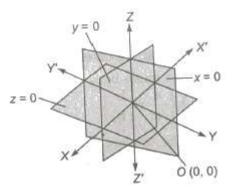


Call Now: 99921-67800

Mathematics Notes for Class 12 chapter 11. Three Dimensional Geometry

Coordinate System

The three mutually perpendicular lines in a space which divides the space into eight parts and if these perpendicular lines are the coordinate axes, then it is said to be a coordinate system.



Sign Convention

Octant Coordinate	<x></x>	Y	Z
OXYZ		+	+
OX'YZ	/	+ THE L	EARHERS' SPACE
OXY'Z	+	-	+
OXYZ'	+	+	-
OX'Y'Z	-	-	+
OX'YZ'		+	-
OXY' Z'	+	- 1	-
OX'Y'Z'	-		

Distance between Two Points

Let $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ be two given points. The distance between these points is given by

 $PQ \ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

The distance of a point P(x, y, z) from origin O is

 $OP = \sqrt{x^2 + y^2 + z^2}$

Section Formulae

(i) The coordinates of any point, which divides the join of points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ in the ratio m : n internally are

 $(mx_2 + nx_1 / m + n, my_2 + ny_1 / m + n, mz_2 + nz_1 / m + n)$

(ii) The coordinates of any point, which divides the join of points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ in the ratio m : n externally are

 $(mx_2 - nx_1 / m - n, my_2 - ny_1 / m - n, mz_2 - nz_1 / m - n)$

(iii) The coordinates of mid-point of P and Q are

 $(x_1 + x_2 / 2, y_1 + y_2 / 2, z_1 + z_2 / 2)$

(iv) Coordinates of the centroid of a triangle formed with vertices $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ and $R(x_3, y_3, z_3)$ are

 $(x_1 + x_2 + x_3 / 3, y_1 + y_2 + y_3 / 3, z_1 + z_2 + z_3 / 3)$

(v) Centroid of a Tetrahedron

If (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) and (x_4, y_4, z_4) are the vertices of a tetrahedron, then its centroid G is given by

 $(x_1 + x_2 + x_3 + x_4 / 4, y_1 + y_2 + y_3 + y_4 / 4, z_1 + z_2 + z_3 + z_4 / 4)$

Direction Cosines

If a directed line segment OP makes angle α , β and γ with OX, OY and OZ respectively, then Cos α , cos β and cos γ are called direction cosines of up and it is represented by l, m, n.

i.e.,

```
l = \cos \alpha
m = cos \beta
and n = cos \gamma
P(x, y, z)
```

If OP = r, then coordinates of OP are (lr, mr, nr)

Call Now: 99921-67800

(i) If 1, m, n are direction cosines of a vector r, then

(a)
$$r = |r| (li + mj + nk) \Rightarrow r = li + mj + nk$$

(b) $l^2 + m^2 + n^2 = 1$

(c) Projections of r on the coordinate axes are

(d) $|\mathbf{r}| = 1|\mathbf{r}|$, $\mathbf{m}|\mathbf{r}|$, $\mathbf{n}|\mathbf{r}| / \sqrt{\text{sum of the squares of projections of r on the coordinate axes}}$

(ii) If $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are two points, such that the direction cosines of PQ are l, m, n. Then,

 $x_2 - x_1 = 1|PQ|, y_2 - y_1 = m|PQ|, z_2 - z_1 = n|PQ|$

These are projections of PQ on X, Y and Z axes, respectively.

(iii) If 1, m, n are direction cosines of a vector r and a b, c are three numbers, such that 1/a = m/ b = n / c.

Then, we say that the direction ratio of r are proportional to a, b, c.

Also, we have

Also, we have $1 = a / \sqrt{a^2 + b^2} + c^2$, $m = b / \sqrt{a^2 + b^2} + c^2$, $n = c / \sqrt{a^2 + b^2} + c^2$

(iv) If θ is the angle between two lines having direction cosines l_1 , m_1 , n_1 and l_2 , m_2 , n_2 , then

 $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$

(a) Lines are parallel, if $l_1 / l_2 = m_1 / m_2 = n_1 / n_2$

(b) Lines are perpendicular, if $l_1 l_2 + m_1 m_2 + n_1 n_2$

(v) If θ is the angle between two lines whose direction ratios are proportional to a_1 , b_1 , c_1 and a_2 , b_2 , c_2 respectively, then the angle θ between them is given by

 $\cos \theta = a_1 a_2 + b_1 b_2 + c_1 c_2 / \sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}$

Lines are parallel, if $a_1 / a_2 = b_1 / b_2 = c_1 / c_2$

Lines are perpendicular, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$.

(vi) The projection of the line segment joining points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ to the line having direction cosines 1, m, n is

Call Now: 99921-67800

 $|(x_2 - x_1)l + (y_2 - y_1)m + (z_2 - z_1)n|.$

(vii) The direction ratio of the line passing through points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are proportional to $x_2 - x_1$, $y_2 - y_1 - z_2 - z_1$ Then, direction cosines of PQ are

 $x_2 - x_1 \mathbin{/} |PQ|, \ y_2 - y_1 \mathbin{/} |PQ|, \ z_2 - z_1 \mathbin{/} |PQ|$

Area of Triangle

If the vertices of a triangle be $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$, then

Area of $\triangle ABC = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$ where, $\Delta x = \frac{1}{2} \begin{vmatrix} y_1 & z_1 & 1 \\ y_2 & z_2 & 1 \\ y_3 & z_3 & 1 \end{vmatrix}$, $\Delta y = \frac{1}{2} \begin{vmatrix} x_1 & z_1 & 1 \\ x_2 & z_2 & 1 \\ x_3 & z_3 & 1 \end{vmatrix}$ and $\Delta z = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$

Angle Between Two Intersecting Lines

If $l(x_1, m_1, n_1)$ and $l(x_2, m_2, n_2)$ be the direction cosines of two given lines, then the angle θ between them is given by

 $\cos \theta = l_1 l_2 + m_1 m_2 + \frac{n_1 n_2}{n_1 n_2}$

(i) The angle between any two diagonals of a cube is $\cos^{-1}(1/3)$.

(ii) The angle between a diagonal of a cube and the diagonal of a face (of the cube is $\cos^{-1}(\sqrt{2}/3)$

Straight Line in Space

The two equations of the line ax + by + cz + d = 0 and a' x + b' y + c' z + d' = 0 together represents a straight line.

1. Equation of a straight line passing through a fixed point $A(x_1, y_1, z_1)$ and having direction ratios a, b, c is given by

 $x - x_1 / a = y - y_1 / b = z - z_1 / c$, it is also called the symmetrically form of a line.

Any point P on this line may be taken as $(x_1 + \lambda a, y_1 + \lambda b, z_1 + \lambda c)$, where $\lambda \in R$ is parameter. If a, b, c are replaced by direction cosines 1, m, n, then λ , represents distance of the point P from the fixed point A.

2. Equation of a straight line joining two fixed points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ is given by

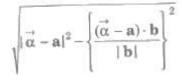
Call Now: 99921-67800

$$x - x_1 / x_2 - x_1 = y - y_1 / y_2 - y_1 = z - z_1 / z_2 - z_1$$

3. Vector equation of a line passing through a point with position vector a and parallel to vector b is $r = a + \lambda b$, where A, is a parameter.

4. Vector equation of a line passing through two given points having position vectors a and b is $r = a + \lambda (b - a)$, where λ is a parameter.

5. (a) The length of the perpendicular from a point $P(\vec{\alpha})$ on the line $r - a + \lambda b$ is given by



(b) The length of the perpendicular from a point $P(x_1, y_1, z_1)$ on the line

$$\frac{x-a}{l} = \frac{y-b}{m} = \frac{z-c}{n} \text{ is given by}$$

$$\sqrt{\{(a-x_1)^2 + (b-y_1)^2 + (c-z_1)^2\} - \{(a-x_1) \ l + (b-y_1) \ m + (c-z_1) \ n\}^2}$$

where, 1, m, n are direction cosines of the line.

6. **Skew Lines** Two straight lines in space are said to be skew lines, if they are neither parallel nor intersecting.

7. Shortest Distance If l_1 and l_2 are two skew lines, then a line perpendicular to each of lines 4 and 12 is known as the line of shortest distance.

If the line of shortest distance intersects the lines l_1 and l_2 at P and Q respectively, then the distance PQ between points P and Q is known as the shortest distance between l_1 and l_2 .

8. The shortest distance between the lines

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}\\ \\ \text{and} \end{array} \\ \begin{array}{c} \frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}} \text{ is given by}\\ \\ \\ \begin{array}{c} \frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}}\\ \\ \\ \frac{1}{n_{2}}=\frac{y-y_{2}}{n_{2}}=\frac{z-z_{2}}{n_{2}}\\ \\ \\ \\ \end{array} \\ \begin{array}{c} \frac{1}{l_{2}}=\frac{y-y_{2}}{n_{2}}=\frac{z-z_{2}}{n_{2}}\\ \\ \\ \frac{1}{l_{1}}=\frac{1}{m_{1}}=\frac{1}{n_{1}}\\ \\ \\ \frac{1}{l_{2}}=\frac{1}{m_{2}}=\frac{1}{n_{2}}\\ \\ \\ \frac{1}{\sqrt{(m_{1}n_{2}-m_{2}n_{1})^{2}+(n_{1}l_{2}-n_{2}l_{1})^{2}+(l_{1}m_{2}-l_{2}m_{1})^{2}}} \end{array} \end{array}$$

Call Now: 99921-67800

9. The shortest distance between lines $r = a_1 + \lambda b_1$ and $r = a_2 + \mu b_2$ is given by

$$d = \frac{|(\mathbf{b}_1 \times \mathbf{b}_2) \cdot (\mathbf{a}_2 - \mathbf{a}_1)|}{|\mathbf{b}_1 \times \mathbf{b}_2|}$$

10. The shortest distance parallel lines $r = a_1 + \lambda b_1$ and $r = a_2 + \mu b_2$ is given by

$$d = \frac{(\mathbf{a}_2 - \mathbf{a}_1) \times \mathbf{b}}{|\mathbf{b}|}$$

11. Lines $r = a_1 + \lambda b_1$ and $r = a_2 + \mu b_2$ are intersecting lines, if $(b_1 * b_2) * (a_2 - a_1) = 0$.

12. The image or reflection (x, y, z) of a point (x_1, y_1, z_1) in a plane ax + by + cz + d = 0 is given by

 $x - x_1 / a = y - y_1 / b = z - z_1 / c = -2 (ax_1 + by_1 + cz_1 + d) / a^2 + b^2 + c^2$

13. The foot (x, y, z) of a point (x_1, y_1, z_1) in a plane ax + by + cz + d = 0 is given by

 $x - x_1 / a = y - y_1 / b = z - z_1 / c = -(ax_1 + by_1 + cz_1 + d) / a^2 + b^2 + c^2$

14. Since, x, y and z-axes pass through the origin and have direction cosines (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. Therefore, their equations are

x - axis : x - 0 / 1 = y - 0 / 0 = z - 0 / 0THE LEARNERS' SPACE y - axis : x - 0 / 0 = y - 0 / 1 = z - 0 / 0z - axis : x - 0 / 0 = y - 0 / 0 = z - 0 / 1

Plane

A plane is a surface such that, if two points are taken on it, a straight line joining them lies wholly in the surface.

General Equation of the Plane

The general equation of the first degree in x, y, z always represents a plane. Hence, the general equation of the plane is ax + by + cz + d = 0. The coefficient of x, y and z in the cartesian equation of a plane are the direction ratios of normal to the plane.

Equation of the Plane Passing Through a Fixed Point

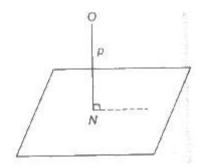
The equation of a plane passing through a given point (x_1, y_1, z_1) is given by $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$.

Call Now: 99921-67800

Normal Form of the Equation of Plane

(i) The equation of a plane, which is at a distance p from origin and the direction cosines of the normal from the origin to the plane are l, m, n is given by lx + my + nz = p.

(ii) The coordinates of foot of perpendicular N from the origin on the plane are (1p, mp, np).



Intercept Form

The intercept form of equation of plane represented in the form of

$$x / a + y / b + z / c = 1$$

where, a, b and c are intercepts on X, Y and Z-axes, respectively.

For x intercept Put y = 0, z = 0 in the equation of the plane and obtain the value of x. Similarly, we can determine for other intercepts.

Equation of Planes with Given Conditions

(i) Equation of a plane passing through the point $A(x_1, y_1, z_1)$ and parallel to two given lines with direction ratios

 $a_1, b_1, c_1 \text{ and } a_2, b_2, c_2 \text{ is} \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0.$

(ii) Equation of a plane through two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ and parallel to a line with direction ratios a, b, c is

 $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a & b & c \end{vmatrix} = 0.$

(iii) The Equation of a plane passing through three points $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ is

Call Now: 99921-67800

 $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$

(iv) Four points A(x_1 , y_1 , z_1), B(x_2 , y_2 , z_2), C(x_3 , y_3 , z_3) and D(x_4 , y_4 , z_4) are coplanar if and only if

 $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{vmatrix} = 0.$

(v) Equation of the plane containing two coplanar lines

 $x - x_1 - y - y_1 - z - z_1$

and

$$\frac{a_{1}}{a_{1}} - \frac{b_{1}}{b_{1}} = \frac{c_{1}}{c_{1}}$$

$$\frac{x - x_{2}}{a_{2}} = \frac{y - y_{2}}{b_{2}} = \frac{z - z_{2}}{c_{2}}$$
 is
$$\begin{vmatrix} x - x_{1} & y - y_{1} & z - z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{vmatrix} = 0.$$
WIDYAKU

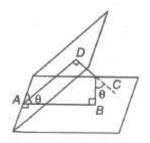
Angle between Two Planes

The angle between two planes is defined as the angle between the normal to them from any point.

Thus, the angle between the two planes

$$a_1x + b_1y + c_1z + d_1 = 0$$

and $a_2x + b_2y + c_2z + d_2 = 0$



is equal to the angle between the normals with direction cosines

 $\pm \, a_1 \, / \, \sqrt{\Sigma} \; a^2_{1}, \, \pm \, b_1 \, / \, \sqrt{\Sigma} \; a^2_{1}, \, \pm \, c_1 \, / \, \sqrt{\Sigma} \; a^2_{1}$

Call Now: 99921-67800

and \pm a_2 / $\sqrt{\Sigma}$ $a^2{}_2,$ \pm b_2 / $\sqrt{\Sigma}$ $a^2{}_2,$ \pm c_2 / $\sqrt{\Sigma}$ $a^2{}_2$

If θ is the angle between the normals, then

 $\cos \theta = \pm a_1 a_2 + b_1 b_2 + c_1 c_2 / \sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}$

Parallelism and Perpendicularity of Two Planes

Two planes are parallel or perpendicular according as the normals to them are parallel or perpendicular.

Hence, the planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$

are parallel, if $a_1 / a_2 = b_1 / b_2 = c_1 / c_2$ and perpendicular, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$.

Note The equation of plane parallel to a given plane ax + by + cz + d = 0 is given by ax + by + cz + k = 0, where k may be determined from given conditions.

Angle between a Line and a Plane

In Vector Form The angle between a line $r = a + \lambda b$ and plane $r * \cdot n = d$, is defined as the complement of the angle between the line and normal to the plane:

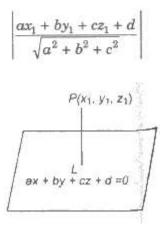
 $\sin \theta = n * b / |n||b|$

In Cartesian Form The angle between a line $x - x_1 / a_1 = y - y_1 / b_1 = z - z_1 / c_1$

and plane $a_2x + b_2y + c_2z + d_2 = 0$ is $\sin \theta = a_1a_2 + b_1b_2 + c_1c_2 / \sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}$

Distance of a Point from a Plane

Let the plane in the general form be ax + by + cz + d = 0. The distance of the point P(x₁, y₁, z₁) from the plane is equal to



Call Now: 99921-67800

If the plane is given in, normal form lx + my + nz = p. Then, the distance of the point P(x₁, y₁, z₁) from the plane is $|lx_1 + my_1 + nz_1 - p|$.

Distance between Two Parallel Planes

If $ax + by + cz + d_1 = 0$ and $ax + by + cz + d_2 = 0$ be equation of two parallel planes. Then, the distance between them is

$$\frac{d_2-d_1}{\sqrt{a^2+b^2+c^2}}$$

Bisectors of Angles between Two Planes

The bisector planes of the angles between the planes

$$a_1x + b_1y + c_1z + d_1 = 0$$
, $a_2x + b_2y + c_2z + d_2 = 0$ is

 $a_1x + b_1y + c_1z + d_1 / \sqrt{\Sigma a_1^2} = \pm a_2x + b_2y + c_2z + d_2 / \sqrt{\Sigma a_2^2}$

One of these planes will bisect the acute angle and the other obtuse angle between the given plane.

Sphere

A sphere is the locus of a point which moves in a space in such a way that its distance from a fixed point always remains constant.

General Equation of the Sphere

In Cartesian Form The equation of the sphere with centre (a, b, c) and radius r is

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2} \dots (i)$$

In generally, we can write

 $x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz + d = 0$

Here, its centre is (-u, v, w) and radius = $\sqrt{u^2 + v^2 + w^2} - d$

In Vector Form The vector equation of a sphere of radius a and Centre having position vector c is $|\mathbf{r} - \mathbf{c}| = \mathbf{a}$

Important Points to be Remembered

(i) The general equation of second degree in x, y, z is $ax^2 + by^2 + cz^2 + 2hxy + 2kyz + 2lzx + 2ux + 2ux + 2wz + d = 0$

Call Now: 99921-67800

represents a sphere, if

(a) $a = b = c (\neq 0)$

(b) h = k = 1 = 0

The equation becomes

 $ax^{2} + ay^{2} + az^{2} + 2ux + 2vy + 2wz + d - 0 \dots (A)$

To find its centre and radius first we make the coefficients of x^2 , y^2 and z^2 each unity by dividing throughout by a.

Thus, we have

 $x^{2}+y^{2}+z^{2}+(2u / a) x + (2v / a) y + (2w / a) z + d / a = 0 \dots (B)$

 \therefore Centre is (- u / a, - v / a, - w / a)

and radius = $\sqrt{u^2 / a^2 + v^2 / a^2 + w^2 / a^2} - d / a$

 $=\sqrt{u^2 + v^2 + w^2} - ad/|a|$.

(ii) Any sphere concentric with the sphere

 $x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz + d = 0$

is $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + k = 0$

(iii) Since, $r^2 = u^2 + v^2 + w^2 - d$, therefore, the Eq. (B) represents a real sphere, if $u^2 + v^2 + w^2 - d > 0$

(iv) The equation of a sphere on the line joining two points (x_1, y_1, z_1) and (x_2, y_2, z_2) as a diameter is

 $(x - x_1) (x - x_1) + (y - y_1) (y - y_2) + (z - z_1) (z - z_2) = 0.$

(v) The equation of a sphere passing through four non-coplanar points (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) and (x_4, y_4, z_4) is

Call Now: 99921-67800

Tangency of a Plane to a Sphere

The plane lx + my + nz = p will touch the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$, if length of the perpendicular from the centre (-u, -v, -w)= radius,

i.e., $||u - mv - nw - p| / \sqrt{l^2 + m^2 + n^2} = \sqrt{u^2 + v^2 + w^2} - d$ $(|u - mv - nw - p)^2 = (u^2 + v^2 + w^2 - d) (l^2 + m^2 + n^2)$

Plane Section of a Sphere

Consider a sphere intersected by a plane. The set of points common to both sphere and plane is called a plane section of a sphere.

In \triangle CNP, NP² = CP² - CN² = r² - p² \therefore NP = $\sqrt{r^2 - p^2}$ **VIDYAKU THE LEARNERS' SPACE**

Hence, the locus of P is a circle whose centre is at the point N, the foot of the perpendicular from the centre of the sphere to the plane.

The section of sphere by a plane through its centre is called a great circle. The centre and radius of a great circle are the same as those of the sphere.