
Chapter 1

Introduction to Linear Programming.

This chapter introduces notations, terminologies and
formulations of linear programming. Examples will
be given to show how real-life problems can be mod-
eled as linear programs. The graphical approach will
be used to solve some simple linear programming
problems.
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What is Linear Programming?

A typical optimization problem is to find the best
element from a given set.
In order to compare elements, we need a criterion,
which we call an objective function f (x).
The given set is called the feasible set which is
usually defined by

{x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m}

Such an optimization problem can be formulated as

Maximize f (x)

Subject to gi(x) ≤ 0, i = 1, . . . ,m.

In this course, we study a special optimization
problem in which f and gi are all linear functions,
so called linear programming.
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Why do we study Linear Programming?

• It is simple, thus can be efficiently solved.

• It is the basis for the development of solution
algorithms of other (more complex) types of Op-
erations research (OR) models, including integer,
nonlinear, and stochastic programming.

3



1.1 General Linear Programming problems.

In this section, the general linear programming prob-
lem is introduced followed by some examples to help
us familiarize with some basic terminology used in
LP.

Notation

1. For a matrix A, we denote its transpose by AT .

2. An n-dimensional vector x ∈ Rn is denoted by
a column vector

x =



x1
x2
·
·
·

xn



.

3. For vectors x = (x1, x2, · · · , xn)T and
y = (y1, y2, · · · , yn)T , the following denotes the
matrix multiplication:

xTy =
n∑

i=1
xiyi = x1y1 + x2y2 + · · · + xnyn.
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In a general linear programming problem,
a cost vector c = (c1, c2, · · · , cn)T is given. The
objective is to minimize or maximize a linear cost

function cTx =
n∑

i=1
cixi over all vectors

x = (x1, x2, · · · , xn)T ,

subject to a finite set of linear equality and inequal-
ity constraints. This can be summarized as follows:

Minimize cTx
(Or maximize)

Subject to aT
i x ≥ bi, i ∈M+,

aT
i x ≤ bi , i ∈M−,

aT
i x = bi , i ∈M0,

xj ≥ 0 , j ∈ N+,
xj ≤ 0 , j ∈ N−,

where ai = (ai1, ai2, ai3, · · · , ain)T is a vector in Rn

and bi is a scalar.

aT
i x = ai1x1 + ai2x2 + . . . + ainxn
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Terminology

1. Variables xi are called decision variables. There
are n of them.

2. Each constraint is either an equation or an in-
equality of the form ≤ or ≥. Constraints of
the form aT

i x(≤, =,≥)bi are sometimes known
as functional constraints.

3. If j is in neither N+ nor N−, there are no restric-
tions on the sign of xj. The variable xj is said to
be unrestricted in sign or a unrestricted
variable.

4. A vector x = (x1, x2, · · · , xn)T satisfying all of
the constraints is called a feasible solution or
feasible vector. The set of all feasible solutions
is called the feasible set or feasible region.

5. The function cTx is called the objective func-
tion or cost function.
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6. A feasible solution x∗ that minimizes (repec-
tively maximizes) the objective function, i.e.

cTx∗ ≤ cTx (respectively cTx∗ ≥ cTx ) for all
feasible vectors x) is called an optimal feasible
solution or simply, an optimal solution. The
value of cTx∗ is then called the optimal cost
or optimal objective value.

7. For a minimization (respectively maximization)
problem, the cost is said to be unbounded or
the optimal cost is −∞ (repectively the optimal
cost is∞) if for every real number K we can find
a feasible solution x whose cost is less than K
(respectively whose cost is greater than K).

8. Maximizing cTx is equivalent to minimizing−cTx.

More precisely,

max cTx = −min−cTx.

E.g., if cTx ∈ [1, 5], then

max cTx = 5

min−cTx = −5.
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Graphical representation

In R2, the equation aT
i x = bi describes a line per-

pendicular to ai, whereas in R3, the equation aT
i x =

bi describes a plane whose normal vector is ai. In
Rn, the equation aT

i x = bi describes a hyperplane
whose normal vector is ai. Moreover, ai corresponds
to the direction of increasing value of aT

i x. The in-
equality aT

i x ≤ bi represents a half space. A set
of inequalities represents the intersection of the half
spaces.

Line x1 + 2x2 = 3:

-
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Half space x1 + 2x2 ≤ 3:
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Intersection x1 + 2x2 ≤ 3 and 2x1 + x2 ≤ 3:
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Example 1.1 (2-variables)
Consider the following LP problem:

minimize −x1 − x2
subject to x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3
x1, x2 ≥ 0.

(a) Sketch the feasible region and find an optimal
solution of the LP graphically.

(b) If the cost function is changed to −x1 + 2x2,
what is the optimal solution?

-
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Observations

1. For any given scalar z, the set of points x =


x1
x2


such that cTx = z is described by the line with
equation z = −x1−x2. This line is perpendicular

to the vector c =


−1
−1

. (WHY?)

2. Different values of z lead to different lines, par-
allel to each other. Sketch lines corresponding to
z = 1, and z = −1.

3. Increasing z corresponds to moving the line z =
−x1 − x2 along the direction of the vector c =
−1
−1

. Thus, to minimize z, the line is moved

as much as possible in the direction of the vector

−c =


1
1

 (i.e. the opposite direction of the

vector c =


−1
−1

) within the feasible region.

4. The optimal solution x =

 1
1

 is a corner of the

feasible set.
11



Example 1.2 (3-variable)
Consider the following LP problem:

minimize −x1 − x2 − x3
subject to xi ≤ 1, i = 1, 2, 3,

x1, x2, x3 ≥ 0.

The feasible set is the unit cube, described by 0 ≤

xi ≤ 1, i = 1, 2, 3, and c =



−1
−1
−1


. Then the vector

x =



1
1
1


is an optimal solution.
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Example 1.3 (4-variable)
Minimize 2x1 − x2 + 4x3
Subject to x1 + x2 + x4 ≥ 2

3x2 − x3 = 5
x3 + x4 ≤ 3

x1 ≥ 0
x3 ≤ 0

We cannot present it graphically. How to solve it?
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Example 1.4 Consider the feasible set in R2 of
the linear programming problem.

minimize cTx
Subject to −x1 + x2 ≤ 1

x1 ≥ 0
x2 ≥ 0.
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(a) For the cost vector c =


1
1

, there is a unique

optimal solution x =


0
0

.

(b) For c =


1
0

, there are multiple optimal solutions

x of the form x =


0
x2

 where 0 ≤ x2 ≤ 1. The

set of optimal solutions is bounded.

(c) For c =


0
1

, there are multiple optimal solutions

x of the form x =


x1
0

 where x1 ≥ 0. The set

of optimal solutions is unbounded (some x is of
arbitrarily large magnitude).

(d) For c =


−1
−1

, every feasible solution is not op-

timal. The optimal cost is unbounded or the op-
timal cost is −∞.

(e) Imposing additional constraint x1 + x2 ≤ −2,
there is no feasible solution.
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This example illustrates the following possibilities
for a Linear Programming problem.

(a) There is a unique optimal solution.

(b) There are multiple optimal solutions. The set of
optimal solutions is bounded or unbounded.

(c) The optimal cost is −∞ and no feasible solution
is optimal.

(d) The feasible set is empty. The problem is infea-
sible.

1.2 Formulation of LP problems.

The crux of formulating an LP model is:

Step 1 Identify the unknown variables to be determined
(decision variables) and represent them in terms
of algebraic symbols.

Step 2 Identify all the restrictions or constraints in the
problem and express them as linear equations or
inequalities of the decision variables.
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Step 3 Identify the objective or criterion and represent
it as a linear function of the decision variables,
which is to be maximized or minimized.

Example 2.1 The diet problem
Green Farm uses at least 800 kg of special feed daily.
The special feed is a mixture of corn and soybean
meal with the following compositions:

kg per kg of feedstuff
Feedstuff Protein Fiber Cost ($ per kg)
Corn 0.09 0.02 0.30
Soybean meal 0.60 0.06 0.90

The dietary requirements of the total feed stipulate
at least 30% protein and at most 5% fiber. Green
Farm wishes to determine the daily minimum-cost
feed mix.
Formulate the problem as an LP problem.
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Solution
Decision variables:

x1 = kg of corn in the daily mix
x2 = kg of soybean meal in the daily mix

Constraints:
Daily amount requirement: x1 + x2 ≥ 800
Dietary requirements:
• Protein: 0.09x1 + 0.60x2 ≥ 0.3(x1 + x2)
• Fiber: 0.02x1 + 0.06x2 ≤ 0.05(x1 + x2)

Objective: minimize 0.3x1 + 0.9x2
Thus, the complete model is

minimize 0.3x1 + 0.9x2
subject to x1 + x2 ≥ 800

−0.21x1 + 0.3x2 ≥ 0
−0.03x1 + 0.01x2 ≤ 0

x1, x2 ≥ 0
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Example 2.2 (The Reddy Mikks Company)
The Reddy Mikks Company owns a small paint fac-
tory that produces both interior and exterior house
paints for wholesale distribution. Two basic raw ma-
terials, A and B, are used to manufacture the paints.
The maximum availability of A is 6 tons a day; that
of B is 8 tons a day. The daily requirement of the
raw materials per ton of the interior and exterior
paints are summarized in the following table:

Tons of raw material per ton of paint
Raw Maximum

Material Exterior Interior Availability(tons)
A 1 2 6
B 2 1 8

A market survey has established that the daily de-
mand for interior paint cannot exceed that of exte-
rior paint by more than 1 ton. The survey also shows
that the maximum demand for interior paint is lim-
ited to 2 tons daily. The wholesale price per ton is $
3000 for exterior paint and $ 2000 for interior paint.
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How much interior and exterior paints should the
company produce daily to maximize gross income?

Solution
Decision variables:

x1 = number of tons of exterior paint produced
daily

x2 = number of tons of interior paint produced
daily
Constraints:

Use of material A daily: x1 + 2x2 ≤ 6
Use of material B daily: 2x1 + x2 ≤ 8
Daily Demand: x2 ≤ x1 + 1

Maximum Demand: x2 ≤ 2.
Objective: maximize 3000x1 + 2000x2
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Thus, the complete LP model is:

maximize 3000x1 + 2000x2
subject to x1 + 2x2 ≤ 6

2x1 + x2 ≤ 8
− x1 + x2 ≤ 1

x2 ≤ 2
x1, x2 ≥ 0
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Example 2.1* The diet problem
Suppose that there are n different foods and m dif-
ferent nutrients, and that we are given the following
table with the nutritional content of a unit of each
food:

food 1 · · · food n
nutrient 1 a11 · · · a1n
· · · ·
· · · ·

nutrient m am1 · · · amn

Let bi be the requirements of an ‘ideal food’, nutri-
ent i.

Given the cost cj per unit of Food j, j = 1, 2, · · · , n.
The problem of mixing nonnegative quantities of
available foods to synthesize the ideal food at mini-
mal cost is an LP problem.

Let xj, j = 1, 2, · · · , n, be the quantity of Food j
to synthesize the ideal food. The formulation of the
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LP is as follows:

Minimize c1x1 + c2x2 + · · · + cnxn

Subject to ai1x1 + ai2x2 + · · · + ainxn = bi,

i = 1, 2, · · · , m,

xj ≥ 0, j = 1, 2, · · · , n.

A variant of this problem: Suppose bi specify the
minimal requirements of an adequate diet. Then
ai1x1 + ai2x2 + · · · + ainxn = bi is replaced by

ai1x1 + ai2x2 + · · · + ainxn ≥ bi.
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Example 2.2* A production problem
A firm produces n different goods using m different
raw materials.
Let bi, i = 1, 2, · · · , m, be the available amount of
ith raw material.
The jth good, j = 1, 2, · · · , n, requires aij units of
the ith raw material and results in a revenue of cj
per unit produced. The firm faces the problem of
deciding how much of each good to produce in order
to maximize its total revenue.

Let xj, j = 1, 2, · · · , n, be the amount of the jth
good. The LP formulation becomes:

Maximize c1x1 + c2x2 + · · · + cnxn

Subject to ai1x1 + ai2x2 + · · · + ainxn ≤ bi,

i = 1, 2, · · · , m,

xj ≥ 0, j = 1, 2, · · · , n.
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Example 2.3 Bank Loan Policy (cf. Taha p.
39)
The ABC bank is in the process of formulating a
loan policy involving a total of $12 million. Being
a full-service facility, the bank is obliged to grant
loans to different clientele. The following table pro-
vides the types of loans, the interest rate charged by
the bank, and the probability of bad debt from past
experience:
Type of loan Interest rate Probability of Bad Debt
Personal 0.140 0.10
Car 0.130 0.07
Home 0.120 0.03
Farm 0.125 0.05
Commercial 0.100 0.02

Bad debts are assumed unrecoverable and hence no
interest revenue. Competition with other financial
institutions in the area requires that the bank al-
locate at least 40% of the total funds to farm and
commercial loans. To assist the housing industry in
the region, home loans must equal at least 50% of
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the personal, car and home loans. The bank also
has a stated policy specifying that the overall ratio
for bad debts on all loans may not exceed 0.04. How
should funds be allocated to these types of loans to
maximize the net rate of return?

Solution Let x1, x2, x3, x4, x5 (in million dollars) be
the amount of funds allocated to Personal loan, Car
loan, Home loan, Farm loan and Commercial loan
respectively.
Net return:
• Personal: (0.9x1)(0.14)− 0.1x1 = 0.026x1.
• Car: (0.93x2)(0.130)− 0.07x2 = 0.0509x2.
• Home: (0.97x3)(0.120)− 0.03x3 = 0.0864x3.
• Farm: (0.95x4)(0.125)− 0.05x4 = 0.06875x4.
• Commercial: (0.98x5)(0.100)− 0.02x5 = 0.078x5.

Total Fund:

x1 + x2 + x3 + x4 + x5 ≤ 12
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Competition:

x4 + x5

x1 + x2 + x3 + x4 + x5
≥ 0.4

⇐⇒ 0.4x1 + 0.4x2 + 0.4x3 − 0.6x4 + 0.6x5 ≤ 0

Housing industry:

x3 ≥ 0.5(x1+x2+x3)⇐⇒ 0.5x1+0.5x2−0.5x3 ≤ 0

Overall bad debt:

0.1x1 + 0.07x2 + 0.03x3 + 0.05x4 + 0.02x5

x1 + x2 + x3 + x4 + x5
≤ 0.04

⇐⇒ 0.06x1+0.03x2−0.01x3+0.01x4−0.02x5 ≤ 0

The LP forumulation:
maximize 0.026x1 + 0.0509x2 + 0.0864x3 + 0.06875x4 + 0.078x5

subject to x1 + x2 + x3 + x4 + x5 ≤ 12

0.4x1 + 0.4x2 + 0.4x3 − 0.6x4 + 0.6x5 ≤ 0

0.5x1 + 0.5x2 − 0.5x3 ≤ 0

0.06x1 + 0.03x2 − 0.01x3 + 0.01x4 − 0.02x5 ≤ 0

x1, x2, x3, x4, x5 ≥ 0
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Example 2.4 (Work Scheduling Problem)
A post office requires different numbers of full-time
employees on different days of the weeks. The num-
ber of full-time employees required on each day is
given below:

Number of Employees
Day 1 = Monday 17
Day 2 = Tuesday 13
Day 3 = Wednesday 15
Day 4 = Thursday 19
Day 5 = Friday 14
Day 6 = Saturday 16
Day 7 = Sunday 11

Union rules state that each full-time employee must
work five consecutive days and then receive two days
off. The post office wants to meet its daily require-
ments with only full-time employees. Formulate an
LP that the post office can use to minimize the num-
ber of full-time employees that must be hired.
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Let xj be the number of employees starting their
week on Day j. The formulation of the LP becomes:

Minimize x1 + x2 + x3 + x4 + x5 + x6 + x7

Subject to x1 + x4 + x5 + x6 + x7 ≥ 17

x1 + x2 + x5 + x6 + x7 ≥ 13

x1 + x2 + x3 + x6 + x7 ≥ 15

x1 + x2 + x3 + x4 + x7 ≥ 19

x1 + x2 + x3 + x4 + x5 ≥ 14

x2 + x3 + x4 + x5 + x6 ≥ 16

x3 + x4 + x5 + x6 + x7 ≥ 11

xj ≥ 0, xj integer.

Note The additional constraint that xj must be an
integer gives rise to a linear integer programming
problem. Finding optimal solutions to general inte-
ger programming problems is typically difficult.
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1.3 Compact form and Standard form of a general linear

programming problem.

Compact form of a general linear program-
ming problem

In a general linear programming problem, note
that each linear constraint, be it an equation or in-
equality, can be expressed in the form aT

i x ≥ bi.

1. aT
i x = bi ⇐⇒ aT

i x ≥ bi and aT
i x ≤ bi.

2. aT
i x ≥ bi⇐⇒ −aT

i x ≤ −bi.

3. Constraints xj ≥ 0 or xj ≤ 0 are special cases

of constraints of the form aT
i x ≥ bi, where ai is

a unit vector and bi = 0.

Thus, the feasible set in a general linear program-
ming problem can be expressed exclusively in terms
of inequality constraints of the form aT

i x ≥ bi.

Suppose all linear constraints are of the form aT
i x ≥ bi

and there are m of them in total. We may index
these constraints by i = 1, 2, · · · , m.
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Let b = (b1, b2, · · · , bm)T , and A be the m × n
matrix whose rows are aT

1 , aT
2 , · · · , aT

m, i.e.

A =



aT
1
·
·
·

aT
m



.

Then the constraints aT
i x ≥ bi, i = 1, 2, · · · , m,

can be expressed compactly in the form Ax ≥ b.
(Ax ≥ b denotes for each i, the i component of Ax
is greater than or equal to the ith component of b.)

The general linear programming problem can be
written compactly as:

minimize cTx
(or maximize)

subject to Ax ≥ b

A linear programming problem of this form is said
to be in compact form.
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Example 3.1 Express the following LP problem
in Example 1.3 in compact form.

Minimize 2x1 − x2 + 4x3
Subject to x1 + x2 + x4 ≥ 2

3x2 − x3 = 5
x3 + x4 ≤ 3

x1 ≥ 0
x3 ≤ 0

Rewrite the above LP as

Minimize 2x1 − x2 + 4x3
Subject to x1 + x2 + x4 ≥ 2

3x2 − x3 ≥ 5
− 3x2 + x3 ≥ −5

− x3 − x4 ≥ −3
x1 ≥ 0

− x3 ≥ 0
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which is in the compact form with

c =



2
−1

4
0


,x =



x1
x2
x3
x4


,

b =



2
5
−5
−3

0
0



and A =



1 1 0 1
0 3 −1 0
0 −3 1 0
0 0 −1 −1
1 0 0 0
0 0 −1 0



.
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Standard Form Linear Programming Prob-
lem
A linear programming problem of the form

minimize cTx
(or maximize)

subject to Ax = b
x ≥ 0

is said to be in standard form.

Note Two optimization problems are said to be
equivalent if an optimal solution to one problem
can be constructed from an optimal solution to an-
other.

A general linear programming problem can be trans-
formed into an equivalent problem in standard form
by performing the following steps when necessary:

1. Elimination of nonpositive variable and free
variables.

Replace nonpositive variable xj ≤ 0 by x̄j =
−xj, where x̄j ≥ 0.
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Replace unrestricted variable xj by x+
j −x−j , and

where new variables x+
j ≥ 0 and x−j ≥ 0.

2. Elimination of inequality constraints.

An inequality constraint
n∑

j=1
aijxj ≤ bi can be

converted to an equality constraint by introduc-
ing a slack variable si and the standard form
constraints

n∑
j=1

aijxj + si = bi, si ≥ 0.

For example, x1 + 2x2 ≤ 3 is converted to x1 +
2x2 + S1 = 3, S1 ≥ 0.

An inequality constraint
n∑

j=1
aijxj ≥ bi can be

converted to an equality constraint by introduc-
ing a surplus variable si and the standard
form constraints

n∑
j=1

aijxj − si = bi, si ≥ 0.
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For example, 3x1+4x2 ≥ 1 is converted to 3x1+
4x2 − S1 = 1, S1 ≥ 0.

Example 3.2 Express the following LP problem
in Example 1.3 in standard form.

Minimize 2x1 − x2 + 4x3
Subject to x1 + x2 + x4 ≥ 2

3x2 − x3 = 5
x3 + x4 ≤ 3

x1 ≥ 0
x3 ≤ 0

Replace x2 = x+
2 − x−2 , x3 = −x′3, and x4 =

x+
4 − x−4 .
Add a surplus variable S1 to the≥-constraint, and

add a slack variable S2 to the ≤-constraint.

Minimize 2x1 − x+
2 + x−2 − 4x′3

Subject to x1 + x+
2 − x−2 + x+

4 − x−4 − S1 = 2

3x+
2 − 3x−2 + x′3 = 5

− x′3 + x+
4 − x−4 + S2 = 3

x1, x
+
2 , x−2 , x′3, x

+
4 , x−4 , S1, S2 ≥ 0
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which is in the standard form with

c =



2
−1

1
−4

0
0
0
0



,x =



x1
x+

2
x−2
x′3
x+

4
x−4
S1
S2



,

b =



2
5
3


and A =



1 1 −1 0 1 −1 −1 0
0 3 −3 1 0 0 0 0
0 0 0 −1 1 −1 0 1


.

Remark (Why do we need different forms of LP
problems?)

1. The general (compact) form Ax ≥ b is often
used to develop the theory of linear programming.

2. The standard form Ax = b,x ≥ 0 is computa-
tionally convenient when it comes to algorithms
such as simplex methods.
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1.4 Piecewise linear convex objective functions.

Piecewise linear convex function
The notation maxi=1,···,m{ai} or max{a1, . . . , am}
denotes the maximum value among a1, a2, · · · , am.

A function of the form maxi=1,···,m(cT
i x + di) is

called a piecewise linear convex function.

Example 4.1
(a) Sketch the graph of y = max(2x, 1− x, 1 + x).

(b) Express the absolute value function f (x) = |x|
as a piecewise linear convex function.
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The following problem is not a formulation of an LP
problem.

Minimize max (x1, x2, x3)
Subject to 2x1 + 3x2 ≤ 5

x2 − 2x3 ≤ 6
x3 ≤ 7
x1, x2, x3 ≥ 0.

However, it can be converted to an equivalent LP
problem by the next proposition.

Proposition
The minimization problem

(I)
minimize maxi=1,···,m(cT

i x + di)
subject to Ax ≥ b.

is equivalent to the linear programming problem

(II)

minimize z

subject to z ≥ cT
i x + di, i = 1, · · · , m.

Ax ≥ b.

where the decision variables are z and x.
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Proof. Note:

maxi=1,···,m{ai} = min{u |u ≥ ai, i = 1, 2, · · · , m},
the smallest upper bound of the set
{ai | i = 1, 2, · · · , m}.
Thus

(I)
minimize maxi=1,···,m(cT

i x + di)
subject to Ax ≥ b.

is equivalent to

minimize min{z |z ≥ (cT
i x + di), i = 1, 2, · · · , m}

subject to Ax ≥ b.

which is in turn equivalent to

(II)

minimize z

subject to z ≥ cT
i x + di, i = 1, 2, · · · , m

Ax ≥ b.

Corollary
The following maximization problems are equiva-
lent:
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(I ′)
maximize mini=1,···,m(cT

i x + di)
subject to Ax ≥ b.

(II ′)
maximize z

subject to z ≤ cT
i x + di, i = 1, · · · , m.

Ax ≥ b.

Example 4.2 Express the following as an LP prob-
lem.

Minimize max (3x1 − x2, x2 + 2x3)
Subject to 2x1 + 3x2 ≤ 5

x2 − 2x3 ≤ 6
x3 ≤ 7
x1, x2, x3 ≥ 0
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Example 4.3
A machine shop has one drill press and 5 milling ma-
chines, which are to be used to produce an assembly
consisting of two parts, 1 and 2. The productivity
of each machine for the two parts is given below:

Production Time in Minutes per Piece
Part Drill Mill

1 3 20
2 5 15

It is desired to maintain a balanced loading on all
machines such that no machine runs more than 30
minutes per day longer than any other machine (as-
sume that the milling load is split evenly among all
five milling machines). Assuming an 8-hour working
day, formulate the problem as a linear programming
model so as to obtain the maximum number of com-
pleted assemblies.
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Solution

xi = Number of part i to be produced.

max min{x1, x2}
s.t. 3x1 + 5x2 ≤ 8× 60

20x1 + 15x2 ≤ 8× 60× 5∣∣∣∣∣∣∣∣∣(3x1 + 5x2)−
20x1 + 15x2

5

∣∣∣∣∣∣∣∣∣ ≤ 30

x1, x2 ≥ 0, integer.

max z

s.t. z ≤ x1

z ≤ x2

3x1 + 5x2 ≤ 480

4x1 + 3x2 ≤ 480

−x1 + 2x2 ≤ 30

−x1 + 2x2 ≥ −30

x1, x2 ≥ 0, integer.
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Chapter 2

Development of the Simplex Method.

The Simplex Method is a method for solving linear
programming problems. This chapter develops ba-
sic properties of the simplex method. We begin with
geometry of linear programming to show that an op-
timal solution of a linear program is a corner point
of the feasible set of the linear program. We charac-
terize corner points geometrically and algebraically.
Finally, we present conditions for optimal solutions
of a linear program, which are the foundation for
development of the simplex method.
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2.1 Geometry of Linear Programming.

In this section, we consider the compact form of a
general LP,

Minimize cTx
Subject to Ax ≥ b.

We characterize corner points of the feasible set
{x|Ax ≥ b} geometrically (via extreme points and
vertices) and algebraically (via basic feasible solu-
tion).

The main results state that a nonempty polyhe-
dron has at least one corner point if and only if it
does not contain a line, and if this is the case, the
search for optimal solutions to linear programming
problems can be restricted to corner points.

2.1.1 Extreme point, vertex and basic feasible solution.

A polyhedron or polyhedral set is a set that
can be described in the form {x ∈ Rn |Ax ≥ b},
where A is an m × n matrix and b is a vector in
Rm.
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Let

A =



aT
1

aT
2
...

aT
m


and b =



b1
b2
...

bm



where the i-th row of A is aT
i = (ai1, ai2, · · · , ain),

i = 1, 2, · · · , m. Then, the polyhedron

P = {x ∈ Rn |Ax ≥ b}
= ∩m

i=1{x ∈ Rn |aT
i x ≥ bi}.

Geometrically, a polyhedron is a finite intersection
of half spaces aT

i x ≥ bi.
The feasible set of a linear programming problem

is a polyhedron.

Three Definitions of corner point.

(a) A vector x∗ ∈ P is an extreme point of P if
we cannot find two vectors y, z ∈ P , and a scalar
λ ∈ (0, 1), such that x∗ = λy + (1− λ)z.
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(b) A vector x∗ ∈ P is a vertex of P if we can
find v ∈ Rn such that vTx∗ < vTy for all
y ∈ P − {x∗}.

(c) A vector x∗ ∈ P is a basic feasible solution
if we can find n linearly independent vectors in
the set {ai | aT

i x∗ = bi}.

47



Definitions

1. If a vector x∗ ∈ Rn satisfies aT
i x∗ = bi for

some i = 1, 2, · · · , m, the corresponding con-
straint aT

i x ≥ bi is said to be active (or bind-
ing) at x∗.

2. A vector x∗ ∈ Rn is said to be of rank k with
respect to P , if the set {ai |aT

i x∗ = bi} contains
k, but not more than k, linearly independent vec-
tors. In other words, the span of {ai |aT

i x∗ = bi}
has dimension k.
• Thus, a vector x∗ ∈ P is a basic feasible solu-
tion if and only if it has rank n.

3. A vector x∗ ∈ Rn (not necessary in P ) is a ba-
sic solution if there are n linearly independent
vectors in the set {ai | aT

i x∗ = bi}. Moreover,
every equality constraint (if any) must be satis-
fied at a basic solution.

4. Constraints aT
i x ≥ bi, i ∈ I are said to be lin-

early independent if the corresponding vec-
tors ai, i ∈ I, are linearly independent.
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Example 1.1 Consider the following LP problem:

minimize −x1 − x2
subject to x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3
x1, x2 ≥ 0.

(a) The vector


1
1

 is a basic feasible solution.

(b) The vector


0
1

 is a feasible solution with only

one active constraint x1 = 0. Thus, it has rank
1.

(c) The vector


1/2
1

 is a feasible solution with no

active constraint. Thus, it has rank 0.

(d) The vector


3
0

 is not a basic feasible solution. It

is not feasible. Note that there are two linearly
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independent active constraints. Thus, it has rank
2. It is a basic solution.

Note
Given a finite number of linear inequality constraints,
there can only be a finite number of basic solutions
and hence a finite number of basic feasible solutions.

Example 1.2 Consider the polyhedron P defined
by

x1 + x2 + x4 ≥ 2
3x2 − x3 ≥ 5

x3 + x4 ≥ 3
x2 ≥ 0

x3 ≥ 0

Determine whether each of the following is a basic
feasible solution.

(a) xa = (x1, x2, x3, x4)
T = (0, 2, 0, 3)T .

(b) xb = (x1, x2, x3, x4)
T = (0, 4, 7,−4)T .

(c) xc = (x1, x2, x3, x4)
T = (−8/3, 5/3, 0, 3)T .
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Solution Note x ∈ R4.

(a)
constraint satisfied? active?

1 Yes, > No
2 Yes, > No
3 Yes, = Yes
4 Yes, > No
5 Yes, = Yes

All constraints are satisfied at xa, it is feasible with
two active constraints. Rank cannot be 4. Therefore
xa is not a basic feasible solution.

(b) The first constraint is not satisfied at xb. Thus
it is not a basic feasible solution.

(c) Check that all constraints are satisfied and 4 con-
straints are active at xc (Excercise).

Rank at xc:
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1 0 0 0
1 3 0 0
0 −1 1 1
1 0 1 0


→



1 0 0 0
1 3 0 0
0 0 0 1
1 0 1 0


→



1 0 0 0
1 3 0 0
0 0 1 0
1 0 0 1



Thus rank at xc is 4.
The vector xc is a basic feasible solution.

Remarks
The two geometric definitions, extreme point and
vertex , are not easy to work with from the algo-
rithmic point of view. It is desirable to have an
algebraic definition, basic feasible solution, that re-
lies on a representation of a polyhedron in terms of
linear constraints and which reduces to an algebraic
test.

The three definitions namely extreme point, vertex
and basic feasible solution, are equivalent as proven
in the next theorem. Therefore the three terms can
be used interchangeably.
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Theorem 1
Let P be a nonempty polyhedron and let x∗ ∈ P .
Then the following are equivalent:

(a) x∗ is a vertex;

(b) x∗ is an extreme point;

(c) x∗ is a basic feasible solution.
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Appendix

*Proof of Theorem 1. (We shall prove (a) =⇒
(b) =⇒ (c) =⇒ (a).)

(a) =⇒ (b): Vertex =⇒ Extreme point. (We prove
this by contradiction.)

Suppose x∗ is a vertex.
Then there exists v ∈ Rn such that vTx∗ < vTy

for every y ∈ P − {x∗}.

Suppose on the contrary that x∗ is not an extreme
point. Then there exist two vectors y0, z0 ∈ P and
a scalar λ ∈ (0, 1), such that x∗ = λy0 + (1−λ)z0.

However, we have vTx∗ < vTy0 and vTx∗ <
vTz0. Thus,

vTx∗ = vT (λy0 + (1− λ)z0)

= λvTy0 + (1− λ)vTz0

> λvTx∗ + (1− λ)vTx∗ = vTx∗
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which gives rise to a contradiction. Thus, x∗ is an
extreme point.

(b) =⇒ (c): Extreme point =⇒ basic feasible solu-
tion.

(We shall prove the contrapositive statement:
not basic feasible solution =⇒ not extreme point.)

Suppose x∗ ∈ P is not a basic feasible solution.
Then the rank of x∗ is k, k < n.

(To show that x∗ is not an extreme point, we
shall construct two vectors y0, z0 ∈ P such that
x∗ = λy0 + (1− λ)z0 for some λ ∈ (0, 1). )

Let I = {i|aT
i x∗ = bi}. The set {ai|aT

i x∗ = bi}
has k linearly independent vectors (k < n). Hence
the linear system of equations aT

i x = 0, i ∈ I , has
infinitely many solutions. Choose a nonzero solution
d, i.e. aT

i d = 0, for i ∈ I .
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If aT
j d = 0 for every j 6∈ I , then aT

i d = 0, for
every i = 1, 2, · · · , m. Thus, we let y0 = x∗+d and
z0 = x∗ − d. Both y0 and z0 are in P . (Exercise.)

If aT
j d 6= 0 for some j 6∈ I , then, by Lemma A,

we can find λ0 > 0 such that x∗ + λ0d ∈ P and
x∗ − λ0d ∈ P . Thus, we let y0 = x∗ + λ0d and
z0 = x∗ − λ0d.

Note that x∗ = 1
2y0 + 1

2z0, i.e. x∗ is not an ex-
treme point.

(c) =⇒ (a): Basic feasible solution =⇒ vertex. (We
prove this directly.)

Suppose x∗ be a basic feasible solution. Let I =
{i|aT

i x∗ = bi}. The set {ai|aT
i x∗ = bi} has n lin-

early independent vectors. Hence the linear system
of equations aT

i x = bi, i ∈ I , has a unique solution
which is x∗.
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We form a vector v = ∑
i∈I ai, and shall prove

that vTx∗ < vTy for y ∈ P − {x∗}.

Let y ∈ P−{x∗}. Then aT
i y ≥ bi, i = 1, 2, · · · , m

and hence

vTy =
∑

i∈I
aT
i y ≥ ∑

i∈I
bi =

∑
i∈I

aT
i x∗ = vTx∗.

If vTy = vTx∗ = ∑
i∈I bi, then we must have

aT
i y = bi, i ∈ I because aT

i y ≥ bi,for each i. Thus
y is a solution to the linear system aT

i x = bi, i ∈ I .

From the uniqueness of the solution, we must have
y = x∗, contradicting y ∈ P − {x∗}.

Therefore, vTy > vTx∗ and this proves that x∗

is a vertex. QED
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Lemma A
Let P be a nonempty polyhedron defined by
{x | aT

i x ≥ bi, i = 1, 2, · · · , m}.
Let x∗ ∈ P be of rank k, k < n.
Denote I = {i |aT

i x∗ = bi}.
Suppose there exists a nonzero vector d such that
aT
i d = 0 for every i ∈ I , and aT

j d 6= 0 for some
j 6∈ I .
Then there exists λ0 > 0 such that x∗ + λd ∈ P
for every λ ∈ [−λ0, λ0].
Moreover, there exists λ∗ such that x∗ + λ∗d ∈ P
with rank at least k + 1.

Remark A non-zero vector d such that x∗+λd ∈
P for some λ > 0 is said to be a feasible direction.

*Proof.
How to find a suitable a suitable λ0 > 0 such that
the conclusion of the lemma holds?

58



Note that:

x∗ + λd ∈ P ⇐⇒ aT
j · (x∗ + λd) ≥ bj ∀ j

⇐⇒ aT
j x∗ + λaT

j d ≥ bj ∀ j.

Denote aT
j x∗ + λaT

j d ≥ bj by (*).

If aT
j d = 0, then (*) holds since

aT
j x∗ + λaT

j d = aT
j x∗ ≥ bj for λ ∈ R.

If aT
j d > 0, then (*) holds whenever

aT
j x∗ − bj
−aT

j d
≤ λ, i.e. λ ≥

aT
j x∗ − bj
−|aT

j d|
.

If aT
j d < 0, then (*) holds whenever

aT
j x∗ − bj
−aT

j d
≥ λ, i.e. λ ≤

aT
j x∗ − bj
|aT

j d|
.

Thus, for aT
j x∗ + λaT

j d ≥ bj ∀ j, we must have

aT
j x∗ − bj
−|aT

j d|
≤ λ ≤

aT
j x∗ − bj
|aT

j d|
whenever aT

j d 6= 0.
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Therefore we choose

λ0 = min{
aT
j x∗ − bj
|aT

j d|
| aT

j d 6= 0}.

For −λ0 ≤ λ ≤ λ0,

aT
i (x∗ + λd) ≥ bj, ∀j = 1, 2, · · · , m.

Hence, x∗ + λd ∈ P .

To prove the last part of the lemma.

The set {j|aT
j d 6= 0} is finite, thus, λ0 =

aT
j∗x
∗ − bj∗
|aT

j∗d|
,

for some j∗ 6∈ I . Let

λ∗ =


λ0 if aT

j∗d < 0

−λ0 if aT
j∗d > 0.

and x̂ = x∗ + λ∗d. Then aT
j∗x̂ = bj∗ and aT

i x̂ =

aT
i (x∗ + λ∗d) = bi, for every i ∈ I .

Since aT
i d = 0, for all i ∈ I , and aT

j∗d 6= 0, aj∗ is
not a linear combination of ai, i ∈ I .
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Therefore, the set {aj | aT
j x̂ = bj} contains at least

k + 1 linearly independent vectors.

Hence, x̂ has rank ≥ k + 1. QED.
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2.1.2 Existence of extreme points.

Geometrically, a polyhedron containing an infinite
line does not contain an extreme point. As an exam-

ple, the polyhedron P = {

x
0

 |x ∈ R} ⊂ R2 does

not have an extreme point. In R3, x∗ + λd, λ ∈ R
describes a line which is parallel to d and passes
through x∗.

A polyhedron P ⊂ Rn contains a line if there
exists a vector x∗ ∈ P and a nonzero vector d ∈ Rn

such that x∗ + λd ∈ P for all λ ∈ R.

Theorem 2
Suppose that the polyhedron P = {x ∈ Rn |Ax ≥
b} is nonempty.
Then P does not contain a line if and only if P has
a basic feasible solution.
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Appendix

*Proof of Theorem 2.
(=⇒) Suppose P does not contain a line.

(Our aim is to show there is a basic feasible so-
lution.)

Since P is nonempty, we may choose some x0 ∈ P .

Case rank of x0 = n.
Then x0 is a basic feasible solution.

Case rank of x0 = k < n.
Let I = {i|aT

i x0 = bi}. The set {ai |aT
i x0 = bi}

contains k, but not more than k, linearly indepen-
dent vectors, where k < n. The linear system of
equations aT

i x = 0, i ∈ I , has infinitely many solu-
tions. Choose a nonzero solution d, i.e. aT

i d = 0,
for i ∈ I .

Claim: aT
j d 6= 0 for some j 6∈ I .

Proof. Suppose aT
i d = 0 ∀j 6∈ I , Then aT

i d = 0
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for every i = 1, 2, · · · , m.
For λ ∈ R, note that aT

i (x0 + λd) = aT
i x0 ≥ bi.

Therefore, we have x0 + λd ∈ P , i.e. P contains
the line x0 + λd, a contradiction.
Thus, aT

j d 6= 0 for some j 6∈ I .

By Lemma A, we can find x1 = x0 + λ∗d ∈ P
and the rank of x1 is at least k + 1.

By repeating the same argument to x1 and so on,
as many times as needed, we will obtain a point x∗

with rank n, i.e. {ai | aT
i x∗ = bi} contains n lin-

early independent vectors. Thus, there is at least
one basic feasible solution.
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(⇐=) Suppose P has a basic feasible solution x∗.
Then there exist n linearly independent row vectors,
say aT

1 , aT
2 , · · · , aT

n of A such that aT
i x∗ = bi, i =

1, 2, · · · , n.

Suppose, on the contrary, that P contains a line,
say x̂ + λd, where d 6= 0.

Then, aT
i d 6= 0 for some i = 1, 2, · · · , n. ( If not,

aT
i d = 0 for all i = 1, 2, · · · , n and hence d = 0,

since aT
i , i = 1, 2, · · · , n, are linearly independent.)

Without loss of generality, we may assume aT
1 d 6=

0.
Replacing d by −d if necessary, we may further

assume aT
1 d > 0.

However, x̂ + λd 6∈ P for λ <
b1 − aT

1 x̂

aT
1 d

, since

aT
1 (x̂ + λd) < b1.
This contradicts the assumption that P contains

the line x̂ + λd. (QED)
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Example 1.3 The polyhedron P defined by

x1 + x2 + x4 ≥ 2
3x2 − x3 ≥ 5

x3 + x4 ≥ 3
x2 ≥ 0

x3 ≥ 0

contains a basic feasible solution, namely, x∗ =



−8
3
5
3
0
3


(see Example 1.2). Thus, by Theorem 2, P does not
contain a line.

A polyhedron P = {x ∈ Rn |Ax ≥ b} is said
to be bounded if there exists a positive number K
such that |xi| ≤ K for all x = (x1, x2, · · · , xn)T ∈
P .

A nonempty bounded polyhedron cannot contain a
line, thus it must have a basic feasible solution.
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2.1.3 Optimality at some extreme point.

Geometrically, if an LP problem has a corner point
and an optimal solution, then an optimal solution
occurs at some corner point. The next theorem jus-
tifies this geometrical insight. So, in searching for
optimal solutions, it suffices to check on all corner
points.

Theorem 3 Consider the linear programming prob-
lem of minimizing cTx over a polyhedron P . Sup-
pose that P has at least one extreme point and that
there exists an optimal solution. Then there exists
an optimal solution which is an extreme point of P .

Proof. We denote the optimal cost by v.
Let Q = {x ∈ P |cTx = v} be the set of optimal

solutions. Then Q is a nonempty polyhedron.

Step 1 Q has an extreme point x∗.

Since P has at least one extreme point, P does
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not contain a line, by Theorem 2. Hence Q, being
a subset of P , does not contain a line. By Theorem
2, Q has an extreme point, say x∗.

Step 2 x∗ is also an extreme point of P .

Suppose x∗ is not an extreme point of P .
Then there exists λ ∈ (0, 1) and y, z ∈ P such

that x∗ = λy + (1− λ)z.

Suppose either cTy > v or cTz > v.
Then, we have cTx∗ = cT (λy + (1 − λ)z) > v,

contradicting cTx∗ = v.

Therefore, both cTy = v and cTz = v; thus,
y, z ∈ Q and x∗ = λy + (1−λ)z. This contradicts
x∗ being an extreme point of Q.

Thus, x∗ is an extreme point of P and it is optimal
(since cTx∗ = v ). QED.
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The simplex method is based fundamentally on
the fact that the optimum solution occurs at a cor-
ner point of the solution space. It employs an iter-
ative process that starts at a basic feasible solution,
and then attempts to find an adjacent basic feasible
solution that will improve the objective value.

Three tasks:

1. How to construct a basic feasible solution?

2. In which direction can we move to an adjacent
basic feasible solution?

3. In which direction can we improve the objective
value?
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2.2 Constructing Basic Feasible Solutions.

In the rest of this chapter, we consider the standard
form of a LP,

Minimize cTx
Subject to Ax = b

x ≥ 0.
or

Maximize cTx
Subject to Ax = b

x ≥ 0.

Assume A is an m× n matrix and rank (A) = m.
Thus, row vectors aT

i , i = 1, 2, · · · , m, of A are lin-
early independent and m ≤ n. The ith column of
A is denoted by Ai.

Let P = {x ∈ Rn | Ax = b,x ≥ 0}. Note
that if P 6= φ, then P has an extreme point since
it does not contain a line. Therefore, either the op-
timal value is unbounded or there exists an optimal
solution which can be found among the finite set of
extreme points.

Recall from the previous section, the following def-
inition of a basic solution.
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A vector x∗ ∈ Rn (not necessary in P ) is a basic
solution if there are n linearly independent vectors
in the set {ai | aT

i x∗ = bi}. Moreover, every equal-
ity constraint (if any) must be satisfied at a basic
solution.

Suppose x∗ is a basic solution of the standard form
LP. Then Ax∗ = b, which consists m linearly inde-
pendent equality (thus, active) constraints. Since a
basic solution has n linearly independent active con-
straints, there are n−m linearly independent active
constraints from x ≥ 0. Therefore we have n −m
zero variables x∗i = 0, where x∗i is the i-component
of x∗. So, there are indices B(1), B(2), · · · , B(m)
such that

x∗i = 0 for i 6= B(1), B(2), · · · , B(m).

and
m∑
i=1

AB(i)x
∗
B(i) = b.
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A basic solution must have n linearly independent
active constraints. The following lemma summarizes
several conditions for checking linear independence
of n vectors in Rn.

Lemma. Let a1, a2, . . . , an be column vectors in
Rn. Then the following statements are equivalent.

1. The vectors a1, a2, . . . , an ∈ Rn are linearly
independent.

2. det(a1, a2, . . . , an) 6= 0.

3. The matrix [a1, a2, . . . , an] and its transpose are
nonsingular.

4. The equation system ∑n
i=1 yiai = 0 has the

unique solution y = 0.

5. The equation system aT
i x = 0, i = 1, . . . , n, has

the unique solution x = 0.

If there are m(> n) n-dimensional vectors, then
we should check linear independence of any subset
of n vectors.
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Throughout this course, we use the following no-
tations: We denote

B = {B(1), B(2), . . . , B(m)},
which is a subset of {1, 2, . . . , n}. We denote by AB
an m ×m sub-matrix of A obtained by arranging
the m columns with indices in B next to each other.
A sub-vector xB of X can be defined in the same
way. Thus,

AB =
[
AB(1) AB(2) · · · AB(m)

]
,

xB =



xB(1)

·
·
·

xB(m)



.

The following theorem is a useful characterization
of a basic solution. It allows us to construct a basic
solution in a systematic way.
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Theorem
Consider the constraints Ax = b and x ≥ 0 and
assume that the m× n matrix A has linearly inde-
pendent rows. A vector x∗ ∈ Rn is a basic solution
if and only if Ax∗ = b and there exist a set of in-
dices B = {B(1), B(2), · · · , B(m)} such that

(a) The columns AB(1),AB(2), · · · ,AB(m) are lin-
early independent; and

(b) x∗i = 0 for i 6= B(1), B(2), · · · , B(m).

Proof.
(⇐=) Suppose x∗ ∈ Rn satisfies Ax∗ = b and
there exist indices B(1), B(2), · · · , B(m) such that
(a) and (b) are satisfied.

Aim: To show that there are n linearly independent
active constraints from:


Ax = b (1)
xi = 0 for i 6= B(1), B(2), · · · , B(m), (2)
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Denote

B = {B(1), B(2), . . . , B(m)}
N = {1, 2, . . . , n} \B.

and denote by |B| the number of elements in B.
Then |B| = m and |N| = n−m.

Now, (1) and (2) can be equivalently written as

 AB AN
0 IN


 xB
xN

 =

 b
0

 , (3)

where IN denotes the (n −m) × (n −m) identity
matrix.

By (a), AB is nonsingular, thus the coefficient ma-
trix of equation (3) is nonsingular. Hence there are n
linearly independent active constraints from (1) and
(2). We thus conclude that x∗ is a basic solution.

(=⇒) Suppose x∗ is a basic solution. By the defini-
tion of a basic solution, all equality constraints must
be satisfied, thus, we have Ax∗ = b.

There are n linearly independent active constraints
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at x∗ from constraints

Ax = b and x ≥ 0,

m active constraints from Ax = b and n−m active
constraints from x∗j = 0, (there may be more than
n −m “x∗j = 0”). Therefore, there exists an index
set

N = {N(1), . . . , N(n−m)} ⊆ {1, . . . , n}

such that x∗j = 0 ∀ j ∈ N and the matrix



A
eT
N(1)
...

eT
N(n−m)


is nonsingular.

Denote B = {1, . . . , n} \ N. Then, x∗j = 0 for
i 6∈ B, ((b) is satisfied).

We can write

A = (AB AN ) ,



eT
N(1)
...

eT
N(n−m)

 = (0 IN ) .

Then

 AB AN
0 IN

 is nonsingular. This implies that
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AB is nonsingular. Hence, columns vectors

{AB(1),AB(2), · · · ,AB(m)}
are linearly independent, ((a) is satisfied). QED.

Terminology
Suppose x is a basic solution with the basis

B = {B(1), B(2), · · · , B(m)}
as given in the above theorem.

1. Variables xB(1), xB(2), · · · , xB(m) are called ba-
sic variables.

2. Variables xi = 0 for i 6∈ B, are called nonbasic
variables.

3. The m×m matrix

AB = (AB(1) AB(2) · · · AB(m) )

is called a basis matrix. A vector xB can also
be defined with the values of the basic variables.

Note that AB is invertible and ABxB = b so
that xB is the unique solution given by

xB = A−1
B b.
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From the last theorem, all basic solutions to a stan-
dard form polyhedron can be constructed according
to the following procedure.

Procedure for constructing basic solution.

1. Choose m linearly independent columns

AB(1),AB(2), · · · ,AB(m).

2. Let xi = 0 for i 6= B(1), B(2), · · · , B(m).

3. Solve the system of m linear equations

ABxB = b

for the unknowns xB(1), · · · , xB(m).

Remark A basic solution x constructed according
to the above procedure is a basic feasible solution if
and only if x ≥ 0, i.e. xB = A−1

B b ≥ 0.
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Example 2.1 For the following constraints

1 1 2 1 0 0 0
0 1 6 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1


x =



8
12
4
6


.

x ≥ 0.

(a) Find the basic solution associated with linearly
independent columns A4,A5,A6,A7. Is it a ba-
sic feasible solution?

(b) Show that columns A1,A2,A3,A4 are linearly
independent. Find the basis matrix AB and the
associated basic solution. Is it feasible?

(c) Do columns A2,A3,A4,A5 form a basis matrix?
If so, what is the associated basic solution?

Solution
(a) Note that A4,A5,A6,A7 are linearly indepen-
dent. Thus, we may proceed to find the associated
basic solution.

We have AB = [A4,A5,A6,A7] = I4 which is
called a basis matrix.
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Non-basic variables: x1 = 0, x2 = 0, x3 = 0.
Solve for basic variables x4, x5, x6, x7:



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


xB =



8
12
4
6


where xB =



x4
x5
x6
x7


.

We have

xB =



x4
x5
x6
x7


=



8
12
4
6


≥ 0. (Feasible)

Thus we obtain a basic feasible solution, namely,

x =



x1
x2
x3
x4
x5
x6
x7



=



0
0
0
8

12
4
6



≥ 0.
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(b) Check A1,A2,A3,A4 are linearly indepen-
dent:

[A1,A2,A3,A4] =



1 1 2 1
0 1 6 0
1 0 0 0
0 1 0 0


→



1 2 1 1
0 6 0 1
0 0 1 0
0 0 0 1


.

Thus, A1,A2,A3,A4 are linearly independent and
AB = [A1,A2,A3,A4] is a basis matrix.
Nonbasic variables: x5 = 0, x6 = 0, x7 = 0.
To find values of basic variables x1, x2, x3, x4:

1 1 2 1
0 1 6 0
1 0 0 0
0 1 0 0


xB =



8
12
4
6


where xB =



x1
x2
x3
x4


.

Solving yields: xB =



x1
x2
x3
x4


=



4
6
2
−6


.
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Thus, the associated basic solution is

x =



x1
x2
x3
x4
x5
x6
x7



=



4
6
2
−6

0
0
0



.

Since x4 < 0, the basic solution is not feasible.

(c) Check for linear independence of A2,A3,A4,A5:

[A2,A3,A4,A5] =



1 2 1 0
1 6 0 1
0 0 0 0
1 0 0 0


Columns A2,A3,A4,A5 are not linearly indepen-

dent (WHY?). Thus, they do not form a basis ma-
trix. (No need to proceed to find solution.)

Exercise Show AB = [A3,A5,A6,A7] is a basis
matrix, and xB = (4,−12, 4, 6)T .
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2.3 Moving to an adjacent basic feasible solution

Adjacency and degeneracy.
Geometrically, adjacent basic feasible solutions are

extreme points which are adjacent. The simplex
method attempts to find an adjacent basic feasible
solution that will improve the objective value.

Definition
Two distinct basic solutions to a set of linear con-
straints in Rn are said to be adjacent if and only
if the corresponding bases share all but one basic
column, i.e. there are n − 1 linearly independent
constraints that are active at both of them.
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In the standard form (Ax = b, x ≥ 0), two basic
solutions are adjacent if they have n−m−1 common
xj = 0, equivalently, if their basic variables differ by
one component.

Example 3.1 Refer to the constraints in Example
2.1.

Basic solution Basic columns Basic variables

(0, 0, 0, 8, 12, 4, 6)T A4,A5,A6,A7 x4, x5, x6, x7

(0, 0, 4, 0,−12, 4, 6)T A3,A5,A6,A7 x3, x5, x6, x7

The above basic solutions are adjacent.

Definition
A basic solution x ∈ Rn is said to be degener-
ate if it has more than n active constraints, i.e. the
number of active constraints at x is greater than the
dimension of x.

Geometrically, a degenerate basic solution is deter-
mined by more than n active constraints (overdeter-
mined).
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In standard form, a basic solution x is degener-
ate if some basic variable xB(i) = 0, i.e. more than
n−m components of x are zero.

Example 3.2 For the following constraints

1 1 2 1 0 0 0
0 1 3 0 1 0 0
1 0 1 0 0 1 0
0 1 0 0 0 0 1


x =



8
12
4
6


.

x ≥ 0.

The basic feasible solution x = (0, 0, 4, 0, 0, 0, 6)T ,
associated with basis AB = [ A3 A4 A5 A7 ] is
degenerate because there are 9 active constraints at
x which the dimension of x is 7.
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Let x∗ be a basic feasible solution with the set
{B(1), · · · , B(m)} of basic indices, so that

AB =
[
AB(1) AB(2) · · · AB(m)

]

x∗B =



x∗B(1)

·
·
·

x∗B(m)



= A−1
B b ≥ 0.

When we move from x∗ to an adjacent basic so-
lution (may or may not be feasible) x′, a nonbasic
variable xj of x∗ becomes a basic variable of x′.
There is an exchange of a basic variable and nonba-
sic variable. In the next lemma, we shall determine
the feasible direction moving away from x∗ so that
the variable xj becomes a basic variable.

Lemma A
Fix an index j 6∈ B = {B(1), · · · , B(m)}. Let
d = (d1, d2, · · · , dn)T with dj = 1 and di = 0, for
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every index i 6∈ B and i 6= j. Then x′ = x∗ + θd
with θ > 0 is a feasible solution if and only if

dB = −A−1
B Aj

and
A−1

B b− θA−1
B Aj ≥ 0.

Proof In order to maintain feasibility of solution, we
must have

A(x′) = b and x′ ≥ 0.

i.e. A(x∗ + θd) = b and x∗ + θd ≥ 0.
However, Ax∗ = b and θ > 0 so that A(x∗+θd) =
b implies Ad = 0. Thus,

0 =
n∑

i=1
Aidi =

m∑
i=1

AB(i)dB(i)+Aj = ABdB+Aj.

Therefore, ABdB = −Aj and hence dB = −A−1
B Aj.

Note that for i 6∈ B, x∗i + θdi = 0 (i 6= j) or = θ
(i = j).
Thus, x∗+ θd ≥ 0 is equivalent to x∗B + θdB ≥ 0,

i.e. A−1
B b− θA−1

B Aj ≥ 0. [QED.]
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In summary, we have obtained the vector
d = (d1, d2, · · · , dn)T where



dj = 1,
di = 0 for every non basic index i 6= j, and

dB = −A−1
B Aj.

Notes
1. If i 6∈ {B(1), B(2), · · · , B(m)} and i 6= j, then
the i-component of x′ is x′i = 0 since x∗i = 0, and
di = 0. The j-component of x′ is x′j = θ since
dj = 1.

2. The point x′ is obtained from x∗ by moving in
the direction d. It is obtained from x∗ by selecting
a nonbasic variable xj (i.e. j 6∈ {B(1), · · · , B(m)})
and increasing it to a positive value θ, while keep-
ing the remaining nonbasic variables xi at zero, i.e.
x′ = x∗ + θd, where d = (d1, d2, · · · , dn)T with
dj = 1 and di = 0, for every nonbasic index i, i 6= j.
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Lemma B
(a) If A−1

B Aj ≤ 0, then the polyhedron is un-
bounded in the xj-direction.

(b) If
A−1

B Aj


k

> 0 for some k, then θ ≤

A−1
B b


kA−1

B Aj


k

.

Proof.
(a) Since x∗B ≥ 0 and A−1

B Aj ≤ 0, we have from

Lemma A, x′B = x∗B − θA−1
B Aj ≥ 0 whenever

θ > 0. Thus x′j = θ is unbounded.

(b) If
A−1

B Aj


k

> 0 for some component k, thenA−1
B b


k
− θ

A−1
B Aj


k
≥ 0 yields

θ ≤

A−1
B b


kA−1

B Aj


k

.

[QED.]
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Remark
Suppose

A−1
B Aj


k

> 0 for some k-th component.
Let

θ∗ = min{

A−1
B b


kA−1

B Aj


k

|
A−1

B Aj


k

> 0}.

Then for some l ,

θ∗ =

A−1
B b


lA−1

B Aj


l

.

The feasible solution x′ = x∗+θ∗d is a basic feasi-
ble solution which is adjacent to x∗, with associated
basic variables

{xB(1), · · · , xB(l−1), xB(l+1), · · · , xB(m), xj}.

Remark
If x∗ is nondegenerate, then we always have θ∗ > 0.
If x∗ is degenerate, then θ∗ may be zero.
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Example 3.3 Consider the LP problem

minimize c1x1 + c2x2 + c3x3 + c4x4
subject to x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2
x1, x2, x3, x4 ≥ 0

Since columns A1 and A2 of A are linearly in-
dependent, we choose x1 and x2 as basic variables.
Then

AB =
[
A1 A2

]
=


1 1
2 0

 .

Set x3 = x4 = 0, we obtain x1 = 1 and x2 = 1.

The basic feasible solution x∗ =



1
1
0
0


is nondegener-

ate. (Thus d is a feasible direction.)
We construct a feasible direction corresponding to

an increase in the nonbasic variable x3 by setting
d3 = 1 and d4 = 0. It remains to find d1 and d2,
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i.e. dB =


d1
d2

. Now,

dB =


d1
d2

 = −A−1
B A3

= −

0 1/2
1 −1/2



1
3

 =


−3/2

1/2

 .

Thus, d =



−3/2
1/2

1
0


.

From A−1
B A3 =


3/2
−1/2

, only
A−1

B Aj


1

> 0.

Thus we have

θ∗ = min{

A−1
B b


kA−1

B Aj


k

|
A−1

B Aj


k

> 0}

= min{ 1

3/2
} =

2

3
.

At the adjacent basic feasible solution x′ where x3
enters as a basic variable, we will have x3 = 2/3 and
x1 = 0, i.e. x1 becomes a non basic variable. This
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adjacent basic feasible solution is

x′ =



1
1
0
0


+ 2/3



−3/2
1/2

1
0


=



0
4/3
2/3

0


.
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2.4 Optimality Conditions.

In this section, we obtain optimality conditions to
check whether a basic feasible solution is optimal.
This is useful in the development of Simplex Method.
The optimality conditions also provide a clue for
searching a direction to improve the objective value
in a neighbourhood of a basic feasible solution.

For the objective function cTx, moving from x∗ to
x′ = x∗ + θd, the change on the objective function
is

cTx′ − cTx∗ = θcTd.

With dB = −A−1
B Aj, we obtain the rate of change

in the objective value with respect to xj is cTd,
since dj = 1.

Lemma C
Suppose d, with dB = −A−1

B Aj, is the feasible
direction obtained as above. Then

cTd = cj − cT
BA−1

B Aj,
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where cB = (cB(1), cB(2), · · · , cB(m))
T .

Proof. Since dj = 1, we have

cTd =
n∑

i=1
cidi =

m∑
i=1

cB(i)dB(i) + cj

= cT
BdB + cj = cj − cT

BA−1
B Aj.

[QED.]

Definition (reduced cost)
Let x∗ be a basic solution, with associated basis ma-
trix AB. Let cB be vector of the costs of the basic
variables. For each j, j = 1, 2, · · · , n, the reduced
cost c̄j of the variable xj is defined according to the
formula:

c̄j = cj − cT
BA−1

B Aj.

Remark
Using the reduced costs, we can determine whether
moving to an adjacent basic feasible solution im-
proves the objective values. If the c̄j < 0 (respec-
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tively c̄j > 0), then moving from x∗ to x′ = x∗ −
θA−1

B Aj would decrease (respectively increases) the
objective value by θc̄j.

Lemma D
For each basic variable xB(i), i = 1, 2, · · · , m, the
reduced cost c̄B(i) = 0.

Proof Note that A−1
B

[
AB(1) AB(2) · · · AB(m)

]
=

Im.

Thus A−1
B AB(i) = ei, the ith column of Im.

Hence, cT
BA−1

B AB(i) = cB(i), the ith component
of cB. Thus,

c̄B(i) = cB(i) − cT
BA−1

B AB(i) = 0.

[QED.]
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Example 4.1 Consider the LP problem (refer to
Example 3.3),

minimize x1 − x2 + 3x3 − 4x4
subject to x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2
x1, x2, x3, x4 ≥ 0

(a) For the basic feasible solution x∗ = (1, 1, 0, 0)T ,
the rate of cost change along the feasible direction

(with x3 enters as a basic variable) d =



−3/2
1/2

1
0


is

c̄3 = 1(−3/2) + (−1)(1/2) + 3(1) + (−4)(0) = 1.

Note that cTd = c̄3. The rate of change along this
direction is 1.

(b) For each variable xj, the reduced cost c̄j =

cj − cT
BA−1

B Aj are computed as follows:

For x1: c̄1 = c1 − cT
BA−1

B A1 = 0.
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For x2: c̄2 = c2 − cT
BA−1

B A2 = 0.

For x3: c̄3 = c3 − cT
BA−1

B A3 = 1.

For x4: c̄4 = c4 − cT
BA−1

B A4 = −7.
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Theorem (Sufficient conditions for Optimality.)
Consider a basic feasible solution x associated with
a basis matrix AB, let c̄ be the corresponding vec-
tor of reduced costs.

(a) For a minimization problem, if c̄ ≥ 0, then x
is optimal.

(b) For a maximization problem, if c̄ ≤ 0, then x
is optimal.

Proof. (a) Assume c̄ ≥ 0. Let y be an arbitrary
feasible solution.

(Aim: Show cTy ≥ cTx.)
Let w = y− x and note that Aw = 0. Thus, we

have
ABwB +

∑
i∈N

Aiwi = 0,

where N is the set of indices corresponding to the
nonbasic variables.
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Since AB is invertible, we obtain

wB = − ∑
i∈N

A−1
B Aiwi,

and

cTw = cT
BwB +

∑
i∈N

ciwi

=
∑

i∈N
(ci − cT

BA−1
B Ai)wi

=
∑

i∈N
c̄iwi.

For each nonbasic index, i ∈ N , we must have xi =
0 and yi ≥ 0 so that wi ≥ 0 and hence c̄iwi ≥ 0.

Therefore,

cTy − cTx = cT (y − x)

= cTw

=
∑

i∈N
c̄iwi

≥ 0.

Thus, x is optimal. [QED.]
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Proposition
Consider a nondegenerate basic feasible solution x
associated with a basis matrix AB, let c̄ be the cor-
responding vector of reduced costs.
For a minimization (respectively maximization) prob-
lem, x is optimal if and only if c̄ ≥ 0 (respectively
c̄ ≤ 0).

Proof. (We prove the proposition for a minimization
problem.)

Suppose x is nondegenerate feasible solution which
is optimal.
(We prove by contradiction that c̄ ≥ 0.)

Suppose c̄j < 0 for some j. Then xj must be
nonbasic, by Lemma D.

Since x is nondegenerate, the direction d (obtained
in Lemma A, where dB = −A−1

B Aj) is a feasible
direction, i.e. there is a positive scalar θ such that
x + θd is a feasible solution.

Since cTd = c̄j < 0 and cT (x + θd) = cTx +

θcTd < cTx, we have a decrease in the cost at
x + θd, contradicting x being optimal. QED.
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We summarize the above optimality results in the
following theorem.

Theorem
Let c̄ be the reduced cost at a basic feasible solution
x with the basis B.

(i) If c̄ ≥ 0 (≤ 0), then x is an optimal solution
for the minimization (maximization) problem.

(ii) If some c̄j < 0 (> 0), then there is a direction
d (where dj = 1, di = 0 ∀j 6= i 6∈ B and

dB = −A−1
B Aj) corresponding to the nonbasic

variable xj, and moving along d will result in two
cases:

(a) if dB ≥ 0, then the objective value cT (x +
θd) → −∞ for min (→ +∞ for max), as
θ → +∞;

(b) if some dB(k) < 0, then we will obtain an

adjacent basic feasible solution x′ = x + θ∗d
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where

θ∗ = min {
xB(k)

−dB(k)
| dB(k) < 0} ≥ 0

which satisfies cTx′ ≤ (≥)cTx, in particular,
cTx′ < (>)cTx holds iff θ∗ > 0).

To determine whether a basic solution is optimal,
we need to check for feasibility and nonnegativity (or
nonpositivity) of the reduced costs. Thus we have
the following definition.

Definition For a minimization (respectively max-
imization) problem, a basic solution x with basis B
is said to be optimal if:

(a) xB = A−1
B b ≥ 0, and

(b) c̄T = cT −cT
BA−1

B A ≥ 0 (respectively c̄ ≤ 0).
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Example 4.2 Consider the LP problem

minimize c1x1 + c2x2 + c3x3 + c4x4
subject to x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2
x1, x2, x3, x4 ≥ 0

(a) For the objective

minimize x1 − x2 + 3x3 − 4x4,

the basic feasible solution x = (1, 1, 0, 0)T , with

AB =
[
A1 A2

]
=


1 1
2 0

 .

The vector of reduced costs is c̄ = (0, 0, 1,−7)T

(computed in Example 2.2).

Since c̄4 < 0 and x is nondegenerate, x is not
optimal.

(b) For the objective

minimize x1 − x2 + 3x3 + 4x4
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subject to the same constraints.

The basic feasible solution x = (1, 1, 0, 0)T , with

the same AB =


1 1
2 0

 is an optimal solution

since c̄ = (0, 0, 1, 1)T ≥ 0.

By the definition, the basis matrix AB =


1 1
2 0


is optimal.
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Chapter 3

Implementing the Simplex Method.

Based on the theory developed in the previous chap-
ter, the following method is proposed for solving lin-
ear programming problems.

3.1 The Simplex Method.

The simplex method is initiated with a starting ba-
sic feasible solution (guaranteed for feasible standard
form problem), and continues with the following typ-
ical iteration.

1. In a typical iteration, we start with a basis con-
sisting of the basic columns AB(1),AB(2), · · ·,
AB(m), and an associated basic feasible solution
x.
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2. Compute the reduced costs c̄j = cj−cT
BA−1

B Aj
for all nonbasic variables xj.

For a minimization (respectively maximization)
problem, if they are all nonnegative (respectively
nonpositivity) , the current basic feasible solution
is optimal, and the algorithm terminates; else,
choose some j∗ for which c̄j∗ < 0 (respectively
c̄j∗ > 0).

The corresponding xj∗ is called the entering
variable.

3. Compute u = A−1
B Aj∗.

4. If no component of u is positive, we conclude that
the problem is unbounded, and the algorithm ter-
minates.

If some component of u is positive, let

θ∗ = min {
xB(i)

ui
| ui > 0}.
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5. Let l be such that θ∗ =
xB(l)

ul
.

The corresponding xB(l) is called the leaving
variable.

Form a new basis by replacing AB(l) with Aj∗.

The entering variable xj∗ assumes value θ∗ =
xB(l)

ul
whereas the other basic variables assume

values xB(i) − θ∗ui for i 6= l .

108



Example 1.1 We shall demonstrate the simplex
iteration for the following LP problem.

minimize x1 − x2 + 3x3 − 4x4
subject to x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2
x1, x2, x3, x4 ≥ 0

.

1. Start with the basis {A1,A2} associated with
basic feasible solution x = (1, 1, 0, 0)T .

2. Compute reduced costs for nonbasic variables,
check for optimality and select entering variable
if nonoptimal.

For nonbasic variables x3 and x4, the respective
reduced costs are c̄3 = 1 and c̄4 = −7.

Since c̄4 < 0, choose x4 to be the entering vari-
able.
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3. Compute the basic direction correspond to the
entering variable.

The x4-basic direction

u = A−1
B A4 =


0 1/2
1 −1/2



1
4

 =


2
−1

 .

4. Check for positive components of u to select the
leaving variable.

The first component of u = u1 = 2 > 0, and
xB(1) = x1 = 1. Thus

θ∗ = min {
xB(i)

ui
| ui > 0} = 1/2 =

xB(1)

u1
.

Therefore, x1 is the leaving variable.
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5. Determine the new basic feasible solution and ba-
sis.

The new basis is A4 and A2.

The entering variable x4 assume value θ∗ = 1/2,
the other basic variable x2 assumes value

1− (1/2)(−1) = 3/2

(from xB(i) − θ∗ui, i.e. x2 − (1/2)u2 ) .

New BFS:

x = (0,
3

2
, 0,

1

2
)T .
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3.2 Simplex Tableau Implementation.

Tableau is a convenient form for implementing the
simplex method. Thus, from now on, computation
and analysis will be carried out on tableaus. A
generic simplex tableau looks as follows:

Basic x Solution

c̄ c̄T −z

xB A−1
B A A−1

B b

where z is the objective value. In detail,

Basic x Solution

c̄ cT − cT
BA−1

B A −cT
BA−1

B b

xB A−1
B A A−1

B b

This tableau is obtained through following row op-
erations:

Start with original problem
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Basic x Solution

c̄ cT 0
xB A b

Multiply xB-row with A−1
B ,

Basic x Solution

c̄ cT 0

xB A−1
B A A−1

B b

Then, the c̄-row is obtained row operations

(c̄-row)− cT
B · (xB-row)

= (cT | 0)− cT
B(A−1

B A | A−1
B b)

= (cT − cT
BA−1

B A | −cT
BA−1

B b)
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We first consider the minimization (or maximiza-
tion) problem where all functional constraints are of
≤ type, with nonnegative right-hand side (b ≥ 0).

Minimize cTx
Subject to Ax ≤ b

x ≥ 0

where A is m× n.
The corresponding standard form LP is:

Minimize cTx + 0S

Subject to Ax + S = b, i.e. [A, I] (
x
S

) = b,

x,S ≥ 0.

For such model, each constraint is associated with a
slack variable. Thus, the number of slack variables
equals the number of functional constraints. The
matrix [A, I] is m × (n + m) and there are n + m
decision variables. Thus, a basic feasible solution

(
x
S

) must satisfy [A, I] (
x
S

) = b and there are n

(nonbasic) variables from

 x
S

 equal to zero.
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Choosing x to be nonbasic variables, and S = b to
be basic variables provides a starting basic feasible
solution to carry out the simplex iteration.

The starting simplex tableau associated with this
basis is:

Basic x1 · · · xn s1 · · · sm Solution
c̄ = c c1 · · · cn 0 · · · 0 0

s1 | | |
·
si A1 · · · An I b
·

sm | | |
Once we obtain a basic feasible solution to a given

linear programming problem, we may apply the sim-
plex algorithm to solve the problem.
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Example 2.1 The standard LP form of the follow-
ing:

Minimize −3x1 − 2x2
Subject to x1 + 2x2 ≤ 6

2x1 + x2 ≤ 8
−x1 + x2 ≤ 1

x2 ≤ 2
x1, x2 ≥ 0

is
Minimize −3x1 − 2x2 + 0s1 + 0s2 +0s3 + 0s4

Subject to x1 + 2x2 + s1 = 6

2x1 + x2 + s2 = 8

−x1 + x2 + s3 = 1

x2 + s4 = 2

x1, x2, s1, s2, s3, s4 ≥ 0

Step 0. A readily available starting basic feasible
solution is:

basic variables: slack variables s1, s2, s3, s4,
nonbasic variables: x1, x2 = 0,
associated basis matrix AB = I.

Starting tableau:
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Basic x1 x2 s1 s2 s3 s4 Solution
c̄ −3 −2 0 0 0 0 0
s1 1 2 1 0 0 0 6
s2 2 1 0 1 0 0 8
s3 −1 1 0 0 1 0 1
s4 0 1 0 0 0 1 2

Step 1. Check for optimality. Is there any negative
value in the c̄-row?

The reduced costs of both nonbasic variables, x1
and x2, are negative. We choose x1 as an entering
variable. Column x1 is the pivot column.

Step 2. Select a leaving variable from the current
basic variables to be a nonbasic variable when the
entering variable becomes basic.

Comparing ratios
xB(i)
ui

(with positive denomina-

tors, here u1 and u2),
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Basic x1 x2 s1 s2 s3 s4 Soln ratio
c̄ −3 −2 0 0 0 0 0
s1 1 2 1 0 0 0 6 6

Pivot row → s2 2 1 0 1 0 0 8 4
s3 −1 1 0 0 1 0 1
s4 0 1 0 0 0 1 2

s2-row is associated with the smallest ratio. Thus
s2 is the leaving variable and s2-row the pivot row.
The entry at the pivot row and column is called the
pivot entry.
Step 3. Determine the new basic solution, via row
operations, by making the entering variable basic
and the leaving variable nonbasic. The row opera-
tions make the pivot entry = 1 and other entries in
the pivot column = 0.

Basic x1 x2 s1 s2 s3 s4 Solution

c̄ 0 −1
2 0 3

2 0 0 12 ratio

s1 0 3
2 1 −1

2 0 0 2 4
3

x1 1 1
2 0 1

2 0 0 4 8

s3 0 3
2 0 1

2 1 0 5 10
3

s4 0 1 0 0 0 1 2 2
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Thus, the new basic feasible solution is

(x1, x2, s1, s2, s3, s4) = (4, 0, 2, 0, 5, 2)

with cost −12 decreased from 0.
This completed one iteration.

Then go to Step 1 with the above new tableau
and repeat Steps 1, 2 and 3 in the second iteration.
From this new tableau, x2 will be chosen as the en-
tering variable and s1 the leaving variable. At the
end of the second iteration, we obtain the following
tableau:

Basic x1 x2 s1 s2 s3 s4 Solution

c̄ 0 0 1
3

4
3 0 0 12 2

3
x2 0 1 2

3 −
1
3 0 0 4

3
Optimum x1 1 0 −1

3
2
3 0 0 10

3
s3 0 0 −1 1 1 0 3

s4 0 0 −2
3

1
3 0 1 2

3

The solution yields

(x1, x2, s1, s2, s3, s4) = (
10

3
,
4

3
, 0, 0, 3, 2/3)
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with cost −122
3 decreased from −12.

The last tableau is optimal because none of the
nonbasic variables (i.e. s1 & s2) has a negative re-
duced cost in the c̄-row.

The algorithm terminates.
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Graphically, the simplex algorithm starts at the
origin A (starting solution) and moves to an ad-
jacent corner point at which the objective value
could be improved. At B (x1 = 4, x2 = 0), the
objective value will be decreased. Thus B is a pos-
sible choice. The process is repeated to see if there
is another corner point that can improve the value
of the objective function. Eventually, the algorithm
will stop at C (i.e. x1 = 10

3 , x2 = 4
3) (the optimum).

Hence it takes 3 iterations (A, B and C) to reach
the optimum.
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Putting all tableaus together:

Basic x1 x2 s1 s2 s3 s4 Soln ratio
(0) c̄ −3 −2 0 0 0 0 0

s1 1 2 1 0 0 0 6 6
Pivot row s2 2 1 0 1 0 0 8 4

s3 −1 1 0 0 1 0 1
s4 0 1 0 0 0 1 2

(1) c̄ 0 −1
2 0 3

2 0 0 12 ratio

s1 0 3
2 1 −1

2 0 0 2 4
3

x2 enters x1 1 1
2 0 1

2 0 0 4 8

s1 leaves s3 0 3
2 0 1

2 1 0 5 10
3

s4 0 1 0 0 0 1 2 2

(2) c̄ 0 0 1
3

4
3 0 0 12 2

3
x2 0 1 2

3 −
1
3 0 0 4

3
Optimum x1 1 0 −1

3
2
3 0 0 10

3
s3 0 0 −1 1 1 0 3

s4 0 0 −2
3

1
3 0 1 2

3
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Example 2.2

Maximize −5x1 + 4x2 − 6x3 − 8x4
Subject to x1 + 7x2 + 3x3 + 7x4 ≤ 46

3x1 − 2x2 + x3 + 2x4 ≤ 8
2x1 + 3x2 − x3 + x4 ≤ 10

x1, x2, x3, x4 ≥ 0

The associated standard form LP:

Maximize −5x1 + 4x2 − 6x3 − 8x4 + 0s1 + 0s2 + 0s3

Subject to x1 + 7x2 + 3x3 + 7x4 + s1 = 46

x1 − 2x2 + x3 + 2x4 + s2 = 8

2x1 + 3x2 − x3 + x4 + s3 = 10

x1, x2, x3, x4, s1, s2, s3 ≥ 0

Thus, the implementation of simplex method via
simplex tableaus:

Basic x1 x2 x3 x4 s1 s2 s3 Solution

c̄ −5 4 −6 −8 0 0 0 0

s1 1 7 3 7 1 0 0 46

x2 enters s2 3 −2 1 2 0 1 0 8

s3 leaves s3 2 3 −1 1 0 0 1 10

c̄ −23
3 0 −14

3 −
28
3 0 0 −4

3 −40
3

s1 −11
3 0 16

3
14
3 1 0 −7

3
68
3

optimum s2
13
3 0 1

3
8
3 0 1 2

3
44
3

x2
2
3 1 −1

3
1
3 0 0 1

3
10
3
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Therefore the optimal solution is (x1, x2, x3, x4) =
(0, 10

3 , 0, 0) with optimal cost 40
3 .
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3.3 Starting the Simplex Algorithms.

In the previous section, we considered the simple
case where all constraints are of type Ax ≤ b and
b ≥ 0. In this case, a ready starting basic feasible
solution is available.

However, if some constraints are of type ≥ or =,
then we have to add artificial variables in order
to obtain a basic feasible solution to the modified LP.

As artificial variables have no physical meaning,
they must be forced to zero when the optimum is
reached, otherwise the resulting solution is infeasi-
ble. Two (closely related) methods based on the idea
of driving out the artificial variables are devised for
this purpose, namely:

(a) The Two-Phase Method.

(b) The Big-M Method (or M simplex method).
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How to add artificial variables?

1. For each constraint of type “ aT
i x = bi”, we add

an artificial variable yi ≥ 0 to have the modified
constraint aT

i x + yi = bi.

2. For each constraint of type “aT
i x ≥ bi”, after

adding a surplus variable si ≥ 0, we add an ar-
tificial variable yi ≥ 0 to have the modified con-
straint aT

i x− si + yi = bi.

Example 3.1 Consider the LP problem

Minimize 4x1 + x2
Subject to 3x1 + x2 = 3

−4x1 − 3x2 ≤ −6
x1 + 2x2 ≤ 4

x1, x2 ≥ 0.

Add artificial variables where necessary and write
down the modified constraints.
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Solution

1. Add artificial variable y1 ≥ 0 to the first con-
straint:

3x1 + x2 + y1 = 3.

2. Multiply the second constraint by (−1) to obtain
nonnegative b: 4x1 + 3x2 ≥ 6. Add a surplus
variable s1 ≥ 0 and an artificial variable y2 ≥ 0:

4x1 + 3x2 − s1 + y2 = 6.
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(a) The Two-Phase Method.
Introduce artificial variables yi, if necessary, and

form the auxiliary LP problem, with the following
modified objective and constraints:

The Auxiliary LP problem

minimize
k∑

i=1
yi = y1 + y2 · · · + yk

subject to “Modified constraints”,
x ≥ 0,
si ≥ 0 for slack and surplus variables,
yi ≥ 0 for artificial variable yi.

A ready starting basic feasible solution for the aux-
iliary LP problem is obtained by choosing basic vari-
ables to be artificial variables yi and slack variables
si (nonbasic variables are x and surplus variables si,
all assuming zero values), and the associated basis
matrix AB = I.
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Example 3.2 For the LP problem:

Minimize 4x1 + x2
Subject to 3x1 + x2 = 3

−4x1 − 3x2 ≤ −6
x1 + 2x2 ≤ 4

x1, x2 ≥ 0.

Write down the auxiliary LP problem and a basic
feasible solution for the auxiliary LP problem.

Solution

Refer to the Example 3.1, the auxiliary LP prob-
lem

Minimize y1 + y2
Subject to 3x1 + x2 + y1 = 3

4x1 + 3x2 − s1 + y2 = 6
x1 + 2x2 + s2 = 4

x1, x2, s1, s2, y1, y2 ≥ 0

.
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A basic feasible solution to this LP problem is
(x1, x2, s1, s2, y1, y2) = (0, 0, 0, 4, 3, 6), with cost 9.

Basic variables: s2 = 4, y1 = 3, y2 = 6

nonbasic variables: x1, x2, s1.

Notes

1. The auxiliary porblem is always a minimization
of ∑k

i=1 yi whether the original problem is Mini-
mization or Maximization. (Why?)

2. If ∑k
i=1 yi > 0, the original LP problem is infea-

sible (Why?).

3. If ∑k
i=1 yi = 0, then the original LP problem has

a basic feasible solution.
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A complete algorithm for LP problems in standard
form.
Phase I

1. Introduce artificial variables y1, y2, · · · , ym, wher-
ever necessary, and apply the simplex method to

the auxiliary problem with cost
m∑
i=1

yi.

2. If the optimal cost in the auxiliary problem is
positive, the original problem is infeasible and the
algorithm terminates.

3. If the optimal cost in the auxiliary problem is
zero, a basic feasible solution to the original prob-
lem has been found as follows:

(a) If no artificial variable is in the final basis,
the artificial variables and the corresponding
columns are eliminated, and a feasible basis
for the original problem is available.

(b) If in the final tableau there are some artificial
variables as basic variables at zero level, choose
a non-artificial (nonbasic) variable to enter the
basis, then an artificial (basic) variable may be
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driven out of the basis. Repeat this procedure
until all artificial variables are driven out of the
basis.

Phase II

1. Let the final basis and tableau obtained from
Phase I be the initial basis and tableau for Phase
II.

2. Compute the reduced costs of all variables for
the initial basis, using the cost coefficients of the
original problem.

3. Apply the simplex method to the original prob-
lem.

Remark The purpose of phase 1 is to obtain a basic
feasible solution to the original LP, if it exists.
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Example 3.3 Use the 2-phase method to solve the
LP problem:

Minimize 4x1 + x2
Subject to 3x1 + x2 = 3

−4x1 − 3x2 ≤ −6
x1 + 2x2 ≤ 4

x1, x2 ≥ 0.

Solution
Phase I. Auxiliary problem

Minimize y1 + y2
Subject to 3x1 + x2 + y1 = 3

4x1 + 3x2 − s1 + y2 = 6
x1 + 2x2 + s2 = 4

x1, x2, s1, s2, y1, y2 ≥ 0

First, we need to compute the reduced cost c̄.
With the basis B = {y1, y2, s2}, we have

c̄ = c− cT
BA−1

B A

= c− (cy1, cy2, cs2)A
−1
B A

= c− (1, 1, 0)A−1
B A.
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Thus, the starting c̄-row is obtained by applying
row operations:

c̄-row = (c-row)− (y1-row)− (y2-row)− 0(s2-row)

= (0, 0, 0, 1, 1, 0)− (3, 1, 0, 1, 0, 0)

−(4, 3,−1, 0, 1, 0)

= (−7,−4, 1, 0, 0, 0).

A more direct way to derive the above row opera-
tions is as follows: Note that reduced costs of basic
variables must be zero. Thus, row operations are to
change cB to c̄B = 0. These row operations are
exactly as above.
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Basic x1 x2 s1 y1 y2 s2 Soln
c 0 0 0 1 1 0 0

(0) c̄ -7 -4 1 0 0 0 -9
x1 enters y1 3 1 0 1 0 0 3
y1 leaves y2 4 3 −1 0 1 0 6

s2 1 2 0 0 0 1 4

(1) c̄ 0 −5
3 1 7

3 0 0 -2

x2 enters x1 1 1
3 0 1

3 0 0 1

y2 leaves y2 0 5
3 −1 −4

3 1 0 2

s2 0 5
3 0 −1

3 0 1 3
(2) c̄ 0 0 0 1 1 0 0

x1 1 0 1
5

3
5 −

1
5 0 3

5
optimum x2 0 1 −3

5 −
4
5

3
5 0 6

5
s2 0 0 1 1 −1 1 1

At the optimum, y1 + y2 = 0, thus the original
problem has a baisc feasible solution, namely
(x1, x2, s1, s2) = (3/5, 6/5, 0, 1) ( basic variables are
x1, x2, s2) and we proceed to phase II.
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Phase II. The artificial variables (y1 and y2) have
now served their purpose and must be dispensed
with in all subsequent computations (by setting them
to be zero, i.e. y1 = 0, y2 = 0). In the simplex
tableau, columns of y1 and y2 are removed.

With basic variables x1, x2, s2, we have

c̄ = c− cT
BA−1

B A

= c− (cx1, cx2, cs2)A
−1
B A

= c− (4, 1, 0)A−1
B A.

The starting c̄-row for the simplex method can
thus be obtained via applying row operations
c̄- row = (c- row)−4× (x1- row)−1× (x2-row ).

(The row operations change cB to c̄B = 0.)
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Simplex Tableau

Basic x1 x2 s1 s2 Soln
c 4 1 0 0 0

(0) c̄ 0 0 −1
5 0 −18

5
s1 enters x1 1 0 1

5 0 3
5

s2 leaves x2 0 1 −3
5 0 6

5
s2 0 0 1 1 1

(1) c̄ 0 0 0 1
5 −

17
5

x1 1 0 0 −1
5

2
5

optimum x2 0 1 0 3
5

9
5

s1 0 0 1 1 1

Thus, the optimal solution is (x1, x2) = (2
5,

9
5) with

cost 17
5 .

Note The artificial variables are removed in Phase
II only when they are nonbasic at the end of
Phase I. It is possible, however, that an artificial
variable remains basic at zero level at the end of
Phase I. In this case, provisions must be made to
ensure that it never becomes positive during Phase
II computations (refer to the algorithm).
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Example 3.4 (Infeasible Solution.)

Minimize −3x1 − 2x2
Subject to 2x1 + x2 ≤ 2

3x1 + 4x2 ≥ 12
x1, x2 ≥ 0

Solution: Auxiliary LP problem:

Minimize y
Subject to 2x1 + x2 + s1 = 2

3x1 + 4x2 −s2 + y = 12
x1, x2, s1, s2, y ≥ 0

Basic x1 x2 s1 s2 y solution
c 0 0 0 0 1 0
c̄ -3 -4 0 1 0 -12

x2→ s1 2 1 1 0 0 2
← s1 y 3 4 0 −1 1 12

c̄ 5 0 4 1 0 -4
x2 2 1 1 0 0 2
y −5 0 −4 −1 1 4

The tableau is optimal but cost 4 6= 0, thus there is
no feasible solution.
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(b) The big-M Method
Similar to the two-phase method, the big-M method

starts with the LP in the standard form, and aug-
ment an artificial variable yi for any constraint that
does not have a slack. Such variables, together with
slack variables, then become the starting basic vari-
ables.

We penalize each of these variables by assigning a
very large coefficient (M) in the objective function:

Minimize objective function +
∑

Myi, (minimization)

or

Maximize objective function −∑
Myi, (maximization)

where M > 0.
For sufficiently large choice of M , if the original

LP is feasible and its optimal value is finite, all of
the artificial variables are eventually driven to zero,
and we have the minimization or maximization of
the original objective function.
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The coefficient M is not fixed with any numerical
value. It is always treated as a larger number when-
ever it is compared to another number. Thus the
reduced costs are functions of M .

We apply simplex algorithms to the modified ob-
jective and the same constraints as in the Auxiliary
LP problem in the 2-phase method.

Example 3.5 Solve the LP problem by the big-M
method.

Minimize 4x1 + x2
Subject to 3x1 + x2 = 3

4x1 + 3x2 ≥ 6
x1 + 2x2 ≤ 4

x1, x2 ≥ 0

Solution The standard form of the LP:
Minimize 4x1 + x2

Subject to 3x1 + x2 = 3
4x1 + 3x2 − s1 = 6
x1 + 2x2 + s2 = 4

x1, x2, s1, s2 ≥ 0
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We augment two artificial variables y1 and y2 in
the 1st and 2nd equations, and penalize y1 and y2
in the objective function by adding My1 + My2.

The modified LP with its artificial variables be-
comes:

Minimize 4x1 + x2 + My1 + My2

Subject to 3x1 + x2 + y1 = 3

4x1 + 3x2 − s1 + y2 = 6

x1 + 2x2 + s2 = 4

x1, x2, s1, s2, y1, y2 ≥ 0

Choose artificial variables and slack variables to be
basic variables.
Thus, xB = (y1, y2, s2)

T .
Since cT

B = (M, M, 0), we obtain the starting c̄-
row as follows:

Starting c̄- row = (c- row)−M×(y1- row)−M×
(y2- row)− 0× (s2- row).

In tableau form, we have:
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Basic x1 x2 s1 y1 y2 s2 Soln

c 4 1 0 M M 0 0

c̄ 4− 7M 1− 4M M 0 0 0 −9M

x1 enters y1 3 1 0 1 0 0 3

y1 leaves y2 4 3 −1 0 1 0 6

s2 1 2 0 0 0 1 4

c̄ 0 −1−5M
3 M −4+7M

3 0 0 −4− 2M

x2 enters x1 1 1
3 0 1

3 0 0 1

y2 leaves y2 0 5
3 −1 −4

3 1 0 2

s2 0 5
3 0 −1

3 0 1 3

c̄ 0 0 −1
5 −

8
5 + M 1

5 + M 0 −18
5

s1 enters x1 1 0 1
5

3
5 −1

5 0 3
5

s2 leaves x2 0 1 −3
5 −4

5
3
5 0 6

5

s2 0 0 1 1 −1 1 1

c̄ 0 0 0 −7
5 + M M 1

5 −17
5

x1 1 0 0 2
5 0 −1

5
2
5

Optimum x2 0 1 0 −1
5 0 3

5
9
5

s1 0 0 1 1 −1 1 1

Therefore, the optimal solution is (x1, x2) = (2
5,

9
5)

with optimal cost 17
5 . Since it contains no artifi-

cial variables at positive level, the solution is feasi-
ble with respect to the original problem before the
artificial variables are added. (If the problem has no
feasible solution, at least one artificial variable will
be positive in the optimal solution).
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3.4 Special Cases in Simplex Method Application

(A) Degeneracy
A basic feasible solution in which one or more ba-

sic variables are zero is called a degenerate basic
feasible solution. A tie in the minimum ratio rule
leads to the degeneracy in the solution. From the
practical point of view, the condition reveals that
the model has at least one redundant constraint
at that basic feasible solution.

Example 4.1 (Degenerate Optimal Solution)

Minimize −3x1 − 9x2
subject to x1 + 4x2 ≤ 8

x1 + 2x2 ≤ 4
x1, x2 ≥ 0
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Basic x1 x2 S1 S2 Solution

(0) c −3 −9 0 0 0 ratio

x2 enters S1 1 4 1 0 8 2

S1 leaves S2 1 2 0 1 4 2

(1) c̄ −3
4 0 9

4 0 18

x1 enters x2
1
4 1 1

4 0 2

S2 leaves S2
1
2 0 −1

2 1 0 =⇒ degenerate BFS

(2) c̄ 0 0 3
2

3
2 18

x2 0 1 1
2 −1

2 2

optimal x1 1 0 −1 2 0 =⇒ degenerate opt. soln

Note In iteration 2, the entering variable x1 re-
places S2, where S2 = 0 is a basic variable, hence
degeneracy remains in the optimum.

Looking at the graphical solution, we see that 3
lines pass through the optimum (x1 = 0, x2 = 2).
We need only 2 lines to identify a point in a two-
dimensional problem hence we say that the point
is overdetermined. For this reason, we conclude
that one of the constraints is redundant. There are
no reliable techniques for identifying redundant con-
straint directly from the tableau. In the absence of
graphical representation, we may have to rely on
other means to locate the redundancy in the model.
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Theoretical Implications of Degeneracy

(a) The objective value is not improved (−18) in
iterations 1 and 2. It is possible that the sim-
plex iteration will enter a loop without reaching
the optimal solution. This phenomenon is called
“cycling”, but seldom happens in practice.

(b) Both iterations 1 and 2 yield identical values:

x1 = 0, x2 = 2, S1 = 0, S2 = 0, z = 18

but with different classifications as basic and non-
basic variables.

Question. Can we stop at iteration 1 (when degen-
eracy first appears even though it is not optimum?
No, as we shall see in the next example.
Example 4.2. (Temporarily Degenerate Solution)

Minimize −3x1 − 2x2
Subject to 4x1 + 3x2 ≤ 12

4x1 + x2 ≤ 8
4x1 − x2 ≤ 8
x1, x2 ≥ 0
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Basic x1 x2 S1 S2 S3 Solution
c −3 −2 0 0 0 0 ratio

x1 enters S1 4 3 1 0 0 12 3
S2 leaves S2 4 1 0 1 0 8 2

S3 4 −1 0 0 1 8 2

c̄ 0 −5
4 0 3

4 0 6
x2 enters S1 0 2 1 −1 0 4

S1 leaves x1 1 1
4 0 1

4 0 2
S3 0 −2 0 −1 1 0

c̄ 0 0 5
8

1
8 0 17

2
x2 0 1 1

2 −
1
2 0 2

optimal x1 1 0 −1
8

3
8 0 3

2
S3 0 0 1 −2 1 4

Note The entering variable x2 has a negative coef-
ficient corresponding to S3, hence S3 cannot be the
leaving variable. Degeneracy disappears in the final
optimal solution.
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(B) Alternative Optima
When the objective function is parallel to a bind-

ing constraint, the objective function will assume
the same optimal value at more than one solution
point. For this reason they are called alternative
optima.

Example 4.3.

Minimize −2x1 − 4x2
Subject to x1 + 2x2 ≤ 5

x1 + x2 ≤ 4
x1, x2 ≥ 0

Basic x1 x2 S1 S2 Solution

c −2 −4 0 0 0

x2 enters S1 1 2 1 0 5

S1 leaves S2 1 1 0 1 4

c̄ 0 0 2 0 10

x1 enters x2
1
2 1 1

2 0 5
2 optimum (x1, x2) = (0, 5

2)

S2 leaves S2
1
2 0 −1

2 1 3
2 (pt. P)

c̄ 0 0 2 0 10

x2 0 1 1 −1 1 optimum (x1, x2) = (3, 1)

x1 1 0 −1 2 3 (pt. Q)
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When the reduced cost of a nonbasic variable (here
x1) is zero, it indicates that x1 can be an entering
basic variable without changing the cost value ,
but causing a change in the values of the variables.
The family of alternative optimal solutions (basic
and nonbasic) is given by:
(x1, x2) = λ(0, 5

2) + (1− λ)(3, 1), where 0 ≤ λ ≤ 1.

Remark If an LP problem has k (k ≥ 2) optimal
basic feasible solutions: x1,x2, · · · ,xk, then LP
problem has infinitely many optimal solutions and

the general form of an optimal solution is
k∑

i=1
λixi

where
k∑

i=1
λi = 1 and λi ≥ 0 for i = 1, 2, · · · , k.
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(C) Unbounded Solution
In some LP models, the values of the variables

may be increased indefinitely without violating any
of the constraint and we have an unbounded so-
lution space. It is not necessarily, however, that
an unbounded solution space yields an unbounded
value for the objective function. Unbounded objec-
tive value in a model indicates the model is poorly
constructed - an infinite cost or profit!!

General rule of detecting Unboundedness
If at any iteration, the constraint coefficients A−1

B Aj
of a nonbasic variable xj are all nonpositive, the
solution space is unbounded in that direction. If,
in addition, the reduced cost c̄j of that nonbasic
variable is negative (respectively positive ) in the
minimization (respectively maximization) problem,
then the objective value is also unbounded.
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Example 4.4 (Unbounded Objective Value)

Minimize −2x1 − x2
Subject to x1 − x2 ≤ 10

2x1 ≤ 40
x1, x2 ≥ 0

Basic x1 x2 S1 S2 Solution
c −2 −1 0 0 0
S1 1 −1 1 0 10
S2 2 0 0 1 40

Note that x2 is a candidate for entering the solution.
All the constraint coefficients in x2-column are zero
or negative implying that x2 can be increased in-
definitely without violating any of the constraints.
Therefore, the solution space is unbounded in the
x2-direction and the LP has no bounded optimal
solution because x2 is a candidate of being entering
variable.
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Example 4.5. (Unbounded Solution Space but
Finite Optimal Objective Value)

Minimize −6x1 + 2x2
Subject to 2x1 − x2 ≤ 2

x1 ≤ 4
x1, x2 ≥ 0

Basic x1 x2 S1 S2 Solution
c −6 2 0 0 0

x1→ S1 2 −1 1 0 2
−S1 S2 1 0 0 1 4

c̄ 0 −1 3 0 6

x2→ x1 1 −1
2

1
2 0 1

−S2 S2 0 1
2 −

1
2 1 3

c̄ 0 0 2 2 12
x1 1 0 0 1 4
x2 0 1 −1 2 6
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(D) Infeasible Solution
If the constraints cannot be satisfied simultane-

ously, the model is said to have no feasible solution.
This situation can never occur if all the constraints
are of the type “≤” (assuming b ≥ 0), since the
slack variables always provide a feasible solution.
When we have constraints of other types, we in-
troduce artificial variables, which, by their very de-
sign, do not provide a feasible solution to the orig-
inal model if some yi 6= 0 in the optimal solution.
From the practical point of view, an infeasible solu-
tion space shows that the model is not formulated
correctly.

Example 4.6 Show that the following LP problem
has no feasible solution.

Minimize 3x1
Subject to 2x1 + x2 ≥ 6

3x1 + 2x2 = 4
x1, x2 ≥ 0
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Solution. We use the Big-M method. Adding ar-
tificial variables, we obtain:

Minimize 3x1 + My1 + My2
Subject to 2x1 + x2 − s1 + y1 = 6

3x1 + 2x2 + y2 = 4
x1, x2, s1, y1, y2 ≥ 0

Basic x1 x2 s1 y1 y2 R. H. S.

c 3 0 0 M M 0

(0) c̄ 3− 5M −3M M 0 0 −10M

x1 enters y1 2 1 −1 1 0 6

y2 leaves y2 3 2 0 0 1 4

c̄ 0 (M−6)
3 M 0 (5M−3)

3
10
3 M + 4

y1 0 −1
3 −1 1 −2

3
10
3

optimum x1 1 2
3 0 0 1

3
4
3

This is an optimal tableau. However, the artificial
variable y1 = 10

3 , which is positive, and hence the
original problem has no feasible solution.

Exercise Use the phase 1 of the 2-phase method to
show that the LP problem has no feasible solution.
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Summary of special cases

Consider minimization problem.
Simplex tableau at an iteration:

Basic . . . xj . . . R. H. S.
c̄ . . . c̄j . . . z

xB . . . u . . . xB

Observation Conclusion
Some xB(k) = 0 degenerate solution

Some nonbasic c̄j = 0 alternative optima
u ≤ 0 and c̄j < 0 unbounded problem
Some yi > 0 at optimum no feasible solution.
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Chapter 4

Duality Theory

Starting with a linear programming problem, called
the primal LP, we introduce another linear program-
ming problem, called the dual problem. Duality the-
ory deals with the relation between these two LP
problems. It is also a powerful theoretical tool that
has numerous applications, and leads to another al-
gorithm for linear programming (the dual simplex
method).
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Motivation

Generally speaking, if a problem (P) searches in
a direction, then its dual is a problem (D) which
searches in the opposite direction. Usually they
meet at a point.

For example, (P) is to search for the infimum of a
set Sp ⊂ R. A dual (D) of (P) is to search for the
supremum of the set

Sd = {y ∈ R | y ≤ x, ∀x ∈ Sp}.
Note that inf Sp = supSd, i.e. the solutions of the
two problems meet.

Some applications:

• Instead of solving (P), we may solve (D) which
may be easier.

• For any x ∈ Sp and y ∈ Sd, x − y provides an
upper bound on the error |x− inf Sp|.
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Now, let us consider the standard form LP prob-
lem

minimize cTx
subject to Ax = b

x ≥ 0,

which we call the primal problem. Let x∗ be an
optimal solution, assumed to exist. We introduce a
relaxed problem

g(p) = minimize cTx + pT (b−Ax)
subject to x ≥ 0.

in which the constraint Ax = b is replaced by a
penalty pT (b − Ax), where p is a vector of the
same dimension as b.

Let g(p) be the optimal cost for the relaxed prob-
lem, as a function of p. Thus,

g(p) ≤ cTx∗ + pT (b−Ax∗) = cTx∗.

This implies that each p leads to a lower bound g(p)
for the optimal cost cx∗.
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The problem

maximize g(p)
subject to No constraints

which searches for the greatest lower bound, is known
as the dual problem.

Note:

1. g(p) = minx≥0

cx + pT (b−Ax)


= pTb + minx≥0

(cT − pTA)x
.

2. minx≥0(cT−pTA)x =


0, if cT − pTA ≥ 0,
−∞, otherwise.

Thus, the dual problem is the same as the linear
programming problem

maximize pTb

subject to pTA ≤ cT .
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4.1 The dual problem.

As motivated by the observation in the previous sec-
tion, we define the dual problem of a (primal) LP
problem as follows.

Definition 1.1: Given a (primal) LP problem

minimize cTx
subject to Ax = b

x ≥ 0,

the associated dual LP problem is

maximize pTb

subject to pTA ≤ cT .

We only define the dual problem for the standard
LP problem. LP problems may appear in various
forms. We will derive their dual problems in the fol-
lowing steps: (1) Convert the original (primal) LP
problem to a standard LP problem; (2) Formulate
the dual problem of the standard LP problem by
using Definition 1.1; (3) Simplify the dual problem,
if necessary.
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Example 1.1
Consider the primal problem:

minimize cTx
subject to Ax ≥ b,

x free

Introducing surplus variables and replacing x by
sign-constrained variables in the original primal prob-
lem yield the following equivalent LP:

minimize cTx+ − cTx−

subject to Ax+ −Ax− − s = b,
x+ ≥ 0,x− ≥ 0, s ≥ 0.

By Definition 1.1, the dual problem of this standard
LP is

maximize pTb

subject to pTA ≤ cT

−pTA ≤ −cT

−pT I ≤ 0.

Note that pTA = cT is equivalent to pTA ≤ cT

and −pTA ≤ −cT . Thus, the dual obtained here
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is equivalent to

maximize pTb
subject to p ≥ 0

pTA = cT .

The above shows the following pair of primal and
dual LPs:

Primal

minimize cTx
subject to Ax ≥ b,

x free

Dual

maximize pTb
subject to p ≥ 0

pTA = cT .

In general, we can show the pair of primal and dual
problems are related as follows. Let A be a matrix
with rows aT

i and columns Aj.

min cTx

s.t. aT
i x ≥ bi, i ∈M+,

aT
i x ≤ bi, i ∈M−,

aT
i x = bi, i ∈M0,

xj ≥ 0, j ∈ N+,
xj ≤ 0, j ∈ N−,
xj free, j ∈ N0,

max pTb
s.t. pi ≥ 0, i ∈M+,

pi ≤ 0, i ∈M−,
pi free, i ∈M0,

pTAj ≤ cj, j ∈ N+,

pTAj ≥ cj, j ∈ N−,

pTAj = cj, j ∈ N0,
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Notes:

1. For each functional constraint aT
i x(≥,≤, =)bi in

the primal, we introduce a variable pi(≥ 0,≤
0, free) respectively in the dual problem.

2. For each variable xj(≥ 0,≤ 0, free) in the primal
problem, there is a corresponding constraint (≤
,≥, =)cj respectively in the dual problem.

In summary:

minimize maximize
≥ ≥ 0

constraints ≤ ≤ 0 variables
= free
≥ 0 ≤

variables ≤ 0 ≥ constraints
free =

Indeed, which side in the table is regarded as pri-
mal and which as dual does not matter, because we
can show (exercise)
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Theorem (The dual of the dual is the primal.)
If we transform the dual into an equivalent mini-
mization problem, and then form its dual, we obtain
a problem equivalent to the original problem.

Proof: We will prove the theorem for LP in the
standard form based on Definition 1.1. Consider
the primal problem

min cTx

s.t. Ax = b

x ≥ 0

The dual problem is

max bTp

s.t. ATp ≤ c

Now we write the dual problem in an equivalent
standard form

min −bTp+ + bTp−

s.t. ATp+ −ATp− + s = c

p+,p−, s ≥ 0
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By Definition 1.1, the dual of the above problem is

max cTz

s.t. Az ≤ −b

−Az ≤ b

Iz ≤ 0

Simplify the above to an equivalent problem

min −cTz

s.t. −Az = b

z ≤ 0

Now letting x = −z, we obtain the original primal
problem. QED

Example 1.2 Consider the primal problem:

minimize x1 + 2x2 + 3x3
subject to −x1 + 3x2 = 5

2x1 − x2 + 3x3 ≥ 6
x3 ≤ 4

x1 ≥ 0
x2 ≤ 0
x3 free
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(a) Write down the dual problem.

(b) Verify that the primal problem and dual of dual
obtained are equivalent.

Solution: (a) The dual of the original problem is

maximize 5y1 + 6y2 + 4y3
subject to −y1 + 2y2 ≤ 1

3y1 − y2 ≥ 2
3y2 + y3 = 3
y1 free
y2 ≥ 0
y3 ≤ 0

(b) Use the general primal-dual relationship to de-
rive the dual of the LP in (a), resulting in exactly
the original LP problem.
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4.2 The duality theorem.

Theorem (Weak duality theorem)
In a primal-dual pair, the objective value of the max-
imization problem is smaller than or equal to the
objective value of the minimization problem.
That is, for a minimization (respectively maximiza-
tion) primal LP, if x is a feasible solution to the
primal problem and p is a feasible solution to the
dual problem, then

pTb ≤ cTx ( respectively pTb ≥ cTx).

Proof. We prove the result for primal and dual LP
problems in standard form.

Suppose that x and p are primal and dual feasible
solutions, respectively. Then, by Definition, they
satisfy

Ax = b, x ≥ 0 and pTA ≤ cT .

Thus, we have

pTb = pT (Ax) = (pTA)x ≤ cTx.

QED
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Example 2.1 Consider the following linear pro-
gramming problem.

Primal Dual

Min −3x1 − 2x2
s.t. x1 + 2x2 ≤ 6

2x1 + x2 ≤ 8
−x1 + x2 ≤ 1

x2 ≤ 2
x1, x2 ≥ 0

Note that (x1, x2) = (1, 1) is a primal feasible solu-
tion, with objective value−5, whereas (p1, p2, p3, p4)
= (−1,−1, 0, 0) is a dual feasible solution with ob-
jective value −14.

This verifies the weak duality theorem, i.e. the ob-
jective value of the maximization problem ≤ the
objective value of the minimization problem in a
primal-dual pair.
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The above pair of primal and dual objective values
can be used to provide a range for the optimal value
of the primal (and hence the dual) problem, i.e.

−14 ≤ the optimal objective value ≤ −5.

In fact, the optimal value is −122
3.

Corollary 1
Unboundedness in one problem implies infeasibility
in the other problem.
If the optimal value in the primal (respectively dual)
problem is unbounded, then the dual (respectively)
problem must be infeasible.

Corollary 2
Let x̄ and p̄ be primal and dual feasible solutions
respectively, and suppose that p̄Tb = cT x̄. Then,
x̄ and p̄ are optimal primal and dual solutions re-
spectively.
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Theorem (Strong Duality)
If a linear programming problem has an optimal so-
lution, so does its dual, and the respective optimal
costs are equal.

Proof. Consider the standard form minimization
primal problem and its dual problem:

Primal

minimize cTx
subject to Ax = b

x ≥ 0,

Dual

maximize pTb

subject to pTA ≤ cT

p free,

Let x be a primal optimal solution obtained from
simplex method, with associated optimal basis B.
Then xB = A−1

B b is the corresponding vector of
basic variables and cB is the vector of the costs of
the basic variables.
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Note that at optimal:

cT − cT
BA−1

B A ≥ 0.

Now, define pT = cT
BA−1

B . (Aim: Show: p is
dual optimal.)

Then pTA ≤ cT , showing that p is dual feasible.

Moreover, pTb = cT
BA−1

B b = cT
BxB = cTx.

Thus, by Corollary 2, p is dual optimal, and the
optimal dual cost is equal to the optimal primal cost.
QED

Remark From the proof, we note that, for a stan-
dard form LP problem, if x is a primal optimal so-
lution with associated basis B and cB is the vector
of the costs of the basic variables, then the dual op-
timal solution is given by

pT = cT
BA−1

B .
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Example 2.1 Consider the LP problem (cf: Ex-
ample 2.1 in Chapter 3)

Minimize −3x1 − 2x2 + 0s1 + 0s2 +0s3 + 0s4

Subject to x1 + 2x2 + s1 = 6

2x1 + x2 + s2 = 8

−x1 + x2 + s3 = 1

x2 + s4 = 2

x1, x2, s1, s2, s3, s4 ≥ 0

with optimal solution

(x1, x2, s1, s2, s3, s4) = (10/3, 4/3, 0, 0, 3, 2/3),

where
xB = (x2, x1, s3, s4).

Thus the dual optimal solution is pT = cT
BA−1

B

=
[
−2 −3 0 0

]



2
3 −

1
3 0 0

−1
3

2
3 0 0

−1 1 1 0

−2
3

1
3 0 1


=

[
−1/3 −4/3 0 0

]
.
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Alternatively, one can obtain an optimal dual so-
lution p from the optimal (primal) simplex tableau
readily if the starting basis matrix AB0

= I.

The vector of reduced costs c̄B0
in the optimal

tableau with the optimal basis B is

c̄T
B0

= cT
B0
−cT

BA−1
B AB0

= cT
B0
−cT

BA−1
B = cT

B0
−pT .

Thus, an optimal dual solution is pT = cT
B0
− c̄T

B0
.

172



Example 2.2 (a) Consider the LP problem (cf:
Example 2.1 in Chapter 3)

Minimize −3x1 − 2x2 + 0s1 + 0s2 +0s3 + 0s4

Subject to x1 + 2x2 + s1 = 6

2x1 + x2 + s2 = 8

−x1 + x2 + s3 = 1

x2 + s4 = 2

x1, x2, s1, s2, s3, s4 ≥ 0

with optimal tableau as follows:

Basic x1 x2 s1 s2 s3 s4 Solution

c̄ 0 0 1
3

4
3 0 0 12 2

3
x2 0 1 2

3 −
1
3 0 0 4

3
Optimum x1 1 0 −1

3
2
3 0 0 10

3
s3 0 0 −1 1 1 0 3

s4 0 0 −2
3

1
3 0 1 2

3

With xB0
= (s1, s2, s3, s4), the starting AB0

= I,

and cT
B0

= (0, 0, 0, 0).

From the optimal tableau, c̄T
B0

= (1
3,

4
3, 0, 0).

Thus, the optimal dual solution pT = cT
B0
−c̄T

B0
=

(−1
3,−

4
3, 0, 0).
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Example 2.2 (b) From Example 3.5 (Chapter
III), the modified LP with its artificial variables is

Minimize 4x1 + x2 + My1 + My2

Subject to 3x1 + x2 + y1 = 3

4x1 + 3x2 − s1 + y2 = 6

x1 + 2x2 + s2 = 4

x1, x2, s1, s2, y1, y2 ≥ 0

The c̄-row in the optimal tableau is:

Basic x1 x2 s1 y1 y2 s2 Soln

c̄ 0 0 0 −7
5 + M M 1

5 −
17
5

Starting basic variables: y1,y2 and s2, with corre-
sponding cost coefficient: M , M , and 0 respectively.
Thus,

pT = (M, M, 0)− (−7

5
+ M, M,

1

5
) = (

7

5
, 0,−1

5
).
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The complementary slackness conditions in the next
theorem provides a useful relation between optimal
primal and dual solutions. Given an optimal solu-
tion to one problem, we can use these conditions to
find the optimal solution of the other LP.

Theorem (Complementary Slackness Theorem.)
Let x and p be feasible solutions to the primal prob-
lem and dual problem respectively. The vectors x
and p are optimal solutions for the two respective
problems if and only if

pi(a
T
i x− bi) = 0, ∀i

(cj − pTAj)xj = 0 ∀j.
These conditions will be called Complementary slack-
ness optimality conditions.

Proof. Assume that the primal is a minimization
problem. From the general primal-dual relationship
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min cTx

s.t. aT
i x ≥ bi, i ∈M+,

aT
i x ≤ bi, i ∈M−,

aT
i x = bi, i ∈M0,

xj ≥ 0, j ∈ N+,
xj ≤ 0, j ∈ N−,
xj free, j ∈ N0,

max pTb
s.t. pi ≥ 0, i ∈M+,

pi ≤ 0, i ∈M−,
pi free, i ∈M0,

pTAj ≤ cj, j ∈ N+,

pTAj ≥ cj, j ∈ N−,

pTAj = cj, j ∈ N0,

we observe

ui := pi(a
Tx− bi) ≥ 0,

vj := (cj − pTAj)xj ≥ 0.

Furthermore,
∑
i
ui =

∑
i
pi(a

T
i x− bi) = pTAx− pTb

and
∑
j
vj =

∑
j
(cj − pTAj)xj = cTx− pTAx.

Adding both equalities yields the required inequal-
ity: ∑

i
ui +

∑
j
vj = cTx− pTb.
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By the Strong Duality Theorem, if x and p are
optimal solutions for the two respective problems,
then cTx = pTb. Hence, ∑

i ui + ∑
j vj = 0 which

implies that ui = 0 and vj = 0 for all i and j.

Conversely, if ui = 0 and vj = 0 for all i and j,

then cTx − pTb = 0, i.e. cTx = pTb. By Corol-
lary 2, both x and p are optimal. QED.
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Example 2.3
Consider a problem in standard and its dual:

min 13x1 + 10x2 + 6x3

s.t. 5x1 + x2 + 3x3 = 8

3x1 + x2 ≥ 3

x1, x2, x3 ≥ 0

max 8p1 + 3p2

s.t. 5p1 + 3p2 ≤ 13

p1 + p2 ≤ 10

3p1 ≤ 6

p1 free, p2 ≥ 0

(a) Verify that x∗ = (1, 0, 1)T is a solution to the
primal problem.

(b) Use Complementary Slackness Theorem to ver-
ify that x∗ = (1, 0, 1)T is an optimal solution to the
primal problem, and obtain a dual optimal solution.

Solution
(a) x∗ = (x1, x2, x3)

T = (1, 0, 1)T is primal feasi-
ble. (Exc.)

(b) Suppose p = (p1, p2)
T is a dual feasible solu-

tion.
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By the Complementary Slackness Theorem, both
x∗ = (x1, x2, x3)

T = (1, 0, 1)T and p = (p1, p2)
T

are primal and dual optimal solutions if and only
if the Complementary Slackness Optimality condi-
tions are satisfied.

We shall find (p1, p2) that satisfies these condi-
tions.

These conditions are

p1(5x1 + x2 + 3x3 − 8) = 0

p1(3x + x2 − 3) = 0

x1(13− (5p1 + 3p2)) = 0

x2(10− (p1 + p2)) = 0

x3(6− (3p1)) = 0

For x∗ = (1, 0, 1)T , 5x1 + x2 + 3x3 − 8 = 0,
3x+x2−3 = 0, and x2 = 0. Thus, the first, second
and fourth equations pose no restriction on (p1, p2).
From the remaining equations, since x1 6= 0 and
x3 6= 0, we have

13− 5p1 − 3p2 = 0

6− 3p1 = 0.
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Solving yields (p1, p2) = (2, 1).

It can be verified that (p1, p2) = (2, 1) satisfies all
dual constraints, thus is dual feasible.

Since x∗ = (1, 0, 1)T and p = (2, 1)T satisfy the
complementary slackness optimality conditions and
are primal and dual feasible, by the Complementary
Slackness Theorem, they are optimal solutions to
the two respective problems.
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Example 2.4 Consider the following LP:

Min 8x1 + 6x2 − 10x3 + 20x4 − 2x5
S.t. 2x1 + x2 − x3 + 2x4 + x5 = 25

2x1 + 2x3 − x4 + 3x5 = 20
x1, x2, x3, x4, x5 ≥ 0

Is (x1, x2, x3, x4, x5) = (10, 5, 0, 0, 0) an optimal so-
lution to the above LP?

Solution Firstly, check

(x1, x2, x3, x4, x5) = (10, 5, 0, 0, 0)

is primal feasible. (Exc.)

Note that u1 = u2 = 0 because of equality con-
straints.

Associating the dual variables p1 and p2 to the two
constraints, the dual problem is:
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Maximize 25p1 + 20p2
Subject to 2p1 + 2p2 ≤ 8

p1 ≤ 6
−p1 + 2p2 ≤ −10
2p1 − p2 ≤ 20
p1 + 3p2 ≤ −2
p1, p2 unrestricted.

Suppose the feasible solution x is optimal and (p1, p2)
is a dual optimal solution. By the Complementary
Slackness Optimality Conditions, we must have

v1 = x1(8− (2p1 + 2p2)) = 0
v2 = x2(6− p1) = 0
v3 = x3(−10− (−p1 + 2p2)) = 0
v4 = x4(20− (2p1 − p2)) = 0
v5 = x5(−2− (p1 + 3p2)) = 0.

Since x1 = 10 > 0 and x2 = 5 > 0, we have
8− (2p1 + 2p2) = 0 and 6− p1 = 0, i.e. (p1, p2) =
(6,−2).
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Now we check for dual feasibility: it remains to check
the last three dual constraints at (p1, p2) = (6,−2):

−p1 + 2p2 = −10

2p1 − p2 = 14 ≤ 20

p1 + 3p2 = 0 > −2.

Thus the last dual constraint is not satisfied, and we
conclude that (p1, p2) = (6,−2) is not dual feasible.

Therefore, there is no dual feasible solution satis-
fying Complementary Slackness Optimality Condi-
tions together. Hence,

(x1, x2, x3, x4, x5) = (10, 5, 0, 0, 0)

is not an optimal solution.
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4.3 Economic interpretation of optimal dual
variables.

At the optimal solution of both the primal and
dual, there is an economic interpretation of the dual
variables pi as marginal costs for a minimization pri-
mal problem, or as marginal profits for a maximiza-
tion primal problem.

Consider the standard form problem and its dual
problem:

Primal

minimize cTx
subject to Ax = b

x ≥ 0,

Dual

maximize pTb

subject to pTA ≤ cT

p free,

where A is m× n with linearly independent rows.

Let x∗ be a nondegenerate primal optimal solu-
tion, with associated optimal basis B and the corre-
sponding dual optimal solution p∗ is given by p∗T =
cT
BA−1

B .
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Let 4 = (41, · · · ,4i, · · · ,4n)T where each 4i
is a small change in bi, for each i, such that A−1

B (b+
4) ≥ 0 (feasibility is maintained).

Note that c̄T = cT − cT
BA−1

B A ≥ 0 remain un-
affected,and hence optimality conditions are not af-
fected. Thus, A−1

B (b + 4), with the same basis
matrix B, is an optimal solution to the perturbed
problem (perturb means small change).

The optimal cost in the perturbed problem is

cT
BA−1

B (b +4) = p∗T (b +4)

= p∗Tb + p∗T4
= cT

BA−1
B b + p∗T4.

Thus, a small change4 in b results in a change of
p∗T4 in the optimal cost. In particular, for a fixed
i, if 4i = δ, and 4j = 0 for j 6= i, then the change
in the optimal objective value is

p∗T4 = δpi.
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Therefore, each component pi of the optimal dual
vector p∗ indicates the contribution of ith require-
ment bi towards the objective function. Thus, pi is
interpreted as the marginal cost (or shadow cost)
of the ith requirement bi.

Remark
For a maximization primal problem, the component
pi of the optimal dual vector p is interpreted as the
marginal profit (or shadow price) per unit increase
of the ith requirement bi. It is also known as the
worth of the i-th resource or requirement bi.

Dual variables pi’s can be used to rank the ‘re-
quirements’ according to their contribution to the
objective value. For example, in a minimization
problem, if p1 < 0, then increasing b1 (sufficiently)
will reduce the total cost. Thus, if p1 < 0 and
p2 < 0, and we are allowed to increase only one re-
quirement, then the requirement bi corresponds to
the most negative pi is given a higher priority to in-
crease.
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Example 3.1 (An example to illustrate the use of
pi.)
Consider the product-mix problem in which each of
three products is processed on three operations. The
limits on the available time for the three operations
are 430, 460, 420 minutes daily and the profits per
unit of the three products are $3, $2 and $5. The
times in minutes per unit on the three operations
are given as follows:

Product 1 Product 2 Product 3
Operation 1 1 2 1
Operation 2 3 0 2
Operation 3 1 4 0

The LP model is written as:

Max 3x1 + 2x2 + 5x3 (daily profit)
S.t. x1 + 2x2 + x3 ≤ 430 (op. 1)

3x1 + 2x3 ≤ 460 (op. 2)
x1 + 4x2 ≤ 420 (op. 3)

x1, x2, x3 ≥ 0.
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Adding slack variables S1, S2 and S3 to the three
constraints, the optimal tableau is given as:

Basic x1 x2 x3 S1 S2 S3 Solution
c̄ −4 0 0 −1 −2 0 −1350
x2 −1/4 1 0 1/2 −1/4 0 100
x3 3/2 0 1 0 1/2 0 230
S3 2 0 0 −2 1 1 20

(a) Suppose an additional minute for Operation 2
costs $1.50, is it advisable to increase the limit
of available time for Operation 2?

(b) Rank the three operations in order of priority for
increase in time allocation, assuming that costs
per additional time for all operations are equal.
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Solution. The dual prices are found to be p1 = 1,
p2 = 2 and p3 = 0. (Verify)

(a) p2 = 2 implies that a unit (i.e. 1 minute) in-
crease in the time Operation 2 causes an increase of
$2 in the objective value. Since the cost of an addi-
tional minute for Operation 2 costs $1.50. There is
a net profit of $0.50 when we increase the time for
Operation 2. It is advisable to increase the opera-
tion time for Operation 2.

(b) From the dual prices, p1 = 1, p2 = 2 and
p3 = 0, if we are to increase the limits on the avail-
able time for the three operations, we would give a
higher priority to Operation 2 followed by Operation
1. Note that since p3 = 0, increasing the limit on
the available time for Operation 3 has no effect on
the profit.
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4.4 The dual Simplex Method.

The simplex method from the duality per-
spective

Consider the primal and dual problems

min cTx max pTb

s. t. Ax = b s. t. pTA ≤ cT

x ≥ 0

and the corresponding simplex tableau:

Basic x Solution

c̄ cT − cT
BA−1

B A −cT
BA−1

B b

xB A−1
B A A−1

B b

Let x =

 xB
xN

 =

 A−1
B b
0)

 be a primal solution

and pT = cTA−1
B a dual solution.
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Observations:

• Primal and dual objective values at x and p are
equal:

cTx = cT
BxB = cT

BA−1
B b = pTb.

Therefore, x and p are optimal solutions iff they
are feasible.

• Primal feasibility:

Ax = ABxB + ANxN = ABA−1
B b = b.

Thus, x is feasible iff A−1
B b ≥ 0.

• Dual feasibility:

pTA ≤ cT

iff
cT
BA−1

B A ≤ cT

iff
c̄ ≥ 0.

Thus, p is feasible iff c̄ ≥ 0.

191



The simplex method is an algorithm that main-
tains primal feasibility (A−1

B b ≥ 0) and works to-
wards dual feasibility (c̄ ≥ 0, i.e. primal optimal-
ity). A method with this property is generally called
a primal algorithm. An alternative is to start with a
dual feasible solution (c̄ ≥ 0) and work towards pri-
mal feasibility (A−1

B b ≥ 0). This method is called
a dual algorithm.We shall implement the dual sim-
plex method in terms of the simplex tableau.

An iteration of the dual simplex method.

1. For a minimization (respectively maximization)
problem, a typical iteration starts with the tableau
associated with a basis B and with all reduced
costs nonnegative (respectively nonpositive).

2. Examine the components of the vectors xB =
A−1

B b.

If they are all nonnegative, we have an optimal
basic feasible solution and the algorithm stops;

Else, choose some l such that xB(l) < 0.
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3. Consider the l -th row (the pivot row) of the tableau,
with elements

v1, v2, · · · , vn.

If vi ≥ 0 for all i, then the primal LP is infeasible
and the algorithm stops.

Else, for each i such that vi < 0, compute the

ratio | c̄i
vi
| and let j be the index of a column that

corresponds to the smallest ratio. The column
AB(l) leaves the basis and the column Aj enters

the basis. (The minimum ratio ensures that the
optimality conditions is maintained.)

4. Add to each row of the tableau a multiple of the l -
row (the pivot row) so that vj (the pivot element)
becomes 1 and all other entries of the pivot col-
umn become 0.

Key points to note

1. The dual simplex method is carried out on the
simplex tableau of the primal problem.
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2. Unlike the primal simplex method, we do not re-
quire A−1

B b to be nonnegative. Thus, x needs
not be primal feasible.

Example 4.1 Consider the simplex tableau of a
minimization problem.

Basic x1 x2 x3 x4 x5 Solution
c̄ 2 6 10 0 0 0

x4 −2 4 1 1 0 2
x5 4 −2 −3 0 1 −1

1. The given basic solution x satisfies the optimality
conditions but it not feasible. (WHY?)

2. xB(2) = x5 < 0: Choose the x5-row as pivot row.

3. v2 = −2 < 0 and c̄2 = 6: ratio c̄2/|v2| = 3
(smallest), and

v3 = −3 < 0 and c̄3 = 10: ratio c̄2/|v2| = 10/3.

Thus, the entering variable is x2 and the leaving
variable is x5.
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Recompute the tableau:

Basic x1 x2 x3 x4 x5 Solution
c̄ 14 0 1 0 3 −3

x4 6 0 −5 1 2 0
x2 −1/2 1 3/2 0 −1/2 1/2

Note: The cost has increased to 3, and the new basic
solution is optimal and feasible. An optimal solution
is x = (0, 1/2, 0, 0, 0) with optimal cost 3.

Combine the two tableaus as follows:

Basic x1 x2 x3 x4 x5 Solution
c̄ 2 6 10 0 0 0

x4 −2 4 1 1 0 2
x5 4 −2 −3 0 1 −1
c̄ 14 0 1 0 3 −3

x4 6 0 −5 1 2 0
x2 −1/2 1 3/2 0 −1/2 1/2
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When should we use the dual simplex
method?

1. A basic solution of the primal problem satisfying
optimality conditions is readily available. (Equiv-
alently a basic feasible solution of the dual prob-
lem is readily available.)

2. Most importantly, it is used in Sensitivity and
Postoptimality analysis. Suppose that we have
already an optimal basis for a linear program-
ming problem, and that we wish to solve the same
problem for a different choice of vector b. The
optimal basis for the original problem may be
primal infeasible under the new b. On the other
hand , a change in b does not affect the reduced
costs so that optimality conditions are satisfied.
Thus, we may apply the dual simplex algorithm
starting from the optimal basis for the original
problem.
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Example 4.2 Solve the LP problem:

Minimize 2x1 + x2
Subject to 3x1 + x2 ≥ 3

4x1 + 3x2 ≥ 6
x1 + 2x2 ≤ 3

x1, x2 ≥ 0

Solution
Transform into standard form by multiplying each of
the equations associated with the surplus variables
S1 and S2 by −1 so that the RHS will show readily
as infeasible basic solution:

Minimize 2x1 + x2
Subject to −3x1 − x2 + S1 = −3

−4x1 − 3x2 + S2 = −6
x1 + 2x2 + S3 = 3
x1, x2, S1, S2, S3 ≥ 0

If we choose B = {S1, S2, S3} as the basis in the
starting solution, then cB = 0, and thus c̄ = c ≥
0. This starting solution is dual feasible but primal
infeasible. Therefore, we can use the dual simplex
method.
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Basic x1 x2 S1 S2 S3 Solution

c̄ 2 1 0 0 0 0

S1 −3 −1 1 0 0 −3

S2 leaves S2 −4 −3 0 1 0 −6

x2 enters S3 1 2 0 0 1 3

c̄ 2
3 0 0 1

3 0 -2 ← Always

S1 leaves S1 −5
3 0 1 −1

3 0 −1 remains

x1 enters x2
4
3 1 0 −1

3 0 2 optimal

S3 −5
3 0 0 2

3 1 −1

c̄ 0 0 2
5

1
5 0 −12

5

x1 1 0 −3
5

1
5 0 3

5

optimum x2 0 1 4
5 −

3
5 0 6

5

S3 0 0 −1 1 1 0 feasible

The graph:
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The solution starts at point A (x1 = 0, x2 = 0
and S1 = −3, S2 = −6, S3 = 3) with cost 0,
which is infeasible with respect to the solution space.
The next iteration is secured by moving to point
B (x1 = 0, x2 = 2) with cost 2 which is still infea-
sible. Finally, we reach point C (x1 = 3

5, x2 = 6
5) at

which cost 12
5 . This is the first time we encounter a

feasible solution, thus signifying the end of the itera-
tion process. Notice that the value of cost associated
with A, B, and C are 0, 2, and 12

5 respectively, which
explains why the solution starts at A is better than
optimal (smaller than the minimum).

Note If instead we let S1 be the leaving variable
(forcing the negative basic variable out of the solu-
tion), then the iterations would have proceeded in
the order A→ D → C.

199



Example 4.3 Solve by the dual simplex method:

Minimize 2x1 + 3x2
Subject to 2x1 + 3x2 ≤ 1

x1 + x2 = 2
x1, x2 ≥ 0

Solution. We replace the equality constraint by
two inequalities to obtain:

Minimize 2x1 + 3x2
Subject to 2x1 + 3x2 + S1 = 1

x1 + x2 + S2 = 2
−x1 − x2 + S3 = −2

x1, x2, S1, S2, S3 ≥ 0

Basic x1 x2 S1 S2 S3 Solution
c 2 3 0 0 0 0

S3 leaves S1 2 3 1 0 0 1
x1 enters S2 1 1 0 1 0 2

S3 −1 −1 0 0 1 −2
c̄ 0 1 0 0 2 −4
S1 0 1 1 0 2 −3
S2 0 0 0 1 1 0
x1 1 1 0 0 −1 2
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Since S1 = −3, S1 is the leaving variable. How-
ever, and all the values in the S1-row are nonnega-
tive. Thus, we conclude that the primal LP is infea-
sible, i.e. there is no primal feasible solution.
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Chapter 5

Sensitivity and Postoptimality Analysis.

Sensitivity (or postoptimality) analysis is concerned
with the study of possible changes in the available
optimal solution as a result of making changes in the
original problem.

Why do we study Sensitivity?

• In practice, there is often incomplete knowledge
of the problem data. We cannot predict changes
of data, but we may wish to predict the effects of
certain parameter changes, e.g. to which parame-
ters the profit (or cost) is more (or less) sensitive.

• We may want and be able to change some input
parameters. Which parameters are worth change
and how much they can be changed, allowing for
offset of costs?

202



How to analyze Sensitivity?

Consider the standard form problem

minimize cTx
subject to Ax = b

x ≥ 0,
or

maximize cTx
subject to Ax = b

x ≥ 0,

where A is m× n with linearly independent rows.

We shall study the dependence of the optimal ob-
jective value and the optimal solution on the coeffi-
cient matrix A, the requirement vector b, and the
cost vector c.

In-hand information: Suppose x∗ is a optimal
primal solution, with associated optimal basis B.
Then x∗B = A−1

B b > 0 and the optimal cost is

cTx∗ = cT
Bx∗B = cT

BA−1
B b.
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Given changes of A, b, c, we look for a new op-
timal solution.

• First, we check if the current optimal basis B
and/or solution x∗ is still optimal.

• If not, we compute a new optimal solution, start-
ing from x∗ and B.

Conditions we need to check:

A−1
B b ≥ 0 Feasibility

cT − cT
BA−1

B A ≥ 0 Optimality (minimization)

OR
A−1

B b ≥ 0 Feasibility

cT − cT
BA−1

B A ≤ 0 Optimality (maximization)

Suppose that some entry of A, b or c has been
changed, or that a new variable is added , or that a
new constraint is added. These two conditions may
be affected.
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We shall look for ranges of parameter changes un-
der which current basis is still optimal. If the fea-
sibility conditions or optimality conditions are vio-
lated, we look for algorithm that finds a new optimal
solution without having to solve the new problem
from scratch.

5.1 A new variable is added.

Consider the standard form problem:

minimize cTx
subject to Ax = b

x ≥ 0,

Suppose a new variable xn+1, together with a corre-
sponding An+1 and cost cn+1 is added. This yields
the new problem:

minimize cTx + cn+1xn+1
subject to Ax + An+1xn+1 = b

x ≥ 0, xn+1 ≥ 0.
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Question Is B still optimal?

First, note that (x, xn+1) = (x∗, 0) is a basic feasi-
ble solution to the new problem with basis B. Thus,
we only need to check whether optimality conditions
are satisfied. This amounts to checking whether
c̄n+1 = cn+1 − cT

BA−1
B An+1 ≥ 0.

If c̄n+1 ≥ 0, then (x, xn+1) = (x∗, 0) is an opti-
mal solution to the new problem.

If c̄n+1 < 0, then (x, xn+1) = (x∗, 0) is a basic
feasible solution but not necessary optimal. We add
a column to the simplex tableau, associated with
the new variable, and apply the primal simplex al-
gorithm starting from current basis B.

Remark If the primal is a maximization problem,
then we check whether

c̄n+1 = cn+1 − cT
BA−1

B An+1 ≤ 0

for B to be optimal.
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Example 1 Consider the problem

minimize −5x1 − x2 + 12x3
subject to 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16
x1, x2, x3, x4 ≥ 0

An optimal solution to this problem is given by
x = (2, 2, 0, 0)T and the corresponding optimal sim-
plex tableau is given by

Basic x1 x2 x3 x4
c̄ 0 0 2 7 12

x1 1 0 −3 2 2
x2 0 1 5 −3 2

From columns under x3 and x4, we have

A−1
B =


−3 2

5 −3

 .

Introduce a new variable x5 with A5 =


1
1

, and

c5 = −1, we obtain the new problem:
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minimize −5x1 − x2 + 12x3 −x5
subject to 3x1 + 2x2 + x3 + x5 = 10

5x1 + 3x2 + x4 + x5 = 16
x1, x2, x3, x4, x5 ≥ 0

Check c̄5 = c5 − cT
BA−1

B A5 ≥ 0?

c̄5 = −1− [−5 − 1]


−3 2

5 −3



1
1

 = −4.

Since c̄5 < 0, introducing the new variable to the
basis can be beneficial.

Now, A−1
B A5 =


−1

2

.

We augment the tableau as follows with a new
column associated x5, and apply primal simplex al-
gorithm:
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Basic x1 x2 x3 x4 x5
c̄ 0 0 2 7 −4 12

x1 1 0 −3 2 −1 2
x2 0 1 5 −3 2 2
c̄ 0 2 12 1 0 16

x1 1 0.5 −0.5 0.5 0 3
x5 0 0.5 2.5 −1.5 1 1

An optimal solution is given by

x = (x1, x2, x3, x4, x5)
T = (3, 0, 0, 0, 1)T ,

with optimal cost −16.
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5.2 A new constraint is added.

Consider the standard form problem:

minimize cTx
subject to Ax = b

x ≥ 0,

Suppose a new constraint aT
m+1x ≤ bm+1 is added

to the original problem, where bm+1 can be any
number.

This yields the new problem:

minimize cTx + 0xn+1

subject to
Ax + 0xn+1 = b

aT
m+1x + xn+1 = bm+1

x = (x1, x2, · · · , xn)T ≥ 0, xn+1 ≥ 0

If the optimal solution x∗ satisfies the new con-
straint, then the solution remains optimal to the new
problem.

If this constraint is violated at x∗, then

bm+1 − aT
m+1x

∗ < 0.
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We will derive a new tableau from the original op-
timal tableau

Basic xB xN Soln

c̄ 0 c̄T
N −cT

BA−1
B b

xB I A−1
B AN A−1

B b

Write aT
m+1 = (aT

B, aT
N ). Add the new constraint

aT
BxB + aT

NxN + xn+1 = bm+1

into the tableau, resulting in

Basic xB xN xn+1 Soln

c̄ 0 c̄T
N 0 −cT

BA−1
B b

xB I A−1
B AN 0 A−1

B b

xn+1 aT
B aT

N 1 bm+1

The above tableau is not a Simplex tableau. Per-
form row operations to change the last row, obtain-
ing the following Simplex tableau
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Basic xB xN xn+1 Soln

c̄ 0 c̄T
N 0 −cT

BA−1
B b

xB I A−1
B AN 0 A−1

B b

xn+1 0 aT
N − aT

BA−1
B AN 1 bm+1 − aT

BA−1
B b

The new reduced cost ≥ 0, thus the optimality
still holds.

The new basic solution 6≥ 0, because xn+1 =
bm+1 − aT

BA−1
B b = bm+1 − aT

m+1x
∗ < 0, thus

it is not feasible.
Hence, we have obtain an ‘optimal’ but infeasible

basic solution to the new problem. Thus, we apply
dual simplex method to the new problem.

Example 2 Consider the same LP problem as in
Example 1.

minimize −5x1 − x2 + 12x3
subject to 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16
x1, x2, x3, x4 ≥ 0
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with the optimal simplex tableau given by

Basic x1 x2 x3 x4
c̄ 0 0 2 7 12

x1 1 0 −3 2 2
x2 0 1 5 −3 2

Consider the additional constraint

x1 + x2 ≥ 5.

It is violated by the original optimal solution x∗ =
(2, 2, 0, 0)T .

The new problem is:

minimize −5x1 − x2 + 12x3
subject to 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16
−x1 − x2 x5 = −5

x1, x2, x3, x4, x5 ≥ 0.
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The tableau with the additional constraint:

Basic x1 x2 x3 x4 x5
c̄ 0 0 2 7 0 12

x1 1 0 −3 2 0 2
x2 0 1 5 −3 0 2
x5 −1 −1 0 0 1 −5

Performing row operations, we obtain the Simplex
tableau:

Basic x1 x2 x3 x4 x5
c̄ 0 0 2 7 0 12

x1 1 0 −3 2 0 2
x2 0 1 5 −3 0 2
x5 0 0 2 −1 1 −1

Performing one iteration of the dual simplex method,
we obtain
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Basic x1 x2 x3 x4 x5
c̄ 0 0 16 0 7 5

x1 1 0 1 0 2 0
x2 0 1 −1 0 −3 5
x5 0 0 −2 1 −1 1

The optimal solution to the new problem is

x = (0, 5, 0, 1, 0)T

with the objective value −5.
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5.3 Changes in the requirement vector b.

Suppose that some component bi of the requirement
vector b is changed to bi + δ, i.e. b is changed to
b + δei.

Our aim is to determine the range of values of δ
under which the current basis remains optimal.

Optimality conditions are unaffected by the change
in b (WHY?). It remains to examine the feasibility
condition

A−1
B (b + δei) ≥ 0, i.e. x∗B − δ(A−1

B ei) ≥ 0.

This provides a range for δ to maintain feasibility
(as illustrated in the next example).

However, if δ is not in the range, then feasibil-
ity condition is violated, and we apply dual simplex
method starting from the basis B.
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Example 3 Consider the same LP problem in Ex-
ample 1, with the optimal solution x∗ = (2, 2, 0, 0)
and optimal simplex tableau:

Basic x1 x2 x3 x4
c̄ 0 0 2 7 12

x1 1 0 −3 2 2
x2 0 1 5 −3 2

(a) Find the range of b1 so that B remains as an
optimal basis.

(b) How is the cost affected?

Solution.
(a) Suppose b1 is changed to b1+δ. Then, the values
of basic variables are changed:

xB = A−1
B


10 + δ

16

 =


−3 2

5 −3



10 + δ

16

 =


2− 3δ
2 + 5δ

 .

For the new solution to be feasible, both 2−3δ ≥ 0
and 2 + 5δ ≥ 0, yielding −2/5 ≤ δ ≤ 2/3.

217



Thus, the range for b1 is 10−2/5 ≤ b1 ≤ 10+2/3,
i.e. 93

5 ≤ b1 ≤ 102
3 for B to remain as the optimal

basis.

The corresponding change in the cost is

δcT
BA−1

B e1 = (−5,−1)

−3 2
5 −3


 1
0

 = 10δ.

Note If δ > 2/3, then x1 < 0 and the basic solu-
tion becomes infeasible. We can perform the dual
simplex method to remove x1 from the basis and x3
enters the basis.
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5.4 Changes in the cost vector c.

Consider the standard form problem:

minimize cTx
subject to Ax = b

x ≥ 0,

Suppose that some component cj of the cost vec-
tor c is changed to cj + δ.

The primal feasibility condition is not affected by
the change of c. It thus remains to examine the
optimality condition

cT − cT
BA−1

B A ≥ 0.

For a nonbasic variable xj, if cj is changed to cj +
δj, then, cB is not affected, and only the following
inequality is affected

(cj + δj)− cT
BA−1

B Aj ≥ 0,

i.e.
c̄j + δj ≥ 0.

This gives a range for δj, namely, δj ≥ −c̄j.
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For a basic variable xj, if cj is changed to cj + δj,
then, cB is affected, and hence all the optimality
conditions are affected.

We shall illustrate this case in the next example
and also determine a range for δj for a basic variable.

Example 4 Consider the same LP problem as in
Example 1.

minimize −5x1 − x2 + 12x3
subject to 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16
x1, x2, x3, x4 ≥ 0.

with the optimal solution x∗ = (2, 2, 0, 0)T and the
optimal simplex tableau given by

Basic x1 x2 x3 x4 Soln
c̄ 0 0 2 7 12

x1 1 0 −3 2 2
x2 0 1 5 −3 2

220



(a) Determine the range of changes δ3 and δ4 of c3
and c4 respectively under which the basis remains
optimal.

(b) Determine the range of change for δ1 of c1 un-
der which the basis remains optimal.

Solution

(a) For nonbasic variables x3 and x4, the corre-
sponding optimality conditions are

(c3 + δ3)− cT
BA−1

B A3 ≥ 0

(c4 + δ4)−−cT
BA−1

B A4 ≥ 0,

i.e.
c̄3 + δ3 ≥ 0 and c̄4 + δ4 ≥ 0.

Therefore, δ3 ≥ −c̄3 = −2 and δ4 ≥ −c̄4 = −7.

In this range, x∗ = (2, 2, 0, 0)T remains optimal.
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(b) For basic variables x1 and x2, note that changes
in c1 and c2 affect cB. The reduced costs of x1 and
x2 are zero. Thus, we need to compute the reduced
costs of all nonbasic variables.

The reduced cost of the nonbasic variable x3
= c3 −

[
c1 + δ1, c2

]
A−1

B A3

= (c3 − cT
BA−1

B A3)−
[
δ1 0

]
A−1

B A3

= c̄3 −
[
δ1 0

] 
−3
5

 = c̄3 + 3δ1

and the reduced cost of the nonbasic variable x4
= c̄4 − 2δ1 (Check).
Thus, to maintain optimality conditions, we must

have

c̄3 + 3δ1 ≥ 0 and c̄4 − 2δ1 ≥ 0.

i.e. δ1 ≥ −2/3 and δ1 ≤ 7/2. Hence, in the range

−2/3 ≤ δ1 ≤ 7/2

the solution x∗ = (2, 2, 0, 0)T remains optimal.
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5.5 Changes in a nonbasic column of A.

Suppose that some entry aij of the nonbasic column
of Aj is changed to aij + δ. We wish to determine
the range of values of δ for which the old primal op-
timal basis matrix remains optimal.

Since Aj is nonbasic, the basis matrix AB does
not change. Hence, the primal feasibility conditions
are unaffected. However, among the reduced costs,
only c̄j is affected. Thus in examining the optimality
conditions, we only examine the jth -reduced cost:

c̄j = cj − cT
BA−1

B Aj.

If this optimality condition is violated, the old pri-
mal optimal solution is feasible but not optimal;
and thus we should proceed to apply primal sim-
plex method.
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Example 5 Consider the same LP problem as in
Example 1

minimize −5x1 − x2 + 12x3
subject to 3x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16
x1, x2, x3, x4 ≥ 0.

Suppose that A3 is changed from


1
0

 to


1
1

.

Will the optimal solution x∗ = (2, 2, 0, 0)T be af-
fected?

[Solution] Changing A3 does not affect the opti-
mality condition A−1

B b ≥ 0, and the only affected
reduced cost is c̄3.

c̄3 = c3 − cT
BA−1

B


1
1



= 12−
[
−5 −1

] 
−3 2

5 −3



1
1


= 9 ≥ 0.
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Thus, x∗ = (2, 2, 0, 0)T remains as the optimal
solution to the new problem.

NOTE However, if A3 is to


2
1

, then the reduced

cost c̄3 = −1 < 0. This indicates that x∗ =
(2, 2, 0, 0)T a basic feasible solution to the new prob-
lem but it is not optimal. Thus, we apply primal
simplex method to the following simplex tableau,

where the x3-column is replaced by A−1
B


2
1

 =


−4

7


:

Basic x1 x2 x3 x4
c̄ 0 0 −1 7 12

x1 1 0 −4 2 2
x2 0 1 7 −3 2

where x3 enters and x2 leaves the basis.
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5.6 Applications.

Example 6
DeChi produces two models of electronic gadgets
that use resistors, capacitors and chips. The follow-
ing table summarizes the data of the situation:

Unit resource requirements
Maximum

Model 1 Model 2 availability
Resource (units) (units) (units)
Resistors 2 3 1200
Capacitors 2 1 1000
Chips 0 4 800
Unit profit ($ ) 3 4

Let x1 and x2 be the amounts produced of Mod-
els 1 and 2, respectively. The following is the corre-
sponding LP problem:
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Maximize 3x1 + 4x2
Subject to 2x1 + 3x2 ≤ 1200 (Resistors)

2x1 + x2 ≤ 1000 (Capacitors)
4x2 ≤ 800 (Chips)

x,x2 ≥ 0

The associated optimal simplex tableau is given as
follows:

Basic x1 x2 s1 s2 s3 Solution

c̄ 0 0 −5
4 −

1
4 0 −1750

x1 1 0 −1
4

3
4 0 450

s3 0 0 −2 2 1 400

x2 0 1 1
2 −

1
2 0 100

.

Here, s1, s2 and s3 represent the slacks in the re-
spective constraints.

Optimal Basic variables: x1, s3, x2.
From the optimal simplex tableau,

A−1
B =



−1
4

3
4 0

−2 2 1
1
2 −

1
2 0


.
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(a) If the available number of resistors is increased to
1300 units, find the new optimal solution.

[Solution] If the available number of resistors is
increased to 1300 units, i.e. b1 = 1300, the opti-
mality conditions are not affected. We check the
feasibility condition, xB ≥ 0.

Check: xB = A−1
B b =



−1
4

3
4 0

−2 2 1
1
2 −

1
2 0





1300
1000
800


=



425
200
150


≥ 0.

Thus the basis B is again optimal.
The new solution is x1 = 450, x2 = 150 and the
profit is 3x1 + 4x2 = 1875.
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(b) If the available number of chips is reduced to 350
units, will you be able to determine the new op-
timum solution directly from the given informa-
tion? Explain.

[Solution] If the available number of chips is re-
duced to 350 units, note that the optimality con-
ditions are unaffected. We check the feasibility
condition.

xB = A−1
B b =



−1
4

3
4 0

−2 2 1
1
2 −

1
2 0





1200
1000
350


=



450
−50
100


,

which is not feasible.

Thus, we reoptimize the problem: note that

cT
BA−1

B b = 1750.
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Basic x1 x2 s1 s2 s3 Solution

c̄ 0 0 −5
4 −

1
4 0 −1750

x1 1 0 −1
4

3
4 0 450

s3 0 0 −2 2 1 −50

x2 0 1 1
2 −

1
2 0 100

c̄ 0 0 0 −3
2 −

5
8 −1518.75

x1 1 0 0 1
2 −

1
8 456.25

s1 0 0 1 −1 −1
2 25

x2 0 1 0 0 1
4 87.5

Thus the new optimal solution is

x1 = 456.25, x2 = 87.5

and the profit is $1518.75.
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(c) A new contractor is offering DeChi additional re-
sistors at 40 cents each but only if DeChi would
purchase at least 500 units. Should DeChi accept
the offer?

[Solution] We take b1 = 1200 + 500 = 1700.

Check the feasibility conditions:

xB = A−1
B b =



−1
4

3
4 0

−2 2 1
1
2 −

1
2 0





1700
1000
800


=



325
−600
350


,

which is not feasible.

Moreover, cT
BA−1

B b = 2375. So, we reoptimize:
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Basic x1 x2 s1 s2 s3 Solution

c̄ 0 0 −5
4 −

1
4 0 −2375

x1 1 0 −1
4

3
4 0 325

s3 0 0 −2 2 1 −600

x2 0 1 1
2 −

1
2 0 350

c̄ 0 0 0 −3
2 −

5
8 −2000

x1 1 0 0 1
2 −

1
8 400

s1 0 0 1 −1 −1
2 300

x2 0 1 0 0 1
4 200

.

Thus the new optimal solution is

x1 = 400, x2 = 200

and the profit is $2000.

Change in profit is 2000− 1750 = 250;

Cost for additional 500 units of resistors is
500× 0.4 = 200.

Thus, there is a net profit of $50. Hence, DeChi
should accept the offer.
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(d) Find the unit profit range for Model 1 that will
maintain the optimality of the current solution.

[Solution] We want to find the range of c1 that
will maintain the optimality of the current solu-
tion. We should find c1 which satisfies the opti-
mality condition: c̄ = cT − cT

BA−1
B A ≤ 0.

From the optimal simplex tableau:

A−1
B A =



1 0 −1
4

3
4 0

0 0 −2 2 1

0 1 1
2 −

1
2 0


.

c̄T = cT − cT
BA−1

B A

= (c1, 4, 0, 0, 0)− (c1, 0, 4)



1 0 −1
4

3
4 0

0 0 −2 2 1

0 1 1
2 −

1
2 0



= (0, 0,
1

4
c1 − 2,−3

4
c1 + 2, 0) ≤ 0.

This yields 8
3 ≤ c1 ≤ 8. The unit profit range for

Model 1 that will maintain the optimality of the
current solution is between 8

3 and 8.
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(e) If the unit profit of model 1 is increased to $ 6,
determine the new solution.

[Solution] If the unit profit of model 1 is increased
to $ 6, this falls in the range obtained in (d).
Thus, the same solution x1 = 450, x2 = 100
holds but with profit being 6× 450 + 4× 100 =
3100.

(f) Suppose that the objective function is changed to
“maximize 5x1 + 2x2”.

Determine the associated optimal solution of the
new problem.

[Solution] Now cT = (5, 2, 0, 0, 0). To check if
the current solution is optimal, we check

c̄T = (5, 2, 0, 0, 0)− (5, 0, 2)



1 0 −1
4

3
4 0

0 0 −2 2 1

0 1 1
2 −

1
2 0
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= (0, 0,
1

4
,−11

4
, 0),

which is not optimal.

The new objective value 5x1 +2x2 at the current
solution x = (450, 100)T is

5× 450 + 2× 100 = 2450.

Re-optimize by primal simplex algorithm:

Basic x1 x2 s1 s2 s3 Solution

c̄ 0 0 1
4 −

11
4 0 −2450

x1 1 0 −1
4

3
4 0 450

s3 0 0 −2 2 1 400

x2 0 1 1
2 −1

2 0 100

c̄ 0 −1
2 0 −5

2 0 −2500

x1 1 1
4 0 1

2 0 500
s3 0 4 0 0 1 800
s1 0 2 1 −1 0 200

Optimal solution: x1 = 50, x2 = 0
Profit = $ 2500.
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Chapter 6

Transportation Problems.

6.1 Transportation Models and Tableaus.

The transportation model deals with determining a
minimum cost plan for transporting a single com-
modity from a number of sources (such as factories)
to a number of destinations (such as warehouses).

Basically, the model is a linear program that can
be solved by the regular simplex method. However,
its special structure allows the development of a so-
lution procedure, called the transportation al-
gorithm, that is computationally more efficient.
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The transportation model can be depicted as a
network with m sources and n destinations as fol-
lows:

Units of Units of
supply Sources Destinations demand

a1 1 1 b1
· · · ·
· · j bj
ai i · ·
· · · ·

am m n bn

where cij is the unit transportation cost between
source i and destination j.

The objective of the model is to determine xij
which is the amount to be transported from source
i to destination j so that the total transportation
cost is minimum.
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It can be represented by the following LP:

Minimize
m∑
i=1

n∑
j=1

cijxij (cost)

Subject to ∑n
j=1 xij ≤ ai, i = 1, 2, · · ·m

(sum of shipments from source i cannot exceed its supply)
∑m
i=1 xij ≥ bj, j = 1, 2, · · ·n

(sum of shipments to destination j must satisfy its demand)

xij ≥ 0, i = 1, 2, · · ·m, j = 1, 2, · · ·n
The first two sets of constraints imply

∑m
i=1

∑n
j=1 xij ≤ ∑m

i=1 ai∑n
j=1

∑m
i=1 xij ≥ ∑n

j=1 bj
⇒ m∑

i=1
ai ≥

n∑
j=1

bi

i.e. total supply must be at least equal to total
demand.
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When
m∑
i=1

ai =
n∑

j=1
bi, the resulting formulation is

called a balanced transportation model. In
the balanced transportation model, all constraints
are equations, that is

∑n
j=1 xij = ai, i = 1, 2, · · ·m

∑m
i=1 xij = bj, j = 1, 2, · · ·n

Proof: It follows from the first two sets of con-
straints that

m∑
i=1

ai ≥
m∑
i=1

n∑
j=1

xij

=
n∑

j=1

m∑
i=1

xij

≥ n∑
j=1

bj.

Thus,
m∑
i=1

ai =
n∑

j=1
bi implies

m∑
i=1

ai =
m∑
i=1

n∑
j=1

xij

n∑
j=1

m∑
i=1

xij =
n∑

j=1
bj.
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Since ∑n
j=1 xij − ai ≤ 0 for all i,

m∑
i=1

(
n∑

j=1
xij − ai) = 0

implies
n∑

j=1
xij − ai = 0, ∀ i.

We can similarly show the other equations. QED

The transportation algorithm to be introduced works
on a balanced transportation model.

When the transportation problem is not balanced,

i.e.
m∑
i=1

ai 6=
n∑

j=1
bi, we can balance it by adding

dummy source or a dummy destination. We shall
discuss unbalanced problems in the last section.
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Transportation problem as an LP prob-
lem.

Example 1.1
G Auto has three plants in Los Angeles, Detroit, and
New Orleans, and two major distribution centers
in Denver and Miami. The capacities of the three
plants during the next quarter are 1, 000, 1, 500 and
1, 200 cars. The quarterly demand at the two dis-
tribution centers are 2, 300 and 1, 400 cars.

The transportation cost per car on the different
routes, rounded to the nearest dollar, are calculated
as given in Table 1-1.

Table 1-1
Denver Miami

Los Angeles $80 $215
Detroit $100 $108

New Orleans $102 $68

Represent the transportation problem as an LP prob-
lem.
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Solution
The LP model of the problem in Table 1-1:

Minimize 80x11+215x12+100x21+108x22+102x31+
68x32
Subject to

x11 + x12 = 1000
x21 + x22 = 1500

x31 + x32 = 1200
x11 + x21 + x31 = 2300

x12 + x22 + x32 = 1400

xij ≥ 0, i = 1, 2, 3; j = 1, 2.

Note that these constraints are equations because
the total supply from the three sources equals the
total demand at the two destinations. This is a bal-
anced transportation model.
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Number of basic variables

Proposition 6.1.1 The balanced transportation
problem has m + n− 1 basic variables.

Proof: The number of basic variables equals to the
number of linearly independent equality constraints.

The coefficient matrix of equality constraints is
represented as follows:

1 1 . . . 1

1 1 . . . 1
. . .

1 1 . . . 1

1 1 1

1 1 1
. . . . . . · · · . . .

1 1 1



The sum of first m rows minus the sum of last n
rows equals to 0. Thus, the rank of the matrix ≤
m + n− 1.

On the other hand, we can find m+n− 1 linearly
independent columns, e.g.
{ first n columns, (2n)-column, (3n)-column, . . . ,
(mn)-column }.
Therefore, the rank is m + n− 1. QED
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Transportation tableau

The transportation tableau is used instead of
the simplex tableau as illustrated in the following
example.
Example 1.2 The transportation tableau of Ex-
ample 1.1:
Table 1-2

Denver Miami
80 215 1000

Los Angeles x11 x12
100 108 1500

Detroit x21 x22
102 68 1200

New Orleans x31 x32
Demand 2300 1400

Remark In the transportation tableau, the (i, j)-
cell in the i-row and j-column represents the decision
variable xij. We write the unit transportation cost
from source i to destination j on the top right hand
corner of the (i, j)-cell.
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6.2 The Transportation Algorithm

The transportation algorithm works on a balanced
transportation model. The steps of the transporta-
tion algorithm are exact parallels of the simplex
method, namely:

Step 1 Determine a starting basic feasible solution,
and go to Step 2.

Step 2 Use the optimality condition of the simplex
method to determine the entering variable from
among the nonbasic variables. If the optimality
condition is satisfied, stop. Otherwise, go to Step
3.

Step 3 Use the feasibility condition of the simplex
method to determine the leaving variable from
among all the current basic variables, and find
the new basic variable. Return to Step 2.

However, we take advantage of the special struc-
ture of the transportation model to present the algo-
rithm in a more convenient form. Each of the steps
is detailed subsequently via the following example.
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Example 2.1: The Sun Ray Company ships truck-
loads of grain from three silos to four mills. The sup-
ply (in truckloads) and the demand (also in truck-
loads) together with the unit transportation costs
per truckload on the different routes are summarized
in the transportation model in Table 2-1. The unit
transportation costs, cij, (shown in the northeast
corner of each box) are in hundreds dollars.

Table 2-1 Mill
1 2 3 4 Supply

10 2 20 11
1 x11 x12 x13 x14 15

12 7 9 20
Silo 2 x21 x22 x23 x24 25

4 14 16 18
3 x31 x32 x33 x34 10

Demand 5 15 15 15

The purpose of the model is to determine the min-
imum cost shipping schedule between the silos and
the mills, i.e. to determining the quantity xij shipped
from silo i to mill j (i = 1, 2, 3 ; j = 1, 2, 3, 4).
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Step 1. Determine a starting basic feasible solu-
tion.

For a general transportation tableau of size m×n,
there are m + n − 1 basic variables. Three differ-
ent procedures will be discussed: (1) Northwest-
corner Method, (2) Least-cost Method, and
(3) Vogel’s Approximation Method (VAM).

1. Northwest-corner Method starts at the
northwest corner cell (x11) of the tableau.

Step 1 Allocate as much as possible to the selected
cell, and adjust the associated amount of supply
and demand by subtracting the allocated amount.

Step 2 Cross out the row or column with zero sup-
ply or demand to indicate that no further assign-
ments can be made in that row or column. If
both the column and row net to zero simultane-
ously, cross out one only (either one), and leave
a zero supply (demand ) in the uncrossed-out row
(column).
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Step 3 Move to the cell to the right if a column has
just been crossed or the one below if a row has
been crossed out. Go to Step 1.

Example 2-1. NW corner method

1 2 3 4 Supply
10 2 20 11

1 15
12 7 9 20

Source 2 25
4 14 16 18

3 10
Demand 5 15 15 15

The basic variables of the starting basic solution is

x11 = 5 x12 = 10
x22 = 5 x23 = 15 x24 = 5
x34 = 10

Total cost = 5(10) + 10(2) + 5(7) + 15(9) + 5(20) +
10(18) = 520.
Note There are 3 + 4− 1 = 6 basic variables in the
starting basic feasible solution.
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2. Least-cost Method finds a better starting
solution by concentrating on the cheapest routes. It
starts at the cell with the smallest unit cost.

Step 1 Assign as much as possible to the variable
with the smallest unit cost in the entire tableau.
(Ties are broken arbitrarily.) Adjust the associ-
ated amount of supply and demand by subtract-
ing the allocated amount.

Step 2 Cross out the satisfied row or column. As
in the northwest-corner method, if a column and
a row are satisfied simultaneously, cross out one
only.

Step 3 Move to the uncrossed-out cell with the
smallest unit cost. Go to Step 1.
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Example 2-2. Least-cost method

1 2 3 4 Supply
10 2 20 11

1 15
12 7 9 20

Source 2 25
4 14 16 18

3 10
Demand 5 15 15 15

The basic variables of the starting basic feasible so-
lution is

x12 = 15 x14 = 0
x23 = 15 x24 = 10
x31 = 5 x34 = 5

and the associated cost is

15(2) + 0(11) + 15(9) + 10(20) + 5(4) + 5(18) = 475.
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3. Vogel’s Approximation Method (VAM)
is an improved version of the least-cost method that
generally produces better starting solutions.

Step 1 For each row (column) with strictly positive
supply (demand), evaluate a penalty measure by
subtracting the smallest cost element in the row
(column) from the next smallest cost element
in the same row (column). If more than one cost
is the smallest, then the penalty = 0.

Step 2 Identify the row (column) with the largest
penalty, breaking ties arbitrarily. Allocate as much
as possible to the variable with the least unit cost
in the selected row (column). Adjust the supply
and demand and cross out the satisfied row (col-
umn) . If a column and a row are satisfied simul-
taneously, crossed out the row (column) with the
largest penalty and the remaining column (row)
is assigned a zero demand (supply).

Step 3 Recompute the penalties for the uncrossed
out rows and columns, then go to Step 2.
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Remark

1. The row and column penalties are the penal-
ties that will be incurred if, instead of shipping
over the best route, we are forced to ship over
the second-best route. The most serious one
(largest penalty) is selected and allocate as much
as possible to the variable with the smallest unit
cost.

2. The variable at the selected cell must be regarded
as a basic variable even if it is assigned zero amount.
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Example 2-3. Vogel’s method

1 2 3 4 Supply
10 2 20 11

1 15
12 7 9 20

Source 2 25
4 14 16 18

3 10
Demand 5 15 15 15

The basic variables of the starting basic feasible
solution is

x12 = 15 x22 = 0
x23 = 15 x24 = 10
x31 = 5 x34 = 5

and the associated cost is

15(2) + 0(7) + 15(9) + 10(20) + 5(4) + 5(18) = 475.

Same as the solution obtained by the least-cost method.
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An example for comparing the three meth-
ods.

NW-Corner Method:

1 2 3 4 Supply
2 3 2 5

1 20
12 20 8 10

Source 2 25
6 30 9 20

3 15
Demand 25 15 10 10

The basic variables of the starting basic feasible
solution is

and the associated cost is
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Least-Cost Method:

1 2 3 4 Supply
2 3 2 5

1 20
12 20 8 10

Source 2 25
6 30 9 20

3 15
Demand 25 15 10 10

The basic variables of the starting basic feasible
solution is

and the associated cost is
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Vogel’s Approximation Method:

1 2 3 4 Supply
2 3 2 5

1 20
12 20 8 10

Source 2 25
6 30 9 20

3 15
Demand 25 15 10 10

The basic variables of the starting basic feasible
solution is

and the associated cost is

256



Step 2 Determine an entering variable.

After determining a basic feasible solution, we use
the Method of Multipliers (or UV method ) to
compute the reduced costs of nonbasic variables xpq.
If the optimality conditions are satified, the basic
feasible solution is optimal. Otherwise, we proceed
to determine the entering variable among the cur-
rent nonbasic variables.

Method of Multipliers.

Primal:
Minimize

m∑
i=1

n∑
j=1

cijxij

Subject to Dual variables

x11 + x12 + · · · + x1n = a1 u1

x21 + x22 + · · · + x2n = a2 u2

. . . . . . .

xm1 + xm2 + · · · + xmn = am um

x11 + x21 + · · · + xm1 = b1 v1

x12 + x22 + · · · + xm2 = b2 v2

. . . . . . .

x1n + x2n + · · · + xmn = bn vn

xij ≥ 0, i = 1, 2, · · · , m; j = 1, 2, · · · , n
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In the equality constraints, the coefficient (column
vector) of xij is

Aij =

 ei
ej

 .

For each xij there is an associated dual constraint

AT
ijp ≤ cij

where

AT
ijp =

 ei
ej


T  u

v

 = eT
i u + eT

j v = ui + vj,

Thus, the Dual:

Maximize
m∑
i=1

aiui +
n∑

j=1
bjvj

Subject to ui + vj ≤ cij
ui, vj unrestricted in sign

i = 1, 2, · · · , m; j = 1, 2, · · · , n.
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NOTES

1. At a basic feasible solution,with basis B, we let

pT = cT
BB−1.

Thus, the reduced cost of xij is

c̄ij = cij−cT
BB−1Aij = cij−AT

ijp = cij−ui−vj.

2. The reduced cost of c̄ij of a basic variable xij
must be zero. Thus, we have

ui + vj = cij for each basic variable xij

These give m+n−1 equations in m+n variables
u1, u2, · · · , um, v1, v2, · · · , vn. Thus, we set u1 =
0, and use the equations to solve for the remaining
variables u2, · · · , um, v1, v2, · · · , vn.

3. The reduced cost of a nonbasic variable xpq can
be computed as follows:

cpq = cpq − (up + vq).

4. Since the transportation problem is a minimiza-
tion problem, the entering variable is a nonbasic
variable with negative cpq.
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The UV method involves computation of reduced
costs of nonbasic variables via the introduction of
multipliers (which are dual variables) ui and vj.
However, the special structure of the transportation
model allows simpler computations.

Summary of steps to determine an enter-
ing variable.

1. Associate the multipliers ui and vj with row i
and column j of the transportation tableau.

2. For each basic variable xij, solve for values of ui
and vj from the following equations:

ui + vj = cij

by arbitrarily setting u1 = 0.

3. For each nonbasic variable xpq, compute cpq =
cpq − (up + vq). If cpq ≥ 0 for all nonbasic xpq,
stop and conclude that the starting feasible solu-
tion is optimal.

Otherwise, choose xpq corresponding to a nega-
tive value cpq to be the entering variable.
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Example 2-4 We use the staring basic feasible so-
lution in Example 2-1, which is obtained by North-
west Corner Method:

1 2 3 4 Supply
10 2 20 11

1 (5) (10) 15
12 7 9 20

Source 2 (5) (15) (5) 25
4 14 16 18

3 (10) 10
Demand 5 15 15 15
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Step 3 Determine the leaving variable.

The leaving variable is determined by a loop.

Definition 6.2.1 An ordered sequence of at least
four different cells is called a loop if

1. Any two consecutive cells lie in either the same
row or same column;

2. No three consecutive cells lie in the same row
or column;

3. The last cell in the sequence has a row or col-
umn in common with the first cell in the se-
quence.

An important relationship between the loop and
the constraint coefficient matrix A:

Lemma 6.2.2 The cells corresponding to a set
of variables contains a loop if and only if the cor-
responding columns of A are linearly dependent.
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The leaving variable is chosen from the current
basic variables by the following steps.

1. Construct a loop that starts and ends at the en-
tering variable. Each corner of the loop, with
the exception of that in the entering variable cell,
must coincide with a current basic variable. (Ex-
actly one loop exists for a given entering vari-
able.)

2. Assign the amount θ to the entering variable cell.
Alternate between subtracting and adding the
amount θ at the successive corners of the loop.

(In the tableau, starting with (−), indicate signs
(−) or (+) alternatively in the south corner of
each cell corresponds to a current basic variable
at corners.)

263



3. Choose the largest possible value of θ > 0 such
that for each current basic variable xij, we have
xij±θ ≥ 0 (according to the sign assigned in Step
2). Choose the basic variable xij corresponding
to yielding this largest allowable value of θ as the
leaving variable.

(In the tableau, the leaving variable is selected
among the corner basic variables of the loop la-
beled (−) and has the smallest value xij.)

The next basic feasible solution.
The value of the entering variable xpq is increased to
θ, the maximum value found in Step 3. Each value of
the corner (basic) variables is adjusted accordingly
to satisfy the supply (demand). The new solution is
thus obtained.
The new cost.
The transportation cost of each unit transported
through the new route via the entering variable xpq

is changed by c̄pq = cpq− (up + vq). Thus the total
transportation cost associated with the new route is
reduced by θc̄pq.
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Example 2-5 In Example 2-4, we have found that
the entering variable is x31. Based on the same start-
ing basic feasible solution, we form a close loop

x31→ x11→ x12→ x22→ x23→ x24→ x34→ x31.

We assign a value θ to x31, and alternate the signs
of θ along the loop.

1 2 3 4 Supply
10 2 20 11

1 (5) (10) 15
12 7 9 20

Source 2 (5) (15) (5) 25
4 14 16 18

3 θ (10) 10
Demand 5 15 15 15

We proceed to compute new basic feasible solu-
tions.
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1 2 3 4
10 2 20 11

1
12 7 9 20

2
4 14 16 18

3

1 2 3 4
10 2 20 11

1
12 7 9 20

2
4 14 16 18

3

Optimal solution: x12 = 5, x14 = 10, x22 = 10,
x23 = 15, x31 = 5, x34 = 5.
Cost =
5(2) + 10(11) + 10(7) + 15(9) + 5(4) + 5(18) = 435.
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6.3 Unbalanced Transportation model.

The transportation algorithm works on a balanced
transportation model. If the given model is not bal-
anced, we will balance it before we carry out the
transportation algorithm. A transportation model
can always be balanced by introducing a dummy
supply (source) or a dummy demand (des-
tination) as follows:

1. If
m∑
i=1

ai >
n∑

j=1
bi, a dummy destination is used to

absorb the surplus
m∑
i=1

ai −
n∑

j=1
bi with unit

transportation cost equal to zero or stated storage
costs at the various sources.

2. If
m∑
i=1

ai <
n∑

j=1
bi, a dummy source is used to sup-

ply the shortage amount by
n∑

j=1
bi −

m∑
i=1

ai

with unit transportation cost equal to zero or
stated penalty costs at the various destinations
for unsatisfied demands.
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Example 3.1
Telly’s Toy Company produces three kinds of dolls:
the Bertha doll, the Holly doll, and the Shari doll
in quantities of 1, 000, 2, 000 and 2, 000 per week re-
spectively. These dolls are demanded at three large
department stores: Shears, Nicholas and Words. Con-
tract requiring 1, 500 total dolls per week are to be
shipped to each store. However, Words does not
want any Bertha dolls. Because of past contract
commitments and size of other orders, profile vary
from store to store on each kind of doll. A summary
of the unit profit per doll is given below:

Shears Nicholas Words
Bertha 5 4 −

Holly 16 8 9
Shari 12 10 11

(a) Set up the problem as a transportation problem.

(b) Obtain a starting basic feasible solution by the
VAM and proceed to find an optimal solution.

(c) Obtain an alternative optimal solution.
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Solution (a) The objective is to maximize the profit
which can be converted to a minimization problem
with the transportation cost being the negative of
the profit.

Shears Nicholas Words Supply
−5 −4 M 1000

Bertha
−16 −8 −9 2000

Holly
−12 −10 −11 2000

Shari
Demand 1500 1500 1500

We have assigned a value of +M to the cell from
Bertha to Words as ‘Words does not want any Bertha
dolls’. This large unit transportation cost ensures
that the corresponding variable assumes zero value.

Remark In general, unacceptable transportation
routes would be assigned a unit transportation cost
value of +M .
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(b) The transportation problem is not balanced.
Thus, we introduce a dummy demand of 500 to
form a balanced transportation model. This ex-
ample does not specify the costs of transportation
to the dummy demand, this means, we are indif-
ferent in which sources supply the dummy destina-
tion. Hence, we should assign equal unit cost to
each dummy cell. Here we simply assign the unit
transportation cost at each dummy cell to be 0.

S N W Dummy Supply
−5 −4 M 0 1000

B

−16 −8 −9 0 2000
H

−12 −10 −11 0 2000
S

D. 1500 1500 1500 500
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Using the UV-method iteratively:

S N W Dummy
−5 −4 M 0

B

−16 −8 −9 0
H

−12 −10 −11 0
S
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S N W Dummy
−5 −4 M 0

B

−16 −8 −9 0
H

−12 −10 −11 0
S

Therefore the optimal solution:

Doll Store Number Profit ($ )
Bertha Nicholas 500 2, 000
Holly Shears 1, 500 24, 000
Holly Words 500 4, 500
Shari Nicholas 1, 000 10, 000
Shari Words 1, 000 11, 000

Total 51, 000
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(c) Because the reduced cost at H-N cell is 0, we
proceed to find an alternative optimal solution:

S N W Dummy
−5 −4 M 0

B

−16 −8 −9 0
H

−12 −10 −11 0
S

Doll Store Number Profit ($ )
Bertha Nicholas 500 2, 000
Holly Shears 1, 500 24, 000
Holly Nicholas 500 4, 000
Shari Nicholas 500 5, 000
Shari Words 1, 500 16, 500

Total 51, 000
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6.4 Assignment problems

The assignment problem deals with the allocation
(assignment) of resources (e.g. employees, machines,
time slots) to activities (e.g. jobs, operators, events)
on a one-to-one basis. The cost of assigning resource
i to activity j is cij, and the objective is to deter-
mine how to make the assignment in order to mini-
mize the total cost.

Example: MachineCo has four machines and four
jobs to be completed. Each machine must be as-
signed to complete one job. The time required to
complete a job is shown in the table:

Job
1 2 3 4

1 14 5 8 7
Machine 2 2 12 6 5

3 7 8 3 9
4 2 4 6 10

MachineCo wants to minimize the total time needed
to complete the four jobs.
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Solution: We define (for i, j = 1, 2, 3, 4)

xij =

1 if machine i is assigned to job j
0 otherwise,

MachineCo’s problem may be formulated as a lin-
ear program:

min z = 14x11 + 5x12 + 8x13 + 7x14

+2x21 + 12x22 + 6x23 + 5x24

+7x31 + 8x32 + 3x33 + 9x34

+2x41 + 4x42 + 6x43 + 10x44

s.t. x11 + x12 + x13 + x14 = 1

x21 + x22 + x23 + x24 = 1

x31 + x32 + x33 + x34 = 1

x41 + x42 + x43 + x44 = 1

x11 + x21 + x31 + x41 = 1

x12 + x22 + x32 + x42 = 1

x13 + x23 + x33 + x43 = 1

x14 + x24 + x34 + x44 = 1

xij = 0 or 1 for all i, j.
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The first four constraints (machine constraints) en-
sure that each machine is assigned to a job.
The last 4 constraints (job constraints) ensure that
each job is completed by a machine.

In general, the assignment problem can expressed as

LP:

min z =
n∑

i=1

n∑
j=1

cijxij

s.t.
n∑

j=1
xij = 1, i = 1, 2, . . . , n,

n∑
i=1

xij = 1, j = 1, 2, . . . , n,

xij = 0 or 1.

An assignment solution {xij} is feasible if and
only if exactly one from i-th row {xi1, xi2, . . . , xin}
equals 1 (the others equal 0), and exactly one from
j-th column {x1j, x2j, . . . , xnj} equals 1 (the others
equal 0).
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Table form:

1 2 . . . j . . . n
1 c11 c12 . . . c1j . . . c1n 1
2 c21 c22 . . . c2j . . . c2n 1
... ... ...
i ci1 ci2 . . . cij . . . cin 1
... ... ...
n cn1 cn2 . . . cnj . . . cnn 1

1 1 . . . 1 . . . 1

Observations:

1. This is a special case of the transportation prob-
lem (si = dj = 1),

2. For the assignment problem to have a feasible
solution, we must have m = n. (It is necessary
to balance the problem by adding dummy jobs or
machines if m 6= n).

The Hungarian Method for Assignment
Problems

The method is based on the following theorem.
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Theorem 6.4.1 The optimal solution of an as-
signment problem remains the same if a constant
is added to or subtracted from any row or column
of the cost table.

Proof. Suppose constants ui and vj are subtracted
from the i-th row and j-th column, respectively. The
new assignment cost c′ij is

c′ij = cij − ui − vj, ∀ i, j.

Let z′ denote the new total cost. Then

z′ =
n∑

i=1

n∑
j=1

c′ijxij

=
n∑

i=1

n∑
j=1

(cij − ui − vj)xij

=
n∑

i=1

n∑
j=1

cijxij −
n∑

i=1

n∑
j=1

uixij −
n∑

i=1

n∑
j=1

vjxij

= z − n∑
i=1

ui
n∑

j=1
xij

−
n∑

j=1

vj
n∑

i=1
xij



= z − n∑
i=1

ui −
n∑

j=1
vj

= z − constant

Therefore, min z′ = min z. QED
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Idea of the Hungarian Method:
Create a new reduced cost table by subtracting

constants from rows and columns so that some en-
tries become zero and all entries are nonnegative. If
there are enough zeros to constitute a feasible solu-
tion, then this solution must be optimal because the
cost cannot be negative.
The procedure:

Step 1: Subtract the smallest entry in each row
from that row. Subtract the smallest entry in
each column from that column.

Step 2: Try to make a feasible solution with assign-
ments only to zero entries. If such a feasible so-
lution is obtained, stop (the solution is optimal).
Otherwise, go to step 3.

Step 3: Cross out all zeros with the least number of
vertical and/or horizontal lines.

Step 4: Let θ be the smallest uncrossed entry. Sub-
tract θ from every uncrossed entry and add θ to
every entry which is crossed out twice.
Return to step 2.
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Explanation for Step 4: The optimal solutions
remain the same if we subtract θ from whole rows
which are not crossed out by horizontal lines and
add θ to whole columns which are crossed out by
vertical lines. This results in the following:

Entries crossed out once are unchanged.

Entries crossed out twice are increased by θ.

Example: (MachineCo)

(1)

row min

14 5 8 7 5
2 12 6 5 2
7 8 3 9 3
2 4 6 10 2

Subtract row min’s.

(2)

9 0 3 2
0 10 4 3
4 5 0 6
0 2 4 8
0 0 0 2 column min

Subtract column min’s.
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(3)

9 0 3 0
0 10 4 1
4 5 0 4
0 2 4 6

— Cross out zeros.

— Subtract θ(= 1) from uncrossed entries.

— Add θ to double-crossed entries.

(4)

Optimal solution:

x12 = x24 = x33 = x41 = 1,

other xij = 0.

Total cost:

z = 5 + 5 + 3 + 2 = 15 (hours)
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Unbalanced assignment problems

Example: (Job shop Co.)
3 new machines are to be assigned to 4 locations.

Material handling costs are given in table below.

Location
1 2 3 4

1 13 16 12 11
Machine 2 15 − 13 20

3 5 7 10 6

(“−” indicates that machine 2 cannot be assigned
to location 2.)

Objective: Assign the new machines to the avail-
able locations to minimize the total cost of material
handling.

Solution:
To balance the problem, we introduce a dummy

machine with assignment costs to the various loca-
tions equal to 0.
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Set the cost of assigning machine 2 to location 2
to be M (very large).

The assignment problem is formulated as

Location
1 2 3 4

1 13 16 12 11
Machine 2 15 M 13 20

3 5 7 10 6
4(D) 0 0 0 0

Solve the problem with the Hungarian method:

1 2 3 4
1 13 16 12 11 −11
2 15 M 13 20 −13
3 5 7 10 6 −5
4 0 0 0 0 −0

⇒

1 2 3 4
1 2 5 1 0
2 2 M 0 7
3 0 2 5 1
4 0 0 0 0
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Optimal solution is to assign

machine to location cost
1 4 11
2 3 13
3 1 5

(Location 2 is not used.)

Optimal cost = 11 + 13 + 5 = 29.
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