Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

BINOMIAL THEOREM \& MATHEMATICAL INDUCTION

BINOMIAL THEOREM \& MATHEMATICAL INDUCTION

BINOMIAL THEOREM

If $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$, then
$(a+b)^{n}={ }^{n} C_{0} a^{n} b^{0}+{ }^{n} C_{1} a^{n-1} b^{1}+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots+{ }^{n} C_{n} a^{0} b^{n}$

REMARKS :

1. If the index of the binomial is n then the expansion contains $\mathrm{n}+1$ terms.
2. In each term, the sum of indices of a and b is always n.
3. Coefficients of the terms in binomial expansion equidistant from both the ends are equal.
4. $\quad(a-b)^{n}={ }^{n} C_{0} a^{n} b^{0}-{ }^{n} C_{1} a^{n-1} b^{1}+{ }^{n} C_{2} a^{n-2} b^{2-} \ldots+(-1)^{n}$ ${ }^{n} \mathrm{C}_{0} \mathrm{a}^{0} \mathrm{~b}^{\mathrm{n}}$.

GENERAL TERM AND MIDDLE TERMS IN EXPANSION OF (A + B) ${ }^{\text {N }}$
$t_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
$\mathrm{t}_{\mathrm{r}+1}$ is called a general term for all $\mathrm{r} \in \mathrm{N}$ and $0 \leq \mathrm{r} \leq \mathrm{n}$. Using this formula we can find any term of the expansion.

MIDDLE TERM (S) :

1. $\quad \operatorname{In}(a+b)^{n}$ if n is even then the number of terms in the expansion is odd. Therefore there is only one
middle term and it is $\left(\frac{\mathrm{n}+2}{2}\right)^{\text {th }}$ term.
2. \quad In $(a+b)^{n}$, if n is odd then the number of terms in the expansion is even. Therefore there are two middle terms and those are $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ and $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$ terms.

BINOMIAL THEOREM FOR ANY INDEX

If n is negative integer then n ! is not defined. We state binomial theorem in another form.
$(a+b)^{n}=a^{n}+\frac{n}{1!} a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}$

$$
+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+\ldots \frac{+n(n-1) \ldots(n-r+1)}{r!} a^{n-r} b^{r}+. .
$$

$$
\text { Here } \mathrm{t}_{\mathrm{r}+1}=\frac{(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\mathrm{r}+1)}{\mathrm{r}!} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{~b}
$$

THEOREM:

If n is any real number, $a=1, b=x$ and $|x|<1$ then
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots$

Here there are infinite number of terms in the expansion, The general term is given by
$t_{r+1}=\frac{n(n-1)(n-2) \ldots(n-r+1) x}{r!}, r \geq 0$

(i) Expansion is valid only when $-1<\mathrm{x}<1$
(ii) ${ }^{n} C_{r}$ can not be used because it is defined only for natural number, so ${ }^{n} C_{r}$ will be written

$$
\text { as } \frac{n(n-1) \ldots \ldots \ldots(n-r+1)}{r!}
$$

(iii) As the series never terminates, the number of terms in the series is infinite.
(iv) General term of the series $(1+x)^{-n}=T_{r+1} \rightarrow(-1)^{r}$ $\frac{1+\mathrm{x}}{1-\mathrm{x}}$ if $|\mathrm{x}|<1$
(v) General term of the series $(1-x)^{-n} \rightarrow T_{r+1}$ $=\frac{(+1)(+2) \ldots(+-1)}{\mathrm{r}!} \mathrm{x}$
(vi) If first term is not 1 , then make it unity in the following way. $(a+x)^{n}=a^{n}(1+x / a)^{n}$ if $\left|\frac{x}{a}\right|<1$

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper

BINOMIAL THEOREM \& MATHEMATICAL INDUCTION

REMARKS:

1. If $|\mathrm{x}|<1$ and n is any real number, then $(1-x)^{n}=1-n x+\frac{n(n-1)}{2!} x^{2}-\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots$ The general term is given by

$$
\mathrm{t}_{\mathrm{r}+1}=\frac{(-1)^{\mathrm{r}} \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\mathrm{r}+1)}{\mathrm{r}!} \mathrm{x}^{\mathrm{r}}
$$

2. If n is any real number and $|\mathrm{b}|<|\mathrm{a}|$, then

$$
\begin{aligned}
& =(a+b)^{n}=\left[a\left(1+\frac{b}{a}\right)\right]^{n} \\
& =a^{n}\left(1+\frac{b}{a}\right)^{n}
\end{aligned}
$$

,

While expanding $(a+b)^{n}$ where n is a negative integer or a fraction, reduce the binomial to the form in which the first term is unity and the second term is numerically less than unity.

Particular expansion of the binomials for negative index, $|\mathrm{x}|<1$

1. $\frac{1}{1+\mathrm{x}}=(1+\mathrm{x})^{-1}$

$$
=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\ldots . .
$$

2. $\frac{1}{1-\mathrm{x}}=(1+\mathrm{x})^{-1}$

$$
=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots . .
$$

3. $\frac{1}{(1+x)^{2}}=(1+x)^{-2}$

$$
=1-2 x+3 x^{2}-4 x^{3}+\ldots .
$$

4. $\frac{1}{(1-x)^{2}}=(1-x)^{-2}$

$$
=1+2 x+3 x^{2}+4 x^{3}+\ldots . .
$$

BINOMIAL COEFFICIENTS

The coefficients ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots,{ }^{n} C_{n}$ in the expansion of $(a+b){ }^{n}$ are called the binomial coefficients and denoted by $\mathrm{C}_{0}, \mathrm{C}_{1}$, $\mathrm{C}_{2}, \ldots . ., \mathrm{C}_{\mathrm{n}}$ respectively
Now
$(1+x)^{n}={ }^{n} C_{0} x^{0}+{ }^{n} C_{1} x^{1}+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{n} x^{n}$
Put $\mathrm{x}=1$.
$(1+1)^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$
$\therefore \quad 2^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n}$
$\therefore \quad{ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n}=2^{n}$
$\therefore \quad \mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots+\mathrm{C}_{\mathrm{n}}=2^{\mathrm{n}}$
$\therefore \quad$ The sum of all binomial coefficients is 2^{n}.
Put $x=-1$, in equation (i),
$(1-1)^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}-\ldots+(-1)^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$
$\therefore \quad 0={ }^{\mathrm{n}} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}-\ldots+(-1)^{\mathrm{n} \mathrm{n}} \mathrm{C}_{\mathrm{n}}$
$\therefore \quad{ }^{\mathrm{n}} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}-{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots .+(-1)^{\mathrm{n}}{ }^{n} \mathrm{C}_{\mathrm{n}}=0$
$\therefore \quad{ }^{n} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{4}+\ldots={ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{3}+{ }^{\mathrm{n}} \mathrm{C}_{5}+\ldots$
$\therefore \quad \mathrm{C}_{0}+\mathrm{C}_{2}+\mathrm{C}_{4}+\ldots=\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+\ldots$
$\mathrm{C}_{0}, \mathrm{C}_{2}, \mathrm{C}_{4}, \ldots$ are called as even coefficients
$\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{5} \ldots$ are called as odd coefficients
Let $\mathrm{C}_{0}+\mathrm{C}_{2}+\mathrm{C}_{4}+\ldots=\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+\ldots=\mathrm{k}$
Now $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots+\mathrm{C}_{\mathrm{n}}=2^{\mathrm{n}}$
$\therefore \quad\left(\mathrm{C}_{0}+\mathrm{C}_{2}+\mathrm{C}_{4}+\ldots\right)+\left(\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5} \ldots\right)=2^{\mathrm{n}}$
$\therefore \quad \mathrm{k}+\mathrm{k}=2^{\mathrm{n}}$
$2 \mathrm{k}=2^{\mathrm{n}}$
$\therefore \quad \mathrm{k}=\frac{2^{\mathrm{n}}}{2}$
$\therefore \quad \mathrm{k}=2^{\mathrm{n}-1}$
$\therefore \quad \mathrm{C}_{0}+\mathrm{C}_{2}+\mathrm{C}_{4}+\ldots=\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+\ldots=2^{\mathrm{n}-1}$
$\therefore \quad$ The sum of even coefficients $=$ The sum of odd coefficients $=2^{\mathrm{n}-1}$

Properties of Binomial Coefficient

For the sake of convenience the coefficients
${ }^{n} C_{0},{ }^{n} C_{1}$, \qquad ${ }^{n} \mathrm{C}_{\mathrm{r}}$ \qquad ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$ are usually denoted by $\mathrm{C}_{0}, \mathrm{C}_{1}, \ldots \ldots, \mathrm{C}_{\mathrm{r}}$ \qquad ., C_{n} respectively.
(i) $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+$ \qquad $+C_{n}=2^{n}$
(ii) $\mathrm{C}_{0}-\mathrm{C}_{1}+\mathrm{C}_{2}-$ \qquad $+(-1)^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=0$
(iii) $\mathrm{C}_{0}+\mathrm{C}_{2}+\mathrm{C}_{4}+$. \qquad $=\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{5}+$ \qquad $=2^{\mathrm{n}-1}$.
(iv) ${ }^{n} C_{r_{1}}={ }^{n} C_{r_{2}} \Rightarrow r_{1}=r_{2}$ or $r_{1}+r_{2}=n$
(v) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}$
(vi) $\mathrm{r}^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\mathrm{n}^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}$

BINOMIAL THEOREM \& MATHEMATICAL INDUCTION

Some Important Results

(i) $\quad(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+$ \qquad $+\mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$,
Putting $x=1$ and -1 , we get
$\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots+\mathrm{C}_{\mathrm{n}}=2^{\mathrm{n}}$ and $\mathrm{C}_{0}-\mathrm{C}_{1}+\mathrm{C}_{2}-\mathrm{C}_{3}+\ldots \ldots \ldots . .(-1)^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=0$
(ii) Differentiating $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+$ \qquad $+\mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$, on both sides we have, $n(1+x)^{n-}$
$=C_{1}+2 C_{2} \mathrm{x}+3 \mathrm{C}_{3} \mathrm{x}^{2}+$ \qquad $+\mathrm{nC}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}-1}$
$\mathrm{x}=1$
$\Rightarrow \quad \mathrm{n} 2^{\mathrm{n}-1}=\mathrm{C}_{1}+2 \mathrm{C}_{2}+3 \mathrm{C}_{3}+\ldots \ldots \ldots+\mathrm{nC}_{\mathrm{n}}$ $\mathrm{x}=-1$
$\Rightarrow \quad 0=\mathrm{C}_{1}-2 \mathrm{C}_{2}+$ \qquad $+(-1)^{\mathrm{n}-1} \mathrm{nC}_{\mathrm{n}}$
Differentiating (1) again and again we will have different results.
(iii) Integrating $(1+x)^{\mathrm{n}}$, we have,

$$
\frac{(1+x)^{n+1}}{n+1}+C=C_{0} x+\frac{C_{1} x^{2}}{2}+\frac{C_{2} x^{3}}{3}+\ldots \ldots \ldots+\frac{C_{n} x^{n+1}}{n+1}
$$

(where C is a constant)

$$
\text { Put } x=0 \text {, we get } C=-\frac{1}{(n+1)}
$$

Therefore
$\frac{(1+x)^{n+1}-1}{n+1}=C_{0} x+\frac{C_{1} x^{2}}{2}+\frac{C_{2} x^{3}}{3}+\ldots \ldots \ldots .+\frac{C_{n} x^{n+1}}{n+1}$
Put $x=1$ in (2) we get
$\frac{2^{\mathrm{n}+1}-1}{\mathrm{n}+1}=\mathrm{C}_{0}+\frac{\mathrm{C}_{1}}{2}+\ldots \ldots \ldots+\frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{n}+1}$
Put $x=-1$ in (2) we get,
$\frac{1}{\mathrm{n}+1}=\mathrm{C}_{0}-\frac{\mathrm{C}_{1}}{2}+\frac{\mathrm{C}_{2}}{3}-$ \qquad

Illustration

Find the coefficient of x^{4} in the expansion of $\frac{1+\mathrm{x}}{1-\mathrm{x}}$ if $|\mathrm{x}|<1$

Sol. $\frac{1+\mathrm{x}}{1-\mathrm{x}}=(1+\mathrm{x})(1-\mathrm{x})^{-1}$
$=(1+x)\left[1+\frac{(-1)}{1!}(-x) \frac{(-1)(-1-1)}{2!}(-x)^{2}\right.$
$+\frac{(-1)(-1-1)(-1-2)}{3!}(-x)^{3} \ldots .$. to ∞

$$
\begin{aligned}
& =(1+x)\left(1+x+x^{2}+x^{3}+x^{4}+\ldots . . \text { to } \infty\right) \\
& =\left[1+x+x^{2}+x^{3}+x^{4}+\ldots . . . \text { to } \infty\right]+
\end{aligned}
$$

$$
\left[x+x^{2}+x^{3}+x^{4}+\ldots \text { to } \infty\right]
$$

$=1+2 \mathrm{x}+2 \mathrm{x}^{2}+2 \mathrm{x}^{3}+2 \mathrm{x}^{4}+2 \mathrm{x}^{5}+\ldots .$. to ∞
Hence coefficient of $x^{4}=2$

Illustration

Find the square root of 99 correct to 4 places of deicmal.

Sol. $(99)^{1 / 2}=(100-1)^{1 / 2}\left[100\left(1-\frac{1}{100}\right)\right]^{\frac{1}{2}}$
$=\left[100\left(1-\frac{1}{100}\right)\right]^{\frac{1}{2}}$
$=(100)^{1 / 2}[1-0]^{1 / 2}=10(1-01)^{1 / 2}$
$10\left[1+\frac{\frac{1}{2}}{1!}(-01)+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}(-01)^{2}+\ldots \ldots .\right.$. to $\left.\infty\right]$
$=10[1-0.005-0.0000125+$ to ∞]
$=10(.9949875)=9.94987=9.9499$

Multinomial Expansion

In the expansion of $\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots \ldots . .+\mathrm{x}_{\mathrm{n}}\right)^{\mathrm{m}}$ where $\mathrm{m}, \mathrm{n} \in \mathrm{N}$ and $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots \ldots, \mathrm{x}_{\mathrm{n}}$ are independent variables, we have
(i) Total number of terms $={ }^{m+n-1} C_{n-1}$
(ii) Coefficient of $\mathrm{X}_{1}{ }^{\mathrm{r}_{1}} \mathrm{X}_{2}{ }^{\mathrm{r}_{2}} \mathrm{X}_{3}{ }^{\mathrm{r}_{3}} \ldots \ldots . . \mathrm{X}_{\mathrm{n}}{ }^{\mathrm{r}_{\mathrm{n}}}$ (where $\mathrm{r}_{1}+\mathrm{r}_{2}+$

$$
+r_{n}=m, r_{i} \in N \cup\{0\} \text { is } \frac{m!}{r_{1}!r_{2}!\ldots \ldots r_{n}!}
$$

(iii) Sum of all the coefficients is obtained by putting all the variables x_{1} equal to 1 .

Illustration

Find the total number of terms in the expansion of $(1+a+b)^{10}$ and coefficient of $a^{2} b^{3}$.

Sol. Total number of terms $={ }^{10+3-1} \mathrm{C}_{3-1}={ }^{12} \mathrm{C}_{2}=66$
Coefficient of $a^{2} b^{3}=\frac{10!}{2!\times 3!\times 5!}=2520$

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

