CBSE Class 11 Mathematics
 Revision Notes
 Chapter-12
 INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

1. Coordinates- axes, planes, points in 3D
2. Distance between Two Points
3. Section Formula

- Coordinate axes: In three dimensions, the coordinate axes of a rectangular Cartesian coordinate system are three mutually perpendicular lines. The axes are called the xaxis, y-axis and z-axis.
- Planes: The three planes determined by the pair of axes are the coordinate planes, called XY, YZ and ZX planes.

$$
\begin{aligned}
& x y-\text { plane i.e., } z=0 \\
& y z-\text { plane i.e., } x=0 \\
& z x-\text { plane i.e., } y=0
\end{aligned}
$$

- Octants: The three coordinate planes divide the space into eight parts known as octants.
- Points in 3D: The coordinates of a point P in three dimensional geometry is always written in the form of triplet like ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Here x, y and z are the distances from the YZ, ZX and XY

Any point on $\mathrm{XY} \rightarrow$ plane $(\mathrm{x}, \mathrm{y}, 0)$
Any point on $\mathrm{YZ} \rightarrow$ plane $(0, \mathrm{y}, \mathrm{z})$
Any point on $\mathrm{ZX} \rightarrow$ plane $(x, 0, z)$

- Distance formula between two points: Distance between two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is

$$
|\mathrm{PQ}|=\sqrt{\left.\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right)+\left(z_{2}-z_{1}\right)^{2}}
$$

Section Formula: The co-ordinates of R which divides a line segment joining the points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$

Internally and externally in the ratio $\mathrm{m}: \mathrm{n}$ respectively
Internally: $\quad R\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)$
Externally: $\quad S\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right)$
Centroid: The coordinates of the centroid of the trinagle whose vertices are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ is
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$

