sim \mathrm{p} \wedge \mathrm{q} .
$$

2. Show that: $\sim(p \leftrightarrow q) \equiv(p \wedge \sim q) \vee(\sim \mathrm{p} \wedge q)$.

Sol:

Truth values of $\sim(\mathbf{p} \leftrightarrow \mathbf{c}$
p
T
T
F
F

$$
\begin{aligned}
& \therefore \quad-(p \leftrightarrow q) \text { and }(p) \sim p)-\mathcal{p} \wedge q) \text { have identical truth values. } \\
& \therefore \quad \sim(\mathbf{p} \leftrightarrow \mathbf{q}) \equiv(\mathbf{p}
\end{aligned}
$$

3. Show that the compour) datements: $\sim[\sim(\sim p \wedge q) \vee \sim r]$ and $((\sim p) \wedge q) \wedge r$ are equivalent.

Truth values of $\sim[\sim(\sim p \wedge q) \vee \sim r]$

p	q	r	$\sim p$	$-r$	$\sim p \wedge q$	$-(\sim p \wedge q)$	$\sim(\sim p \wedge q) \vee \sim r$	$\sim[\sim(\sim p \wedge q) \vee \sim r]$
T	T	T	F	F	F	T	T	F
T	T	F	F	T	F	T	T	F
T	F	T	F	F	F	T	T	F
F	T	T	T	F	T	F	F	T
T	F	F	F	T	F	T	T	F
F	T	F	T	T	T	F	T	F
F	F	T	T	F	F	T	T	F
F	F	F	T	T	F	T	T	F

Truth values of $(\sim \mathbf{p} \wedge q) \wedge \mathbf{r}$

p	q	r	$\sim p$	$\sim p \wedge q$	$(\sim p \wedge q) \wedge r$
T	T	T	F	F	F
T	T	F	F	F	F
T	F	T	F	F	F
F	T	T	T	T	T
T	F	F	F	F	F
F	T	F	T	T	F
F	F	T	T	F	F
F	F	F	T	F	F

$\therefore \sim[\sim(\sim \mathrm{p} \wedge \mathrm{q}) \vee \sim \mathrm{r}]$ and $(\sim \mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r}$. have identical values.

$$
\therefore \sim[\sim(\sim \mathrm{p} \wedge \mathrm{q}) \vee \sim \mathrm{r}] \equiv(\sim \mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{r} .
$$

4. Find which of the following pairs are logically equivalent:
(i) $(\mathrm{p} \wedge \mathrm{q}) \vee[\sim \mathrm{p} \vee(\mathrm{p} \wedge \sim \mathrm{q})]$ and $(\sim \mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{wb}) \mathrm{re} \mathrm{t}$ is a tautology in terms of statements p and q .
(ii) $\sim(p \vee q) \wedge(p \vee \sim r) \wedge(\sim p \vee \sim q)$ and $p \triangleleft r$.

Sol: (i)

\therefore Given compound statements are logically equivalent.
(ii)

Truth table of $\sim(p \vee q) \wedge(p \vee \sim r) \wedge(\sim p \vee \sim q)$

Truth table of $\mathrm{p} v \mathrm{r}$
$\therefore \sim(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \vee \sim \mathrm{r}) \wedge(\sim \mathrm{p} \vee \sim \mathrm{q})$ and $\mathrm{p} \vee \mathrm{r}$ do not have identical truth values.
\therefore Given compound statements aremet logically equivalent.

Exercise

1. Show that: $p \wedge(p \vee q)$

2. Show that:

(i) $\sim(\sim p \wedge q) \equiv p \vee$
(ii) $\sim(\mathrm{p} \wedge \sim \mathrm{q}) \neq \mathrm{p}<\mathrm{q}$
(iii) $\sim(\sim p \wedge-q)=p / \wedge$.

3. Shonthat:

4. Show that: $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$.

5. Show that :

(i) $p \rightarrow q \equiv \sim q \rightarrow \sim p$
(ii) $p \rightarrow \sim q \equiv q \rightarrow \sim p$
6. Show that: $\sim(p \leftrightarrow q) \equiv(\sim p) \leftrightarrow q \equiv p \leftrightarrow \sim q$.
7. Find which of the following pairs of compound statement are logicquy equivalent:
(i) $\sim \mathrm{p} \vee \mathrm{q}$ and $\sim(\mathrm{p} \vee \mathrm{q})$.
(ii) $\mathrm{p} \vee(\mathrm{p} \wedge \mathrm{q})$ and p .
(iii) $(\sim \mathrm{p} \vee \mathrm{q}) \vee(\mathrm{p} \wedge \sim \mathrm{q})$ and $(\mathrm{p} \wedge \mathrm{q}) \vee \mathrm{t}$ where t is a tautog\& in eras of statements p and q.
(iv) $(\sim \mathrm{q} \wedge \mathrm{p}) \wedge(\mathrm{p} \wedge \sim \mathrm{p})$ and $(\mathrm{p} \wedge \mathrm{q}) \wedge \mathrm{f}$ where f is fallacy in terms of statement p and q .
8. Show that: $\mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{r}) \equiv(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \rightarrow$
9. Show that : $\sim(\mathrm{p} \rightarrow(\mathrm{q} \wedge \sim \mathrm{r})) \equiv \mathrm{p} \wedge \sim(\mathrm{q} \sim \mathrm{r}) \Rightarrow \mathrm{p} \wedge(-\mathrm{q} \vee \mathrm{r})$.
10. Find which of the following pairs compound statements are logically equivalent:
(i) $\sim[(p \vee q) \vee r]$ and $\sim[p \vee(q \vee f)]$
(ii) $(\sim \mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \vee \sim \mathrm{r}) \wedge(\sim \mathrm{p} \vee \sim \mathrm{q})$ and $\sim(\mathrm{p} \vee \mathrm{r})$.

Answers

7. (ii),(iii)

ALGEBRA OF STATEMENT

I. Idempotent laws. 1

(i) $\mathrm{p} \vee \mathrm{p} \equiv \mathrm{p}$
(ii) $\mathrm{p} \wedge \mathrm{p} \equiv$

Proof?

p	$p \vee p$	$p \wedge p$
T	T	T
F	F	F

$\therefore \mathrm{p} \vee \mathrm{p} \equiv \mathrm{p}$ and $\mathrm{p} \wedge \mathrm{p} \equiv \mathrm{p}$.
II. Complement laws. If p is any statement, then
(i) $\mathbf{p} \vee \sim \mathbf{p} \equiv \mathbf{t}$ (ii) $\mathbf{p} \wedge \sim \mathbf{p}=\mathbf{f} \quad$ (iii) $\sim \sim \mathbf{p} \equiv \mathbf{p} \quad$ (iv) $\sim \mathbf{t} \equiv \mathbf{f}, \sim \mathbf{f} \equiv \mathbf{t}$,
where t and f are respectively some tautology and fallacy in terms of the statement p. Proof:

Proof.
Truth values of $p \vee \sim p, p \wedge \sim p, \sim \sim p, \sim t, \sim f$

p	$\sim p$	$p \vee \sim p$	t	$p \wedge \sim p$	f	$\sim \sim$	\sim
T	F	T	T	F	F		F
F	T	T	T	F	F	F	T

$\because \quad p \vee \sim p \equiv t, \quad p \wedge \sim p \equiv f, \quad \sim \sim p \equiv p$,

III. Identify laws. If p is any statement, then

(i) $\mathbf{p} \wedge \mathbf{t}=\mathbf{p}$
(ii) $\mathbf{p} \wedge \mathbf{f}=\mathbf{f}$
(iv) $\mathbf{p} \vee \mathbf{f}=\mathbf{p}$.
where t and f are respectively some tautology and fallacy in terms of the statement p.

Proof

Proof.
Truth values of $p \wedge t, p \wedge f,<\vee p \vee f$

p	t	f	$D \wedge t$	$p \wedge f$	$p \vee t$	$p \vee f$
T	T	F	T	F	T	T
F	T	F	F	T	F	

$\therefore \quad p \wedge t \equiv p, \quad p \wedge f \equiv f, \quad$, $<t \equiv t, \quad p \vee f \equiv p$.
IV. Commutative laws If p and q be any two statements then
(i) $\mathbf{p} \wedge \mathbf{q}=\mathbf{q}$

(ii) $\mathbf{p} \vee \mathbf{q}=\mathbf{q} \vee \mathbf{p}$.

Proof

Proof.

 Truth values of $p \wedge q, q \wedge p, q \vee p, p \vee q$| p | q | $p \wedge q$ | $q \wedge p$ | $p \vee q$ | $q \vee p$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | T |
| T | F | F | F | T | T |
| F | T | F | F | T | T |
| F | F | F | F | F | F |

$$
\therefore \quad p \wedge q \equiv q \wedge p, \quad p \vee q \equiv q \vee p
$$

V. De Morgan's laws. If \mathbf{p} and q be any two statements, then

$(i) \sim(\mathbf{p} \wedge \mathbf{q}) \equiv \sim \mathbf{p} \vee \sim \mathbf{q}$
Proof. (i)
Truth values of $\sim(p \wedge q)$

p	q	$p \wedge q$	$\sim(p \wedge q)$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	F	T

$\therefore \quad \sim(p \wedge q) \equiv \sim p \vee \sim q$.

Proof.

(ii) Truth values of $\sim(\mathbf{p} \vee \mathbf{q})$

p	q	$p \vee q$	$\sim(p \vee q)$
T	T	T	F
T	F	T	F
F	T	T	F
F	F	F	T

$\therefore \quad \sim(p \vee q) \equiv \sim p \wedge \sim q$.

\bigcirc

VI. Associative laws. If p, q, Abe any three statements then
(i)
$(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
 $\rightarrow 1$
(ii) $(\mathbf{p} \vee \mathbf{q}) \vee \mathbf{r} \equiv \mathbf{p} \vee(\mathbf{q} \vee \mathbf{r})$.

Proof. (i)
Truth values of $(p \wedge q)$

Truth values of $p \wedge(q \wedge r)$

p	q	$:$	$q \wedge r$	$p \wedge(q \wedge r)$
T	T	T	T	T
T	T	F	F	F
T	F	T	F	F
F	T	T	T	F
T	F	F	F	F
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

$\therefore \quad(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$.
(ii) Proof is left for the reader.
VII. Distributive laws. If p, q, r be any three statements, then
(i) $\mathbf{p} \wedge(\mathbf{q} \vee \mathbf{r}) \equiv(\mathbf{p} \wedge \mathbf{q}) \vee(\mathbf{p} \wedge \mathbf{r})$

Proof. (i)

p	q	r	$q \vee r$	$p \wedge(q \vee r)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
F	T	T	T	F
T	F	F	F	F
F	T	F	T	F
F	F	T	T	F
F	F	F	F	F

$\therefore \quad p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) . \mathbf{c}$
(ii) Proof is left for the reader.

1. By using laws of algebra of statements, shows that $(p \vee q) \wedge \sim p \equiv \sim p \wedge q$.

Sol :

$$
\begin{aligned}
& (p \vee q) \wedge \sim p \equiv(\sim p) \wedge(p) \\
& \begin{array}{l}
\equiv(\sim p \wedge p) \vee(\sim p \sim q) \\
\equiv f \vee(\sim p \curvearrowright q)
\end{array} \\
& \equiv \sim p \wedge q \mathcal{h} \\
& \therefore \quad(\mathbf{p} \vee \mathbf{q}) \wedge \sim \mathbf{p} \equiv \sim \mathrm{p} \text { mg. }
\end{aligned}
$$

(ii) $\mathbf{p} \vee(\mathbf{q} \wedge \mathbf{r}) \equiv(\mathbf{p} \vee \mathbf{q}) \wedge(\mathbf{p} \vee \mathbf{r})$.

| p | q | r | $p \wedge q$ | $p \wedge r$ | $(p \wedge q) \vee(p)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | |
| T | T | F | T | F | |
| T | F | T | F | T | |

(Using Commutative law)
(Using Distributive law) (Using Complement law)
(Using Identity law)
2. By using lawns of algebra statements, show that: $\sim(p \vee q) \vee(\sim p \wedge q)=(-p$.
Sol :
$\sim(p \vee q) \vee(\sim p \wedge q)$

$$
\begin{aligned}
& \equiv(\sim p \wedge \sim q) \vee(\sim p \wedge q) \\
& \equiv-p \wedge(\sim q \vee q) \\
& \equiv \sim p \wedge t \\
& \equiv \sim p
\end{aligned}
$$

(Using De Morgan's law)
(Using Distributive law)
($\because \quad \sim q \vee q=t$)
(Using Identity law)

$$
\therefore \quad-(p \vee q) \vee(-p \wedge q) \equiv-p
$$

WORKING RULES FOR SOLVING PROBLEMS

Rule I. Idempotent laws
(i) $p \vee p \equiv p$, (ii) $p \wedge p$ 玉 p.

Rule II. Complement laws
(i) $p \vee \sim p \equiv t$, (ii) $p \wedge \sim p \equiv f$, (iii) $\sim \sim p \equiv p$,(iv) $\sim t \approx f, \sim f \equiv t$.

Rule III. Identity laws
(i) $p \wedge t \equiv p$, (ii) $p \wedge f \equiv f$, (iii) $p \vee t \cong t$, (iv) $p \vee f \equiv p$.

Rule IV. Commutative laws
(i) $p \wedge q \equiv q \wedge p$, (ii) $p \vee q \equiv q \vee p$.

Rule V. De Morgan's laws
(i) $\sim(p \wedge q) \equiv \sim p \vee \sim q,(i i) \sim(p \vee q) \equiv \sim p \wedge \sim q$.

Rule VI. Associative laws
(i) $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r),(i i)(p \vee q) \vee r \equiv p \vee(q \vee r)$.

Rule VII. Distributive laws
(i) $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)(i i) p \vee(q \wedge r) \equiv(p \vee q) \wedge(p)$

EXERCISE

By using laws of algebra of statements, provethat following logical equivalences :

1. $\sim \sim \sim p$ 覀 $\sim p$
2. $\sim(\sim p \wedge-q) \equiv p \vee q$

3. $-(\sim p \wedge q)$ 표 $p \vee \sim q$
4. $p \wedge(p \vee q)=p \vee(p \wedge q)$
5. $(p \wedge q) \vee \sim p \equiv \sim p \vee q$
6. $p \vee(p \wedge q) \equiv p$.

Hint

9. $p \vee(p \wedge q)=(p \wedge t \gg)=p \wedge(t \vee q) \equiv p \wedge t \equiv p$.

DUALITY

(i) Duality of connectives. The connectives \wedge and \vee are called duals of each other.
(ii) Duality compound statements. Two compound statements are called duals of each other if of e can be obtained from the other by replacing \wedge by $\vee \vee, \vee$ by \wedge, tautology t by fa (lacy) and flay f by tautology t.
(a) The compound statements $(p \vee q) \wedge r$ and $(p \wedge q) \vee r$ are duals of each other.
(b) The compound statements $(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{r} \vee \mathrm{t})$ and $(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{r} \wedge \mathrm{f})$ are duals of each other.
(iii) Duality of logical equivalences. Two logical equivalences are called duals of ea(hother if one can be obtained from the other by replacing \wedge by \vee and \vee by \wedge. Illustrations, (a) The logical equivalences $\sim(\mathrm{p} \wedge \mathrm{q}) \equiv \sim \mathrm{p}$ v $\sim \mathrm{q}$ and \sim duals of each other.
(b) The logical equivalences $\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})=(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{r})$ and $\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r})=(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \vee \mathrm{r})$ are duals of each other.

An important result.

Let $\mathrm{S}(\mathrm{p}, \mathrm{q}, \mathrm{r}, \quad$) be a compound statement in terms of finely many state mints $\mathrm{p}, \mathrm{q}, \mathrm{r}$, $S^{*}(p, q, r$,$) be the dual compound statement of S\left(p, q, r_{,}, \ldots.\right)$, then
$\sim S^{*}(\mathbf{p}, \mathbf{q}, \mathbf{r}, \ldots \ldots) \equiv \mathbf{S}(\sim \mathbf{p}, \sim \mathbf{q}, \mathbf{r}, \ldots).$.

1. Write the dual statements of the following dampound statements :
(i) Ram is honest and Shyam is intelligent.
(ii) Kamla is beautiful or Bimla is rich.

Sol :
(i) Let p: Ram is honest and q : Sham is intelligent.

\therefore Given compound statement isp $\hat{q} q$.
\therefore The dual statement of $Q \mathrm{q}$ if $\mathrm{p} \wedge$ ie., Ram is honest or Sham is intelligent.
(ii) Let p:Kamla is
and q : Simla is rich.
\therefore Given compound statement is p vq .
\therefore The dual \&atement of $\mathrm{p} \vee \mathrm{q}$ is $\mathrm{p} \wedge \mathrm{q}$ ie., Kama is beautiful and Bimla is rich.
2. Write the duals of the following compound statements :

$$
\text { (ii) }[(p \vee r) \wedge(p \wedge q)] \vee f
$$

Sol:
(i) The dual of $(p \vee q) \wedge \sim p$ is $(\mathbf{p} \wedge q) \vee \sim \mathbf{p}$.
(ii) The dual of $[(p \vee r) \wedge(p \wedge q)] \vee f$ is $[(\mathbf{p} \wedge \mathbf{r}) \vee(\mathbf{p} \vee \mathbf{q})] \wedge \mathbf{t}$.
(iii) The dual of $[(p \wedge \sim q) \vee(\sim p \wedge q)] \vee[p \wedge q \wedge t]$ is $[(\mathbf{p} \vee \sim \mathbf{q}) \wedge(\sim \mathbf{p} \vee \mathbf{q}) \wedge[p \vee \mathbf{q}$
3.

○
If $S(p, q)=(p \vee \sim q) \wedge p$ and $S^{*}(p, q)$ be the dual of $S(p, q)$ then verify that

$$
\sim S^{*}(p, q) \equiv S(\sim p, \sim q) .
$$

Sol:
We have $S(p, q)=(p \vee \sim q) \wedge p$.
$\begin{array}{rlrl} & \therefore & S^{*}(p, q) & =\text { dual of } S(p, q)=(p \wedge \sim q) \vee p . \\ & \therefore & \sim S^{*}(p, q) & =\sim[(p \wedge \sim q) \vee p] \\ & & \equiv \sim(p \wedge \sim q) \wedge \sim p \equiv(\sim p \vee q) \wedge \sim p .\end{array}$
Also, $\quad S(\sim p, \sim q)=(\sim p \vee \sim \sim q) \wedge \sim p \equiv(\sim p \vee q) \wedge \sim p$.
$\therefore \quad \sim S^{*}(\mathbf{p}, \mathbf{q}) \equiv \mathrm{S}(\sim \mathbf{p}, \sim \mathbf{q})$.
4.

If $S(p, q, r)=p \vee(q \vee r)$ and $S^{*}(p, q, r)$ be thomas (p, q, r) then verify that

Sol :

$$
\sim S^{*}(p, q, r) \equiv S(\sim p
$$

We have $S(p, q, r)$

$$
\begin{array}{ll}
\therefore & \left.S^{*}(p, q, r)=\text { dual of } S \wedge q, r\right)=p \wedge(q \wedge r) \\
\therefore & \sim S^{*}(p, q, r)=\sim[p(q \wedge r)]
\end{array}
$$

$$
\equiv \sim p(-(q \wedge r)
$$

Also

$$
S(\sim p,-q, \sim r)=((6 \vee)) \sim q \vee \sim r)
$$

$\therefore \quad \sim \mathrm{S}^{*}(\mathbf{p}, \mathbf{q} \sim \neq \mathrm{S} \sim \mathrm{p}, \sim \mathbf{q}, \sim \mathrm{r})$.

EXERCISE

1. Write the dato of the following compound statements:

(ii) $(p \vee q) \wedge(p \wedge r)$
(iv) $\sim(p \vee q) \wedge[p \vee \sim(q \wedge \sim s)]$
(vi) $(\sim p \vee f) \wedge[\sim q \wedge(p \vee q) \wedge \sim r]$.
2. Verify that $\sim S^{*}(p, q) \equiv S(\sim p, \sim q)$ if $S^{*}(p, q)$ is the dual of the compound statement S (p, q) and $S(p, q)$ is equal to :
(i) $p \wedge q$
(ii) $p \vee q$.
3. Verify that $\sim S^{*}(p, q, r) \equiv S(\sim p, \sim q, \sim r)$ If $S^{*}(p, q, r)$ is the dual of the conpoung statement $S(p, q, r)$ and $S(p, q, r)$ is equal to :
(i) $p \wedge(q \vee r)$
(ii) $\sim p \wedge \sim(q \vee r)$.

ANSWERS
1.

> (i) $(p \vee q) \vee \sim p$
> (iii) $[(p \wedge r) \wedge(\sim p \wedge \sim q)] \vee r$
> (v) $[(p \wedge q) \vee \sim r] \wedge(p \vee f)$
(ii) $(p \wedge q) \vee(p \wedge$ (r)

NEGATION OF COMPOUND STATEMENTS
(i) Negation of conjunction. Let p and q be any statements the negation $\sim(p \wedge q)$ of the conjunction $\mathrm{p} \wedge \mathrm{q}$ is given by De Morgan's law we have
$\sim(\mathrm{p} \wedge \mathrm{q}) \equiv \sim \mathrm{p} \vee \sim \mathrm{q}$.

(ii) Negation of disjunction. Let and q be any statements. The negation $\sim(p \vee q)$ of the disjunction $\mathrm{p} \vee \mathrm{q}$ is given by De Mors's law and we have
$\sim(\mathrm{p} \vee \mathrm{q})=\sim \mathrm{p} \wedge \sim \mathrm{q}$.

Remark. The compound statement $y p \wedge \sim q$ represent 'neither p nor q '. The compound statement $\sim \mathrm{p} \wedge \sim \mathrm{q}$ is also called the joint denial of statements p and q and is denoted by p $\downarrow \mathrm{q}$.
$\therefore \mathrm{p} \downarrow \mathrm{q}=\sim \mathrm{p} \wedge$ (q.
(iii) Negationfondional statement. Let p and q be any statements. The compound statements $p q$ and $\sim p$ qq are logically equivalent. The negation $\sim(p \rightarrow q)$ of the conditions

$$
\begin{array}{ll}
& \sim(p \rightarrow q) \equiv \sim(\sim p \vee q) \equiv \sim \sim p \wedge \sim q \equiv p \wedge \sim q . \\
\therefore & \sim(\mathbf{p} \rightarrow \mathbf{q}) \equiv \mathbf{p} \wedge \sim \mathbf{q} .
\end{array}
$$

(iv) Negation of biconditional statement. Let p and q be any statements. The con $p \partial u n d$ statements $\mathrm{p} \leftrightarrow \mathrm{q}$ and $(\mathrm{p} \leftrightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p})$ are logically equivalent. The negatiค $\sim \sim \mathrm{q})$ of the biconditional statement $\mathrm{p} \leftrightarrow \mathrm{q}$ is given by

$$
\begin{aligned}
\sim(p \leftrightarrow q) & \equiv \sim[(p \rightarrow q) \wedge(q \rightarrow p)] \equiv \sim(p \rightarrow q) \vee \sim(q \rightarrow p) \\
& \equiv \sim(\sim p \vee q) \vee \sim(\sim q \vee p) \equiv(\sim \sim p \wedge \sim q) \vee(\sim \sim q \\
\therefore \quad \sim(\mathbf{p} \leftrightarrow \mathbf{q}) & \equiv(\mathbf{p} \wedge \sim \mathbf{q}) \vee(\sim \mathbf{p} \wedge \mathbf{q}) .
\end{aligned}
$$

$$
\equiv \sim(\sim p \vee q) \vee \sim(\sim q \vee p) \equiv(\sim \sim p \wedge \sim q) \vee(\sim \sim q \wedge \sim p \equiv \sim \sim \sim q) \vee(\sim p \wedge q)
$$

1. Find the negation of the following compound statements :
(i) $p \wedge \sim q$
(ii) $\sim p \rightarrow q$
(iii)

Sol :
(i) Negation of $(p \wedge \sim q) \equiv \sim(p \wedge \sim q)$

$$
\equiv \sim p \vee \sim \sim q \equiv \sim p \vee q .
$$

(ii) Negation of $(\sim p \rightarrow q) \equiv \sim(\sim p \rightarrow q)$

$$
\begin{aligned}
& \equiv \sim(\sim \sim p \vee q) \\
& \equiv \sim(p \vee q) \equiv \sim p \quad(\because p \rightarrow q \equiv \sim p \vee q)
\end{aligned}
$$

(iii) Negation of $[(p \rightarrow q) \rightarrow(q \rightarrow p)] \equiv>\rightarrow(q \rightarrow p)]$

$$
\begin{aligned}
& \equiv \sim[\sim(p \rightarrow q) \sim p)] \equiv \sim \sim(p \rightarrow q) \wedge \sim(q \rightarrow p) \\
& \equiv(p \sim \sim \nsim p) \equiv(\sim p \vee q) \wedge \sim(\sim q \vee p) \\
& \equiv(\sim p \vee q) \sim q \vee \sim p) \equiv(\sim p \vee q) \wedge(q \wedge \sim p) .
\end{aligned}
$$

EXERCISE

Find the negenprye following compound statement;

1. $p \vee \sim q$
2. $p \vee q$
3. $p \wedge \sim q$
4. $-p \wedge q$
5. $p \wedge q$
6. $p \wedge q$
7. $\sim p \wedge q$
8. $(p \wedge q) \vee(\sim p \wedge \sim q)$
9. $(p \wedge q) \vee(\sim p \wedge \sim q)$
10. $(\sim p \wedge q) \vee(p \wedge \sim q)$.

USE OF LOGICAL TRUTH TABLES FOR CHECKING THE VALDILITY OF A

Argument. An argument is a statement which asserts that a given set of g stat ment S_{1}, S_{2} , S_{n} yield another statement S . This argument is denoted as : $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}} \mathrm{Y}-\mathrm{O}$. The statements $S_{1}, S_{2}, \ldots \ldots, S_{n}$ are called hypotheses or premises or assumptions, the statement S is called conclusion. The symbol 'I-' is called turnsile. the argyment $S_{1}, S_{2}, \ldots \ldots . . ., S_{n} I-S$ is defined to be true if S is true whenever $S_{1}, \ldots \ldots, S_{n}$ all true otherwise the argument is defined to be false. A true argumenforals called a valid argument. We have seen that the argument $S_{1}, S_{2}, \ldots, S_{n} I-S i s$ colidy S is true whenever S_{1}, S_{2}, \quad, S_{n} are all true.
\therefore The argument $S_{1}, S_{2}, \ldots \ldots, S_{n} I-S$ is valid if S is whenger $S_{1}, \wedge S_{2} \wedge \ldots \ldots \wedge S_{n}$ is true.
\therefore The argument $S_{1}, S_{2}, \quad, S_{n} I-S$ is valid if $\left(s_{1} \wedge S_{2}\right.$ $(\because \mathrm{p} \rightarrow \mathrm{q}$ be false only when q is false whemer pistrue.)
This gives an alternative method to chece vatidity of an argument.
Thus, we have the following two methods to check the validity of an argument:
Method I. The argument $S_{1} S_{2}, \ldots \ldots, S_{1}-s$ is valid if S is true whenever S_{1}, S_{2}, all true.

Step I. Identify compopenx statements in the given argument and denote these as $p, q, r, \ldots \ldots$

Step II. Identify the 'asswmptions' in the given argument and denote these as $S_{1}, S_{2}, S_{3} \ldots \ldots, S_{n}$
Step III. Identify din 'enclughon' in the given argument and denote this as S.
Step IV. Express $S_{1,} S_{2}, 5, \ldots \ldots, S_{n}$ and S in terms of statements $p, q, r, \ldots \ldots$
Step V. Fikd the trach values of $S_{1}, S_{2}, S_{3}, \ldots \ldots, S_{n}$.
Step 1 . If S, true whenever $S_{p}, S_{2}, S_{3}, \ldots . . ., S_{n}$ are all true then the argument
$\ldots, S_{n} \vdash S$ is valid otherwise it is invalid.
Or
If $\left(S_{1} \wedge S_{2} \wedge \ldots \ldots \wedge S_{n}\right) \rightarrow S$ is a tautology then the argument $S_{p}, S_{2}, \ldots \ldots, S_{n} \longmapsto S$ is valid otherwise it is invalid.

1. Test the validity of the following argument:
"If it is a good watch, then it is a Titen. watch. It is a Titen watch therefore it is a good watch".

Sol :
Let p-It is a good watch
and q - It is a Titen watch.
\therefore The assumptions are $\mathrm{p} \rightarrow \mathrm{q}, \mathrm{q}$ and the conclusion is p .
Let $S_{1},=p \rightarrow q, S_{2}=q$ and $S=p$
$\therefore \quad$ Given argument is $\mathrm{S}_{1}, \mathrm{~S}_{2} \mathrm{I}-\mathrm{S}$.
Truth values of S_{1}, S_{2}, S

In the 1 st row, S_{1}, S_{2} are true and S is trc (ee. In (hn $-3 y$ row, S_{1}, S_{2} are true but S is not true.
\therefore Given argument is not valid.
2. Test the validity of the folloning argument:
"If it is cloudy tonight, it will rain tomoroy, and if it rains tomorrow, I shall be on leave tomorrow ; and the conclusion $\int 8$ if it is cloudy tonight, I shall be on leave tomorrow. " Sol :
Let $p=$ It is cloudy tonight,

and

\therefore The assumptionsarep $\rightarrow \mathrm{q}, \mathrm{q} \rightarrow \mathrm{r}$ and the conclusion is $\mathrm{p} \rightarrow \mathrm{r}$.
Let $S_{1}=p \rightarrow q_{\mathrm{O}} \mathrm{S}_{2}=\mathrm{q} \rightarrow \mathrm{r}$ and $\mathrm{S}=\mathrm{p} \rightarrow \mathrm{r}$.
Given armment is $S_{1}, S_{2} I-S$.

Truth values of $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}$

p	q	r	S_{1} $(p \rightarrow q)$	S_{2} $(q \rightarrow r)$	S $(p \rightarrow r)$
T	T	T	T	T	T
T	T	F	T	F	F
T	F	T	F	T	T
F	T	T	T	T	T
T	F	F	F	T	F
F	T	F	T	F	T
F	F	T	T	T	T
F	F	F	T	T	T

In the 1st, 4th, 7th, 8th rows, $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are both true and in each of these ${ }^{\text {rons }}$,
\therefore Given argument is valid.
Remark. In the following table, we show that $\left(\mathrm{S}_{1} \wedge \mathrm{~S}_{2}\right) \rightarrow \mathrm{S}$ js a taytopogy.

S_{1}	S_{2}	S	$S_{1} \wedge S_{2}$	$\left(S_{1} \wedge S_{2}\right) \rightarrow$
T	T	T	T	T
T	F	F	F	F
F	T	T	T	
T	T	F	F	
F	T	T	T	
T	F	T	T	
T	T	T		
T	T			

3. Test the validity of the following argomenty

"If my son stands first in his class, Tivehimg gift. Either he stood first or I was out of station. I did not give son a gift this time. Therefonet, was out of station."
Sol :
Let

$$
\begin{aligned}
& \mathrm{p}=\text { My son stanesfirs inhis class, } \\
& \mathrm{q}=\text { I give hima gitit. }
\end{aligned}
$$

and
r = I was ou of station.
\therefore The assumptionarop $\rightarrow \mathrm{q}, \mathrm{p} \vee \mathrm{r}, \sim \mathrm{q}$ and the conclusion is r .
Let $S_{1}=p \rightarrow S_{2}=\mathrm{p} r, S_{3}=\sim q$ and $S=r$
Givenargumentis $s_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3} \mathrm{I}-\mathrm{S}$.

Truth values of S_{1}, S_{2}, S_{3}, S

p	q	r	S_{1} $(p \rightarrow q)$	S_{2} $(p \vee r)$	S_{3} $(\sim q)$	S (r)
T	T	T	T	T	F	T
T	T	F	T	T	F	F
T	F	T	F	T	T	T
F	T	T	T	T	F	T
T	F	F	F	T	T	F
F	T	F	T	F	F	F
F	F	T	T	T	T	T
F	F	F	T	F	T	F

In the $7^{\text {th }}$ row S_{1}, S_{2}, S_{3} are all true and S is also true.
\therefore Given argument is valid.
EXERCISE

1. Show that the following argument is not valid:
"If it rains, crops will be good. It did not rain. Therefore the crops were not good".
2. Show that the following argument is valid :
"If he works hard, he will be successful. He was notsucgessful. Therefore he did not work hard".

3. Test the validity of the following argument:
"If today is Sunday, then yesterday was Saturday. Yesterday was not Saturday. Therefore, today is not Sunday."
4. Test the validity of the fo owing argument:
"If it rains tomorrow, I shalparry my umbrella if its cloth is mended. It will rain tomorrow and the cloth will not be mated. Therefore, I shall not carry my umbrella".
5. Test the validity of the following argument:
"If Nidhi works hard then she will be successful. If she is successful then she will be happy.
Therefore, herd work leads to happiness".
Teethe validity f the following argument:
wages will increase if and only if there is an inflation. If there is an inflation then the cost of
living will increase. Wages increased. Therefore, the cost of living will increase.
ANSWERS
6. Valid
7. Not Valid
8. Valid
9. Valid.

Hints

1. Let $p=$ It rains, $q=$ Crops are good.

$$
\therefore \quad S_{1}=p \rightarrow q, S_{2}=\sim p, S=\sim q .
$$

2. Let $p=$ he works hard, $q=\mathrm{He}$ is successful.

$$
\therefore \quad S_{1}=p \rightarrow q, S_{2}=\sim q, S=\sim p .
$$

3. Let $p=$ Today is sunday, $q=$ Yesterday is saturday.

$$
\therefore \quad S_{1}=p \rightarrow q, S_{2}=\sim q, S=\sim p .
$$

4. Let $p=\mathrm{It}$ rains tomorrow, $q=\mathrm{I}$ shall carry my umbrella, $r=\mathrm{Cl}$ (h)

$$
\therefore \quad S_{1}=p \rightarrow(r \rightarrow q), S_{2}=p \wedge \sim r, S=\sim q .
$$

5. Let $p=$ Nidhi works hard,
$q=$ She is successful
$r=$ She is happy.

$$
\therefore \quad S_{1}=p \rightarrow q, S_{2}=q \rightarrow r, S=p \rightarrow r .
$$

6. Let $p=$ Wages will increase, $q=$ There is an in tron,z Cost of living increases.

$$
\therefore \quad S_{1}=p \leftrightarrow q, S_{2}=q \rightarrow r, S_{3}=p, S \text { S }
$$

USE OF VENN-DIAGRAMS FOR CHECKMNTHEVALIDITY OF ARGUMENTS

We have already studied the use of Venn-diagrangs for finding truth values of statements. In the present section, we shall study the method of checking the validity of arguments by using Venn-diagrams.

We know that an argument is arstatement which asserts that a given set of n statements $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots$
, S_{n} yield another staten this argument is valid if S is true whenever $\mathrm{S}_{1} \mathrm{~S}_{2}, \quad, \mathrm{~S}_{\mathrm{n}}$ are all true.

In order to use Vemm-diagrams, the truth of given hypotheses $\mathrm{S}_{1} \mathrm{~S}_{2}, \ldots . ., \mathrm{S}_{\mathrm{n}}$ is represented by diagrams and the ne these diagrams are analysed to see whether these diagrams necessarily represent the truth orth conclusion, S, or not. In case, the truth of S is represented by the diagrams, then the given argument

WORKING RULES FOR SOLVING PROBLEMS

Step I. Identify the 'assumptions' in the given argument and denote these as $S_{1}, S_{2}, S_{3}, \ldots \ldots . ., S_{n}$.
Step II. Identify the 'conclusion' in the given argument and denote this as S.
Step III. Represent the truth of $S_{1}, S_{2}, S_{3} \ldots \ldots . . ., S_{n}$ by Venn-diagrams.
Step IV. If these Venn-diagrams represent the truth of S then the argument $S_{1}, S_{2}, S_{3}, \ldots, S_{n} \mid-S$ is valid otherwise it is in valid.

Remark. In practice, the assumptions $S_{1} S_{2}, \ldots . ., S_{n}$ are written above a dotted line and the conclusion' S is written below this dotted line.
Example 1. Use Venn-diagrams to examine the validity of the arguments $\mathrm{S}-\mathrm{S}$ where S_{1} : All teachers are honest
S_{2} : Ramesh is not honest

S: Ramesh is not a teacher.
Sol :
Let $\quad \mathrm{T}=$ set of all teachers
and $\quad \mathrm{H}=$ set of all honest persons.

Truth of S_{1}, imply that T

Truth of S_{2} imply that 2 mesh $\notin \mathrm{H}$.
The Venn diagrams Sieves that Ramesh $\notin \mathrm{T}$.
\therefore Ramesh is not oo tearer. \in
$\therefore \mathrm{S}$ is true.

\therefore The pi en argument is valid.

2. Use Venn-diagrams to examine the validity of the argument $S_{1}, S_{2} \ldots S$ where :
S_{1} : All scholars are happy persons
S_{2} : Naresh is not a happy person.

S: Naresh is a scholar.
Sol.

Let $A=$ set of all scholars
and $B=$ set of all happy persons.
Truth of S_{1}, imply that $A \subseteq B$.
Truth of S_{2}, imply that 'Naresh' \notin B.
The Venn-diagram shows that 'Naresh' $\notin \mathrm{A}$.
\therefore Naresh is not a scholar
$\therefore S$ not true.

\therefore The given argument is not rapid.
3. Example 3. Use Ventaragnt to examine the validity of the argument $S_{1}, S_{2} \ldots \ldots . . .$. S where:
S_{1} : Integers are rational numbers.

Case I

Case II

Let $Z=$ set of all integers
and $\mathrm{Q}=$ set of all rational numbers.
Truth of S_{1}, imply that $\mathrm{Z} \subseteq \mathrm{Q}$.
Truth of S_{2},imply that $x \in \mathbf{Q}$.
In case I, the Venn-diagram shows x is not an integer.
In case II, the Venn-diagram shows that x is an integ
$\therefore \mathrm{S}$ is not necessarily true.
:. The given argument is not valid.
4. Test the validity of the following argument (by) μ sing Venn-diagrams:
"If it is a good watch, then it is a Titen watch. itis, Titen watch therefore it is a good watch ".
Sol.

Case I
Let $G=$ Set ofgood whatches.
and $\mathrm{T}=$ Set of Titen watches.
Let O : If it issood watch then it is a Titen watch.
and S_{2}) t is d U1ten watch.
Truth of S_{1}, imply that $G \subseteq T$.

Truth of S_{2}, imply that the specific watch, say x, is in T.
In case $I, x \in G$ ie., it is good watch.
In case II, $x \in G$ ie., it is not a good watch.
\therefore The 'conclusion' ie., the specific watch is Titen is not necessarily true.
\therefore The given argument is not valid.
5. Test the validity of the argument S_{1}, S_{2} S_{1} : All prime numbers are natural numbers.
S_{2} : All natural numbers are integers.
\qquad
S: All prime numbers are integers.

Sol:

$\mathrm{P}=$ Set $0 f$ all prime numbers.
$\mathrm{N}=$ Set of all natural numbers.

and $\mathrm{Z}=$ Set of all integers.
Truth of S_{1} imply that $\mathrm{P} \subseteq$
Truth of S_{2} imply that
 S by using Venn-diagrams, where?

1. S_{1} : All basket ball players are tall.
S_{2} : Mohan is not tall.

S: Mohan is not a basket-ball player.
Ans:
Valid
2. S_{1} : All teachers are well dressed.
S_{2} : Rohit is a teacher.

S: Rohit is well dressed.
Ans:
Valid
3. S_{1} : All teachers are absent minded.
S_{2} : Mahinder is not absent minded.

S: Mahinder is a teacher.
Ans:
Invalid
4. S_{1} : All graduates are employed.
S_{2} : Monica is not employed.

S: Monica is employ
Ans:
Invalid
5. Sir = An natural numbers are integers.

S : x is a natural number.
Ans:
Invalid
6. $S_{1},=$ All natural numbers are real numbers.
$S_{2}=y$ is a real number.
$S=y$ is not a natural number.
Ans:
Invalid
7. S_{1} : If a person is educated then he is happy. S_{2} : If a person is happy then he lives long.
\qquad
S: Educated persons lives long.
Ans:
Valid

APPLICATIONS OF LOGIC IN SWITCH

c-c|rcuts
We know that a switching circuit is an arrangement of wires and switches connected together to the terminal of a battery. A switch is a the state device used for allowing current to pass through it or not to pass through it.If current is allowed to pass through a switch then it is said to be 'closed' or 'on'. If current is mot and hayed to pass through a switch then it is said to be 'open' or 'off .Since a logical statement is either true or false, there exists close anology between switches and statement (sh) f) are two connectives \wedge and \vee to combine two statements. Similarly there exist a two methods of connecting two switches. Two switches can be connected either in series or inarallel.
(i) Connectigsujches in series. Two switches s_{1} and s_{2} are connected in series as shown in the diagrams The Tamp is 'on' if and only if the switches s_{2} and s_{2} are both closed.

$\mathrm{p}:$ switch ss/ is closed
q : switch s_{2} is closed
$\mathrm{l}: \operatorname{lamp} \mathrm{L}$ is on.
Since, lamp is 'on' if and only if switches s_{1} and s_{2} are both closed. We have $\mathrm{p} \wedge \mathrm{q}=$
(ii) Connecting switches in parallel. Two switches s_{1}, and s_{2} are connected in rapalletas shown in the diagram. The lamp is 'on'if and only if at least one of the switqkes sand s_{2} are closed.

Let $\mathrm{p}, \mathrm{q}, \mathrm{l}$ be the statements defined as follows':
p : switch s_{1} is closed q : switch s_{2} is closed
l: lamp L is on.
Since, lamp is 'on' if and only if at least one of the switches s maser selosed, we have $\mathrm{p} \vee \mathrm{q} \equiv 1$.
REPRESENTATION OF SWITCHING CIRCUITS UN TERMS OF STATEMENTS AND
LOGICAL CONNECTIVES \sim, \wedge AND \vee
We have studied the method of writing two switchesivis series and in parallel in terms of statements and connectives \wedge and \vee.
In a switching circuit, switches need notactindependently of each other. The following rules are observed in this regard :

(i) If two or more switches open or close simultaneously, then these switches are denoted by the same letter.
(ii) If s_{1} and s_{2} are two switches syce that s_{2} is closed when s_{1} is open and s_{2} is open when s_{1} is closed, then s_{2} is written as s_{1}.
Remark. If p : switch s closed, then \sim p represent the statement : switch s is open. WORKING RULE FQRSOLVING PROBLEMS

Rule I. If p and q respectively represent the statements that switches s_{1} and s_{2} are closed, then the statement hat \int_{1} and s_{2} are connected in series is represented by $\mathrm{p} \wedge \mathrm{q}$.
Ruler. Repand q respectively represent the statements that switches s_{1} and s_{2} are closed, then the statement that s_{1} and s_{2} are connected in parallel is represented by $\mathrm{p} \vee \mathrm{q}$.

Rule III. If two or more switches open or close simultaneously then these switches are represented by the same letter.
Rule IV. If s_{1} and s_{2} are switches such that s_{2} is closed when s_{1} is open and s_{2} is open whens s_{1} is closed, then s_{2} is written as s_{1}^{\prime}.
Rule V. If p represent the statement that switch s is closed, then $\sim p$ represenfthe statement that the switch s is open.

1. Express the following circuit in the symbolic form of logic.

Sol.
Let $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ be the statements defined $a s$ fol 5 , $s:-5$
p : switch s_{1} is closed q : switch s_{2} is closed $\mathrm{r}^{\text {; switch } \mathrm{s}_{3} \text { is closed }}$
s : switch s_{4} is closed t : switch is closed.
In the circuit, we observe that the lampis 'on' if and only if:
(i) s_{1} is closed or s_{2} is closed and
(ii) s_{3} is closed or $\mathrm{S}_{4}, \mathrm{~s}_{5}$ are closed.
\therefore The given circuit in symbatic form of logic can be written as $(p \vee q) \wedge[r \vee(s \wedge t)]$.
2. Express the following circuit in symbolic form of logic.

Sol.
Let $\mathrm{p}, \mathrm{q}, \mathrm{r}$ be the statements defined as follows :
p : switch s_{1} is closed q : switch s_{2} is closed $\quad r$: switch s_{3} is closed.
In the circuit, we observe that the lamp is 'on' if and only if:
(i) s_{1}, s_{2} are closed or s_{3} is closed and
(ii) s_{1} is closed or $\mathrm{s}_{2}, \mathrm{~s}_{3}$ ' are closed and
(iii) s_{1}^{\prime} is closed or $s_{2}{ }^{\prime}$ is closed.

The given circuit in symbolic form of logic can be written as $[(\mathbf{p} \wedge \mathbf{q}) \vee \mathbf{r}] \wedge[\mathbf{p} \vee(\mathbf{q} \wedge \sim \mathbf{r})] \wedge[\sim \mathbf{p} \vee \sim \mathbf{q}]$.
3. Construct a circuit for the statement: $(p \wedge q \wedge \sim r) \vee(\sim p \wedge(q \vee \sim r))$.
Sol. The statement is $(p \wedge q \wedge \sim r) \vee(\sim p \wedge(q \vee \sim r)$.
Let $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$ be switches such that:
p : switch s_{1} is closed q : switch s_{2} is closed
(1) implies that circuits corresponding to $p q \vee$ and $\sim p \wedge(q \vee \sim r)$ and $\sim p \wedge(q \vee \sim r)$ are connected in parallel. $p \wedge q \wedge \sim r$ implies that the switches $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$ are connected in series.

$\sim p \wedge\left(q \vee \sim r\right.$ impliesthat s_{1} and the circuit corresponding to $q \vee \sim r$ are arranged in series. $q \vee \triangle$ impliesthat s_{2} and $s_{3}{ }^{\prime}$ are connected in parallel.
\therefore the gircuitg the given statement is given in the diagram.
4. Construct a circuit for the statement:
$[(p \wedge q) \vee r] \wedge I \sim p \vee(q \wedge \sim r)] \wedge[\sim p \vee r]$.
Sol.
The given statement is
$[(p \wedge q) \vee r] \wedge[\sim p \vee(q \wedge \sim r)] \wedge[\sim p \vee r]$.
Let $\mathrm{s}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ be switches such that:
p : switch s_{1} is closed. q : switch s_{2} is closed r : switch s_{3} is closed.

(1) implies that circuits corresponding to $(p \wedge q) \vee r-\sim \vee)(q \wedge \sim r)$ and $\sim p \vee r$ rare connected in series. $(p \wedge q) \vee r$ implies that the circuifcorresbonding to $p \wedge q$ and s3 are connected in parallel. $\sim p \vee(q \wedge \sim r)$ implies that s_{1} and ting gircuit corresponding to $(q \wedge \sim r)$ are connected in parallel. $\sim p \vee r$ impliesthatst and s3 are connected in parallel. \therefore The circuit of the given statement is given in the diagram.
5. Give an alternative arransenment of the following circuit such that the new circuit has

Sol. Letre, 9, r statements defined as follows:

In the circuit, we observe that the lamp is 'on' if and only if:

(i) $\mathrm{s}_{1}{ }^{\prime}$ and $\mathrm{s}_{2}{ }^{\prime}$ are closed.
or
(ii) s_{1}, and , s_{2} ' are closed.
or
(iii) s_{1} 'and s_{2} are closed.
\therefore The given circuit in symbolic form of logic can be veritten as

$$
(\sim p \wedge \sim q) \vee(p \wedge \sim q) \vee(\sim p \wedge q) .
$$

Now

$$
\begin{aligned}
& (\sim p \wedge \sim q) \vee(p \wedge \sim q) \vee(\sim p \wedge q) \\
& \equiv[(\sim q \wedge \sim p) \vee(\sim q \wedge p)] \vee(\sim p \wedge q) \\
& \equiv[\sim q \wedge(\sim p \vee p)] \vee(\sim p \wedge q) \\
& \equiv(\sim q \wedge t) \vee(\sim p \wedge q) \\
& \equiv \sim q \vee(\sim p \wedge q) \\
& \equiv(\sim q \vee \sim p) \wedge(\sim q \vee q) \\
& \equiv(\sim q \vee \sim p) \wedge t \\
& \equiv \sim q \vee \sim p \quad \equiv \sim p \vee \sim q
\end{aligned}
$$

\therefore The given circuit is ecqivalent to a circuit in which s_{1} ' and s_{2} ' are connected in parallel.
6. Give an altennative arrangement of the following circuit such that the new circuit has minimum number ofs sy itches?

Sol. Let p, q, r, s, t be statement defined as follows :
p : switch s_{1} is closed.
q : switch s_{2} is closed.
r : switch s_{3} is closed.
s : switch s_{4} is closed.
t : switch s_{5} is closed.
In the circuit, we observe that the lamp is 'on' if an dons
 are closed.
\therefore The given circuit in symbolic form of logic an written as :

The given circuit is equivalent to circuit in which the switches s_{1} and s_{2} are connected in series.

Exercise

1. Express the following circuit in symbolic form of logic.

Sol:

Sol:

3. Express the following diecuit in symbolic form of logic.

Sol:

 $(p \wedge q \wedge r) \vee(\sim p \wedge \sim q)$ Where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ correspond to $, \mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$ respectively4. Express the following circuit in symbolic form of logic.

Sol:

 $[p \wedge \sim q] \vee[p \wedge q \wedge r] \vee[\sim p \wedge r]$ Where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ correspond to s 4, \&8), s_{3} respectively5. Construct a circuit for the statement: $[p \vee q] \wedge[q \vee \sim r]$.

Sol:
where S_{1}, S_{2}, S_{3} corresond fo p, q, r respectively
6. Construct a circuit for the statement:

where s_{1}, s_{2}, s_{3} correspond to p, q, r respectively
7. Construct a circuit for the statement: $(p \wedge \sim q \wedge r) \vee(p \wedge(\sim q \vee \sim r))$.

where $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$ correspond to p, q, respectively
8. Give an alternative arrangenent of the following circuit such that the new circuit has minimum number of switches:

9. Give an alternative arrangement of the following circuit suchet the new circuit has minimum number of switches:

Sol:

10. Give an armatiye arrangement of the following circuit such that the new circuit has five swotches only.

Sol:

Let p, q, r correspond to switches
\therefore Given circuit

$$
\equiv(p \wedge q \wedge r) \vee(p \wedge q \wedge \sim r) \vee(p \wedge \sim q \wedge r) \vee \vee(p \wedge q \wedge r)]
$$

$$
\equiv[(p \wedge q \wedge r) \vee(p \wedge q \wedge \sim r)] \vee[(p \wedge q) \vee(p \wedge \sim q \wedge r)] \vee[(p \wedge q \wedge r) \vee(\sim p \wedge q \wedge r)]
$$

$$
\begin{aligned}
& \equiv[(p \wedge q) \wedge(r \vee \sim r)] \vee[(p \wedge r) \wedge(q \sim)] \wedge(q \wedge r) \wedge(p \vee \sim p)] \\
& \equiv[(p \wedge q) \wedge t] \vee[(p \wedge r) \wedge t] \vee[(q)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv[(p \wedge q) \wedge t] \vee[(p \wedge r) \wedge t] \vee[(q \vee \neg) \\
& \equiv(p \wedge q) \vee(p \wedge) \vee(a \wedge r)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv(p \wedge q) \vee(p \wedge r) \vee(q \wedge r) \\
& \equiv[p \wedge(q \vee r)] \vee(q \wedge r) .
\end{aligned}
$$

Revision Exercise

1. Find the truth owes of the following statements:
(i) The roots of a quadratic equations may be real numbers.
(ii) Work is worship.
(if) The union f two sets is not always defined.
(iv) The square of a real number is always positive.
(v) The result of Pythagoras theorem holds for any equilateral triangle.
2. By using Venn-diagrams, find the truth values of the following statements:
(i) Every male person is a human being.
(ii) There cannot be a male person who is not a human being.
(iii) There exists a human being who is not a male person.
(iv) Every human being is a male person.
3. Find the truth values of the following compound statements: (i) $\sim[(p \wedge q) \vee \sim q]$
(ii) $(p \rightarrow q) \leftrightarrow(\sim p \vee q)$.
4. Find the truth values of the compound statement:
5. Find the truth values of the following compound statements:
(i) $(p \vee q) \leftrightarrow r$
(ii) $(p \rightarrow q) \rightarrow r$.
6. Show that $p \vee \sim(p \wedge q)$ is a tautology
7. Show that $[\sim(p \vee q)] \leftrightarrow(\sim p \wedge \sim q)$ is a taukeqlogy.
8. Show that $\sim[(p \wedge q) \wedge(\sim p \wedge \sim q$ a fattacy.
9. Show that the compound statements: $p \rightarrow(q \wedge r)$ and $(p \rightarrow q) \wedge(p \rightarrow r)$ are logically equivalent.
10. Prove that:
(i) $(p \vee q) \vee r \equiv p \vee(q$
(ii) $p \vee(q \wedge r) \equiv(p) g \wedge \vee(p \vee r)$.
11. By using daws q रg gebra of statements, show that: $\sim(\sim p \wedge q) \equiv p \vee \sim q$.
12. Fïd thenegation of the compound statement: $\sim p \leftrightarrow \sim q$.

(ii) T
(iii) F
(iv) F
(v) F
13. (i) T
(ii) T
(Hi) T (iv) F.
14.

p	q	(i)	(ii)
T	T	F	T
T	F	F	T
F	T	T	T
F	F	F	T

4.

p	q	r	$\sim[(p \wedge q) \vee \sim r]$
T	T	T	F
T	T	F	F
T	F	T	T
F	T	T	T
T	F	F	F
F	T	F	F
F	F	T	T
F	F	F	F

5.

12.
$(-p$

Typically solved wuestions

(FOCcompertyve Examinations)
1.

Rp, q and r be any three statements, then show that the compound statements:
$p \rightarrow(q \wedge r)$ and $(p \rightarrow q) \wedge(p \rightarrow r)$ are logically equivalent.

Sol:

Truth values of $\mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{r})$ and $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \rightarrow \mathrm{r})$

p	q	r	$q \wedge r$	$p \rightarrow(q \wedge r)$	$p \rightarrow q$	$p \rightarrow r$	$(p \rightarrow q) \wedge(p \rightarrow r)$
T							
T	T	F	F	F	T	F	F
T	F	T	F	F	F	T	F
F	T	T	T	T	T	F	T
T	F	F	F	F	F	T	T
F	T	F	F	T	T	T	T
F	F	T	F	T	T	T	T
F	F	F	F	T	T	T	T

\therefore The true value of $p \rightarrow(q \wedge r)$ and $(p \rightarrow q) \wedge(p \rightarrow r)$ are same.
2.

Write the truth table for $l \leftrightarrow m$ where $l=(p \rightarrow q)$ na q and $m=p \leftrightarrow q$.
Sol:
Truth values of $1 \leftrightarrow \mathbf{m}$

p	q	$p \rightarrow q$	$q \rightarrow p$	$l=(p \rightarrow q) \wedge(q) p)$	
T	T	T	T	T	
T	F	F	T	F	
F	T	T	F	T	T
F	F	T	T	T	T

3. For three statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ show that :

Sol:

Truth values of $(p \wedge \sim q) \wedge(\sim q \vee \sim p) \wedge(p \vee r)$
 values.

$$
\therefore \quad[(\mathbf{p} \wedge \sim q) \vee(q \wedge \sim p)] \wedge(p \vee r) \equiv(p \wedge \sim q) \wedge(\sim \wedge \wedge \sim p) \vee(p \vee r) .
$$

4. Test the validity of the following argument:

"Democracy can survive only if the electorate is well informed or no candidate for a public office is dishonest. The electorate is well informed only if education is free. If all candidates for public offices are honest, then democracy can survive. Thlerefore, democracy can survive only if education is free".

Sol.
Let $\mathrm{p}=$ Democracy survives, $\mathrm{q}=$ Electorate is well informed, $r=$ Candidate for a public officepis dishonest and $\mathrm{s}=$ Education is free.
The assumptions are $(q \wedge r) \rightarrow p, s \rightarrow q, \sim r \rightarrow p$ and the conclusion is $s \rightarrow p$.
Let $\left.S_{1}=(q \wedge \sim r) \rightarrow p,=s\right) \rightarrow q, S_{3}=\sim r \rightarrow p$ and $S=s \rightarrow p$.
\therefore Given argumentis $S_{2} S_{3}-S$.

Truth values of $\mathrm{p}_{1}, \mathbf{p}_{2}, \mathrm{p}_{\mathbf{3}}, \mathbf{Q}$

p	q	r	s	$\sim r$	$q \wedge \sim r$	S_{l} $((q \wedge \sim r) \rightarrow p)$	S_{2} $(s \rightarrow q)$	S_{3} $(\sim r \rightarrow q)$	S $(s \rightarrow p)$
T	T	T	T	F	F	T	T	T	T
T	T	T	F	F	F	T	T	T	T
T	T	F	T						
T	F	T	T	F	F	T	F	T	T
F	T	T	T	F	F	T	T	T	F
T	T	F	F	T	T	T	T	T	T
T	F	F	T	T	F	T	F	T	T
F	F	T	T	F	F	T	F	F	F
T	F	T	F	F	F	T	T	T	T
F	T	F	T	T	T	F	T	F	F
F	T	T	F	F	F	T	T	T	T
F	F	F	T	T	F	T	F	F	F
F	F	T	F	F	F	T	T	T	T
F	T	F	F	T	T	F	T	T	T
T	F	F	F	T	F	T	T	T	T
F	F	F	F	T	F	T	T	T	T

In the 5 th row, S_{1}, S_{2}, S_{3} are all true but S is not true.
\therefore Given argument is not valid.

