

Study Material Downloaded from Vedantu

About **Vedantu**

Vedantu is India's largest **LIVE online teaching platform** with best teachers from across the country.

Vedantu offers Live Interactive Classes for **JEE**, **NEET**, KVPY, NTSE, Olympiads, **CBSE**, **ICSE**, IGCSE, IB & State Boards for Students Studying in **6-12th Grades** and Droppers.

RE Webinars by Expert Teachers

FREE LIVE ONLINE

Awesome Master Teachers

Anand Prakash B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna B.Tech, IIT Bombay Co-Founder, Vedantu

My mentor is approachable and **guides me** in my future aspirations as well.

Student **- Ayushi**

My son loves the sessions and **I can** already see the change. Parent - Sreelatha

95% Students of Regular Tuitions on Vedantu scored above **90%** in exams!

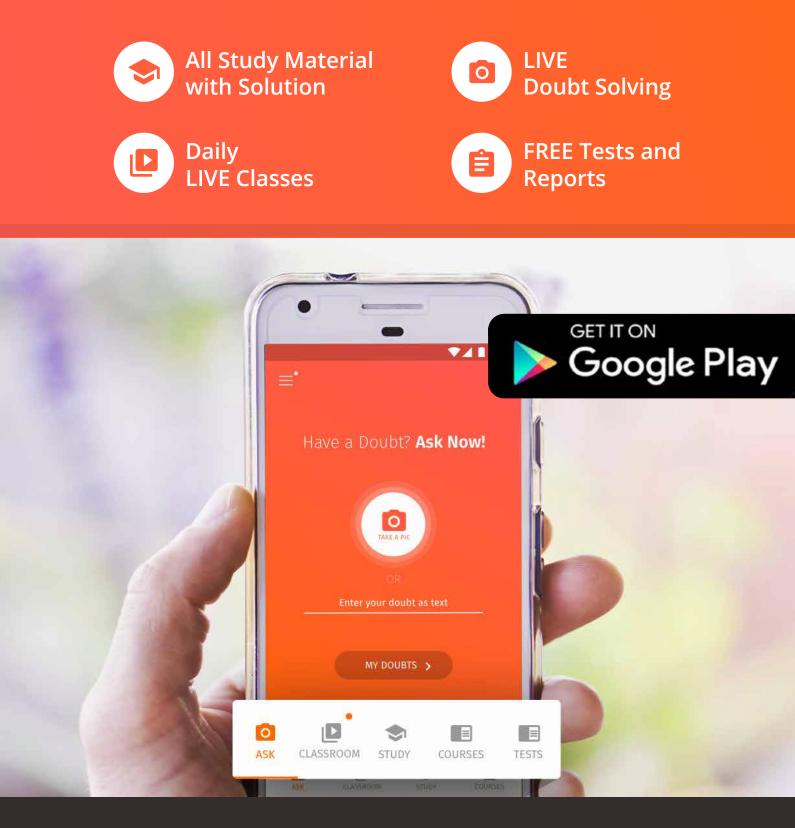
Vedantii FREE MASTER CLASS SERIES

- For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Free 60 Minutes Live Interactive classes everyday
- Learn from the Master Teachers India's best

Register for **FREE**

Limited Seats!

Download Vedantu's App & Get



DOWNLOAD THE APP

BINOMIAL THEOREM & MATHEMATICAL INDUCTION

BINOMIAL THEOREM

If $a, b \in R$ and $n \in N$, then

$$(a+b)^n = {}^nC_0 a^n b^0 + {}^nC_1 a^{n-1} b^1 + {}^nC_2 a^{n-2} b^2 + \dots + {}^nC_n a^0 b^n$$

REMARKS :

- 1. If the index of the binomial is n then the expansion contains n + 1 terms.
- 2. In each term, the sum of indices of a and b is always n.
- 3. Coefficients of the terms in binomial expansion equidistant from both the ends are equal.
- 4. $(a-b)^n = {}^nC_0a^nb^0 {}^nC_1a^{n-1}b^1 + {}^nC_2a^{n-2}b^{2-} \dots + (-1)^n {}^nC_0a^0b^n.$

GENERAL TERM AND MIDDLE TERMS IN EXPANSION OF $(A + B)^{N}$

 $t_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$

 t_{r+1} is called a general term for all $r \in N$ and $0 \le r \le n$. Using this formula we can find any term of the expansion.

MIDDLE TERM (S):

1. In $(a + b)^n$ if n is even then the number of terms in the expansion is odd. Therefore there is only one

middle term and it is $\left(\frac{n+2}{2}\right)^{th}$ term.

2. In $(a + b)^n$, if n is odd then the number of terms in the expansion is even. Therefore there are two middle terms and those are

$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 and $\left(\frac{n+3}{2}\right)^{\text{th}}$ terms

BINOMIAL THEOREM FOR ANY INDEX

If n is negative integer then n! is not defined. We state binomial theorem in another form.

$$(a+b)^n = a^n + \frac{n}{1!} a^{n-1} b + \frac{n(n-1)}{2!} a^{n-2} b^2$$

$$+\frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3}+...\frac{+n(n-1)...(n-r+1)}{r!}a^{n-r}b^{r}+.....$$

Here
$$t_{r+1} = \frac{(n-1)(n-2)...(n-r+1)}{r!}a^{n-r}b$$

THEOREM:

If n is any real number, a = 1, b = x and |x| < 1 then

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

Here there are infinite number of terms in the expansion, The general term is given by

$$t_{r+1} = \frac{n(n-1)(n-2)...(n-r+1)x}{r!}, r \ge 0$$

Note.

- (i) Expansion is valid only when $-1 \le x \le 1$
- (ii) ${}^{n}C_{r}$ can not be used because it is defined only for natural number, so ${}^{n}C_{r}$ will be written

as
$$\frac{n(n-1)\dots(n-r+1)}{r!}$$

1 – x

(iii) As the series never terminates, the number of terms in the series is infinite.

(iv) General term of the series
$$(1 + x)^{-n} = T_{r+1} \rightarrow (-1)^r$$

$$\frac{1 + x}{1 + x} \text{ if } |x| < 1$$

(v) General term of the series
$$(1 - x)^{-n} \to T_{r+1}$$

= $\frac{(+1)(+2)...(+-1)}{r!}x$

(vi) If first term is not 1, then make it unity in the

following way.
$$(a + x)^n = a^n (1 + x/a)^n \text{ if } \left| \frac{x}{a} \right| < 1$$

NCERT Solutions for Class 6 to 12 (Math & Science) Revision Notes for Class 6 to 12 (Math & Science) **RD Sharma Solutions for Class 6 to 12 Mathematics** RS Aggarwal Solutions for Class 6, 7 & 10 Mathematics Important Questions for Class 6 to 12 (Math & Science) CBSE Sample Papers for Class 9, 10 & 12 (Math & Science) Important Formula for Class 6 to 12 Math **CBSE Syllabus for Class 6 to 12** Lakhmir Singh Solutions for Class 9 & 10 **Previous Year Question Paper CBSE Class 12 Previous Year Question Paper CBSE Class 10 Previous Year Question Paper** JEE Main & Advanced Question Paper **NEET Previous Year Question Paper**

> Vedantu Innovations Pvt. Ltd. Score high with a personal teacher, Learn LIVE Online! www.vedantu.com

BINOMIAL THEOREM & MATHEMATICAL INDUCTION

REMARKS:

Note.

1. If $|\mathbf{x}| < 1$ and n is any real number, then

$$(1-x)^n = 1-nx + \frac{n(n-1)}{2!}x^2 - \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

The general term is given by

$$t_{r+1} = \frac{(-1)^r n(n-1)(n-2)...(n-r+1)}{r!} \mathbf{x}^r$$

2. If n is any real number and $|\mathbf{b}| < |\mathbf{a}|$, then

$$= (a+b)^{n} = \left[a\left(1+\frac{b}{a}\right)\right]$$
$$= a^{n}\left(1+\frac{b}{a}\right)^{n}$$

While expanding $(a + b)^n$ where n is a negative integer or a fraction, reduce the binomial to the form in which the first term is unity and the second term is numerically less than unity.

Particular expansion of the binomials for negative index, |x| < 1

1.
$$\frac{1}{1+x} = (1+x)^{-1}$$
$$= 1 - x + x^{2} - x^{3} + x^{4} - x^{5} + \dots$$

2.
$$\frac{1}{1-x} = (1+x)^{-1}$$
$$= 1 + x + x^{2} + x^{3} + x^{4} + x^{5} + \dots$$

3.
$$\frac{1}{(1+x)^2} = (1+x)^{-2}$$

= 1-2x+3x^2-4x^3+

$$\frac{1}{(1-x)^2} = (1-x)^{-2}$$
$$= 1 + 2x + 3x^2 + 4x^3 + \dots$$

4

BINOMIAL COEFFICIENTS

The coefficients ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,..., ${}^{n}C_{n}$ in the expansion of $(a+b)^{n}$ are called the binomial coefficients and denoted by C₀, C₁, C₂,, C_n respectively Now $(1+x)^{n} = {}^{n}C_{0}x^{0} + {}^{n}C_{1}x^{1} + {}^{n}C_{2}x^{2} + ... + {}^{n}C_{n}x^{n}$ (i) Put x = 1. $(1+1)^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$ $2^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n}$ ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$ $\therefore C_0 + C_1 + C_2 + ... + C_n = 2^n$ The sum of all binomial coefficients is 2ⁿ.

Put
$$x = -1$$
, in equation (1),
 $(1-1)^n = {}^nC_n - {}^nC_1 + {}^nC_2 - ... + (-1)^{nn}C_n$

$$\therefore \quad 0 = {}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - \dots + (-1){}^{n}C_{n}$$

$$\therefore \quad {}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - {}^{n}C_{3} + \dots + (-1)^{n} {}^{n}C_{n} = 0$$

$$\therefore \quad {}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots$$
$$\therefore \quad C_{0} + C_{2} + C_{4} + \dots = C_{1} + C_{2} + C_{5} + \dots$$

$$C_{0}, C_{2}, C_{4}, ... \text{ are called as even coefficients}$$

$$C_{1}, C_{3}, C_{5}... \text{ are called as odd coefficients}$$

$$Let C_{0} + C_{2} + C_{4} + ... = C_{1} + C_{3} + C_{5} + ... = k$$

$$Now C_{0} + C_{1} + C_{2} + C_{3} + ... + C_{n} = 2^{n}$$

:
$$(C_0 + C_2 + C_4 + ...) + (C_1 + C_3 + C_4)$$

: $k + k = 2^n$

$$\cdot k = \frac{2^n}{n}$$

 $2k = 2^{n}$

.

... *:*..

...

$$\therefore \qquad C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

The sum of even coefficients = The sum of odd coefficients *.*... $= 2^{n-1}$

 $(5...) = 2^n$

Properties of Binomial Coefficient

For the sake of convenience the coefficients ${}^{n}C_{0}, {}^{n}C_{1}, \dots, {}^{n}C_{r}, \dots, {}^{n}C_{n}$ are usually denoted by $C_0, C_1, \ldots, C_r, \ldots, C_n$ respectively. (i) $C_0 + C_1 + C_2 + \dots + C_n = 2^n$ (ii) $C_0 - C_1 + C_2 - \dots + (-1)^n C_n = 0$ (iii) $C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$. (iv) ${}^{n}C_{r_{1}} = {}^{n}C_{r_{2}} \Longrightarrow r_{1} = r_{2} \text{ or } r_{1} + r_{2} = n$ (v) ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ (vi) $r^n C_r = n^{n-1} C_{r-1}$

Jedantu.

BINOMIAL THEOREM & MATHEMATICAL INDUCTION

Some Important Results

(i)
$$(1+x)^{n}=C_{0}+C_{1}x+C_{2}x^{2}+\dots+C_{n}x^{n},$$

Putting $x = 1$ and -1 , we get
 $C_{0}+C_{1}+C_{2}+\dots+C_{n}=2^{n}$ and
 $C_{0}-C_{1}+C_{2}-C_{3}+\dots+C_{n}(-1)^{n}C_{n}=0$
(ii) Differentiating $(1+x)^{n}=C_{0}+C_{1}x+C_{2}x^{2}+\dots+C_{n}x^{n},$
on both sides we have, $n(1+x)^{n-1}$
 $=C_{1}+2C_{2}x+3C_{3}x^{2}+\dots+nC_{n}x^{n-1}$...(1)
 $x=1$
 $\Rightarrow n2^{n-1}=C_{1}+2C_{2}+3C_{3}+\dots+nC_{n}$
 $x=-1$
 $\Rightarrow 0=C_{1}-2C_{2}+\dots+(-1)^{n-1}nC_{n}.$
Differentiating $(1+x)^{n}$ we have,
(iii) Integrating $(1+x)^{n}$ we have,
(iii) Integrating $(1+x)^{n}$ we have,
 $(\frac{(1+x)^{n+1}}{n+1}+C=C_{0}x+\frac{C_{1}x^{2}}{2}+\frac{C_{2}x^{3}}{3}+\dots+\frac{C_{n}x^{n+1}}{n+1}$
(where C is a constant)
Put $x=0$, we get $C=-\frac{1}{(n+1)}$
Therefore
 $(\frac{(1+x)^{n+1}-1}{n+1}=C_{0}x+\frac{C_{1}x^{2}}{2}+\frac{C_{2}x^{3}}{3}+\dots+\frac{C_{n}x^{n+1}}{n+1}$...(2)
Put $x=1$ in (2) we get
 $\frac{2^{n+1}-1}{n+1}=C_{0}+\frac{C_{1}}{2}+\dots+\frac{C_{n}}{n+1}$
Put $x=-1$ in (2) we get,
 $\frac{1}{n+1}=C_{0}-\frac{C_{1}}{2}+\frac{C_{2}}{3}-\dots-\dots$
Illustration
Find the coefficient of x^{4} in the expansion of
 $\frac{1+x}{1-x}$ if $|x| < 1$
Sol. $\frac{1+x}{1-x}=(1+x)(1-x)^{-1}$
 $=(1+x)[1+\frac{(-1)}{1!}(-x)\frac{(-1)(-1-1)}{2!}(-x)^{2}$

$$+\frac{(-1)(-1-1)(-1-2)}{3!}(-x)^{3}....to\infty$$

Ш

$$= (1+x) (1+x+x^{2}+x^{3}+x^{4}+.....to \infty)$$

= [1+x+x^{2}+x^{3}+x^{4}+......to \infty] +
[x+x^{2}+x^{3}+x^{4}+......to \infty]
= 1+2x+2x^{2}+2x^{3}+2x^{4}+2x^{5}+.....to \infty
Hence coefficient of x⁴ = 2

Illustration

Find the square root of 99 correct to 4 places of deicmal.

Sol.
$$(99)^{1/2} = (100 - 1)^{1/2} \left[100 \left(1 - \frac{1}{100} \right) \right]^{\frac{1}{2}}$$

$$= \left[100 \left(1 - \frac{1}{100} \right) \right]^{\frac{1}{2}}$$

$$= (100)^{1/2} [1 - 0]^{1/2} = 10 (1 - 01)^{1/2}$$

$$10 \left[1 + \frac{1}{2} (-01) + \frac{1}{2} \left(\frac{1}{2} - 1 \right) (-01)^2 + \dots \text{ to } \infty \right]$$

$$= 10 [1 - 0.005 - 0.0000125 + \dots \text{ to } \infty]$$

=10(.9949875)=9.94987=9.9499

Multinomial Expansion

In the expansion of $(x_1 + x_2 + \dots + x_n)^m$ where $m, n \in \mathbb{N}$ and x_1, x_2, \dots, x_n are independent variables, we have

- Total number of terms = ${}^{m+n-1}C_{n-1}$ (i)
- Coefficient of $x_1^{r_1} x_2^{r_2} x_3^{r_3} \dots x_n^{r_n}$ (where $r_1 + r_2 + r_3 + r_2$) (ii)

......+
$$r_n = m, r_i \in N \cup \{0\}$$
 is $\frac{m!}{r_1!r_2!....r_n}$

(iii) Sum of all the coefficients is obtained by putting all the variables x_1 equal to 1.

Illustration

Find the total number of terms in the expansion of $(1 + a + b)^{10}$ and coefficient of a^2b^3 .

Sol. Total number of terms = ${}^{10+3-1}C_{3-1} = {}^{12}C_2 = 66$

Coefficient of
$$a^2b^3 = \frac{10!}{2! \times 3! \times 5!} = 2520$$

Thank YOU for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES FREE Webinars by Expert Teachers

Vedantii FREE MASTER CLASS SERIES

- ⊘ For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Series Free 60 Minutes Live Interactive classes everyday
- ⊘ Learn from the Master Teachers India's best

Register for **FREE**

Limited Seats!