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CHAPTER 4. 

COORDINATE GEOMETRY IN THREE DIMENSIONS 
                   

 

4.1   Introduction 

 

Various geometrical figures in three-dimensional space can be described relative to a set of 

mutually orthogonal axes Ox, Oy, Oz, and a point can be represented by a set of rectangular 

coordinates  (x, y, z).  The point can also be represented by cylindrical coordinates  ( ρ  , φ  , z) or 

spherical coordinates (r , θ  , φ ), which were described in Chapter 3.  In this chapter, we are  

concerned mostly with (x, y, z).  The rectangular axes are usually chosen so that when you look 

down the z-axis towards the xy-plane, the y-axis is 90
o
 counterclockwise from the x-axis.  Such a 

set is called a right-handed set.  A left-handed set is possible, and may be useful under some 

circumstances, but, unless stated otherwise, it is assumed that the axes chosen in this chapter are 

right-handed.  

 

An equation connecting x, y and z, such as 
 

     f x y z( , , ) = 0     4.1.1 
 

or      ),( yxzz =      4.1.2 

 

describes a two-dimensional surface in three-dimensional space. A line (which need be neither 

straight nor two-dimensional) can be described as the intersection of two surfaces, and hence a line 

or curve in three-dimensional coordinate geometry is described by two equations, such as 

 
    

      f x y z( , , ) = 0    4.1.3 
 

and      g x y z( , , ) = 0.    4.1.4 

 

In two-dimensional geometry, a single equation describes some sort of a plane curve.  For example, 
 

      y qx
2 4=      4.1.5 

 

describes a parabola.  But a plane curve can also be described in parametric form by two equations.  

Thus, a parabola can also be described by 
 

         x = qt
2
     4.1.6 

   

and              y = 2qt      4.1.7 
 

 

Similarly, in three-dimensional geometry, a line or curve can be described by three equations in 

parametric form.  For example, the three equations 
 

      x a t= cos      4.1.8 
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      y a t= sin      4.1.9 
 

      z = ct      4.1.10 
 

describe a curve in three-space.  Think of the parameter t as time, and see if you can imagine what 

sort of a curve this is. 

 

We shall be concerned in this chapter mainly with six types of surface: the plane, the ellipsoid, the 

paraboloid, the hyperboloid, the cylinder and the cone. 

 

 

4.2  Planes and Straight Lines 

 

The geometry of the plane and the straight line is, of course, rather simple, so that we can dispose 

of them in this brief introductory section in a mere 57 equations. 

 

The equation 
 

     Ax By Cz D+ + + = 0    4.2.1 
  

represents a plane.  If D ≠  0 it is often convenient, and saves algebra and computation with no loss 

of information, to divide the equation through by D and re-write it in the form 
 

     ax by cz+ + = 1.     4.2.2 
 

 

The coefficients need not by any means all be positive.  If D = 0, the plane passes through the 

origin of coordinates, and it may be convenient to divide the equation 4.2.1 by C and hence to re-

write it in the form 
 

     ax by z+ + = 0.     4.2.3 
 

The plane represented by equation 4.2.2 intersects the yz-, zx- and xy-planes in the straight lines 
 

 

     by cz+ = 1      4.2.4 

 

     cz ax+ = 1      4.2.5 
 

     ax by+ = 1      4.2.6 
 

and it intersects the x-, y- and z-axes at 
 

     x x a= =0 1/       4.2.7 
 

     y y b= =0 1/       4.2.8 
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     z z c= =0 1/       4.2.9 
 

 

The geometry can be seen in figure IV.1    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another way of writing the equation to the plane would be 
 

 

x

x

y

y

z

z0 0 0

1+ + = .     4.2.10 

 

 

In this form, x0 , y0  and z0  are the intercepts on the x-, y- and z-axes. 
 

 

Distance of a point from the plane 

 

We now consider the problem.  Let P1 ),,( 111 zyx be some point in space.  What is the 

perpendicular distance from P1 to the plane  ?1
000

=++=++
z

z

y

y

x

x
czbyax  

 

[The algebra in the following paragraphs may seem a little heavy.  If all you are interested in is the distance of the plane 

from the origin, simply substitute x1 = y1 = z1 = 0, and the algebra will be considerably eased.] 

 

Let P(x, y, z) be a point on the plane.  The distance s between P1 and P is given by 

FIGURE IV.1 
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 4 

 

    

2
1

2
1

2
1

2 )()()( zzyyxxs −+−+−=    4.2.11 

 

But since (x, y, z) is on the plane, we can write s
2
 in terms of x and y alone, by substituting for z 

from equation 4.2.2:          

2

1
2

1
2

1
2 1

)()( 



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


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−−
+−+−= z

c

byax
yyxxs                             4.2.12  

This distance (from P to P1) is least for a point on the plane such that 
x

s

∂

∂ 2

 and 
y

s

∂

∂ 2

 are both zero.  

These two conditions result in  
 

    abyaczxcaxca −−+=+ 11
222 )(     4.2.13 

 

    abxbczycbycb −−+=+ 11
222 )(     4.2.14 

 

These, combined with equation 4.2.2, result in 
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=     4.2.15 
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=     4.2.16 
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=     4.2.17 

 

These are the coordinates of the point P in the plane that is nearest to P1.  The perpendicular 

distance between P and P1  is  
  

        

222

1111

cba

czbyax
p

++

−−−
=      4.2.18 

 

This is positive if P1 is on the same side of the plane as the origin, and negative if it is on the 

opposite side.  If the perpendicular distances of two points from the plane, as calculated from 

equation 4.4.18, are of opposite signs, they are on opposite sides of the plane.  If p = 0, or indeed if 

the numerator of equation 4.4.18 is zero, the point P1 (x1 , y1 , z1 ) is, of course, in the plane.   

 

It is worthwhile to repeat these results for the case where the point P1 coincides with the origin O.  

In that case we find that the coordinates of the point P on the plane that is nearest to the origin are 
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and the perpendicular distance from the origin to the plane (i.e. from O to P) is 
    

    
222

1

cba
p

++
=                               4.2.20 

    
         

Further, OP is normal to the plane, and the direction cosines (see Chapter 3, especially section 3.3) 

of OP, i.e. of the normal to the plane, are 
 

   

a

a b c

b

a b c

c

a b c2 2 2 2 2 2 2 2 2+ + + + + +
, ,    4.2.21 

               

 

The coefficients a, b, c are direction ratios of the normal to the plane; that is to say, they are 

numbers that are proportional to the direction cosines. 
 

Example:  Consider the plane  
 

    0.50x + 0.25y + 0.20z = 1     4.2.22 
 

The plane intersects the x-, y- and z-axes at (2,0,0), 0,4,0) and  (0,0,5).  The point on the plane 

that is closest to the origin is  (1.4184, 0.7092, 0.5674).  The perpendicular distance of the origin 

from the plane is 1.6843.  The direction cosines of the normal to the plane are (0.8422, 0.4211, 

0.3369). 

 
[There is no equation labelled 4.2.23.]    
   

An equation for the plane containing three specified points can be found as follows.  Let (x1  , y1 ), 

(x2  , y2 ), (x3  , y3 ) be the three specified points, and let (x , y) be any point in the plane that 

contains these three points.  Each of these points must satisfy an equation of the form 4.2.1.  That 

is, 
 

 

        xA +  yB +  zC + D = 0     4.2.24 

  

               x1A + y1B + z1C + D = 0     4.2.25 

   

      x2A + y2B + z2C + D = 0     4.2.26 

 

      x3A + y3B + z3C + D = 0     4.2.27 
 
 

In these equations, we are treating A, B, C, D as unknowns, and the x, y, z, x1 , y1  ... as coefficients.  

We have four linear equations in four unknowns, and no constant term.  From the theory of 
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equations, these are consistent only if each is a linear combination of the other three.  This is 

satisfied only if the determinant of the coefficients is zero: 
 

     

x y z

x y z

x y z

x y z

1

1

1

1

01 1 1

2 2 2

3 3 3

=     4.2.28 

 

and this is the equation to the required plane containing the three points.  The reader will notice the 

similarity of this equation to equation 2.2.4 for a line passing between two points in two-

dimensional geometry.  The reader might like to repeat the argument, but requiring instead the four 

points to satisfy an equation of the form 4.2.2.   There will then be four linear equations in three 

unknowns.  Otherwise the argument is the same. 
 

 

We now move on to the question of finding the area of a triangle whose vertices are given.  It is 

straightforward to do this with a numerical example, and the reader is now encouraged to write a 

computer program, in whatever language is most familiar, to carry out the following tasks.  Read as 

data the x-y-z coordinates of three points A, B, C.  Calculate the lengths of the sides a, b, c, a being 

opposite to A, etc.  Calculate the three angles at the vertices of the triangle, in degrees and minutes, 

and check for correctness by verifying that their sum is 180
o
 .  If an angle is obtuse, make sure that 

the computer displays its value as a positive angle between 90
o
  and 180

0
.  Finally, calculate the 

area of the triangle. 

 

The data for several triangles could be written into a data file, which your program reads, and then 

writes the answers into an output file.  Alternatively, you can type the coordinates of the vertices of 

one triangle and ask the computer to read the data from the monitor screen, and then to write the 

answers on the screen followed by a message such as "Do you want to try another triangle (1)  or 

quit (2)?".  Your program should also be arranged so that it writes an appropriate message if the 

three points happen to be collinear. 

 

 

It should be easy to calculate the sides.  The angles can then be calculated from equation 3.2.2 and 

the area from each of the four equations 3.2.3 and 3.2.4.  They should all yield the correct answer, 

of course, but the redundant calculations serve as an important check on the correctness of your 

programming, as also does your check that the three angles add to 180
o
.   Where there are two of 

more ways of performing a calculation, a careful calculator will do all of them as a check against 

mistakes, whether the calculation is done by hand or by computer. 

 

Example.   If the coordinates of the vertices are 
 

      A(7, 4, 3),    B(11, 6, 2),   C(9, 2, 4) 
 

the sides are                  a = 4.583,    b = 3.000,     c = 4.899,      
 

and the angles are           A = 36
o
 42',  B = 77

o
 24',  C = 65

o
 54' , 
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which add up to 180
o
 .  The area is 6.708. 

 
  

Example.    If the coordinates of the vertices are 

 

A(6, 4, 9),   B(2, 6, 17),   C(8, 3, 5) 
 

the area of the triangle is zero and the points are collinear. 

 

The foregoing showed that it was not difficult to calculate numerically the area of the triangle from 

the coordinates of its vertices.  Is it easy to find a simple explicit algebraic formula for the area in 

terms of (x1 , y1 , z1 ), (x2 , y2 , z2 ) and  (x3 , y3 , z3 )?  On referring to figure IV.2, we can proceed  

as follows. 

 

 

  

 

 

 

                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The vectors r2 and r3 can be written 

  

   r2  = (x2  − x1 )i +  (y2  − y1 )j +  (z2  − z1 )k             4.2.29 

 

(x3 , y3 , z3 ) 

y 

z 

r3 

r2 

(x2 , y2 , z2 ) 

(x1 , y1 , z1 ) 

x 

FIGURE IV.2 
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   r3  = (x3  − x1 )i +  (y3  − y1 )j +  (z3  − z1 )k     4.2.30 

 

where i, j, k are unit vectors parallel to the x-, y- and z- axes. 

 

The cross product of r2  and r3  gives the (vector) area of the  parallelogram of which they form two 

sides.  The area A of the  triangle is half of this, so that 

 

                  2A = r2 ×  r3 

                    =      [(y2  − y1 )(z3  − z1 ) − (y3  − y1 )(z2  − z1 )]i  

              + [(z2   − z1 )(x3  − x1 ) − (z3  − z1 )(x2  − x1 )]j 

             + [(x2  − x1 )(y3  − y1 ) − (x3  − x1 )(y2  − y1 )]k  4.2.31 
 

The magnitude of this vector can be found in the usual way, to obtain 

 

          4A
2
  =       [(y1 (z2  −  z3 ) + y2 (z3  −  z1 ) + y3 (z1  − z2 )]

2 

      +  [(z1 (x2  −  x3 ) + z2 (x3  −  x1 ) + z3 (x1 − x2 )]
2 

                                       +  [(x1 (y2  −  y3 ) + x2 (y3  −  y1 ) + x3 (y1 − y2)]
2 

 .    4.2.32 

    
 

The reader can verify that, if z1  = z2  = z3  , this reduces to  equation 2.2.12 for the area of a triangle 

the xy-plane.  Equation  4.1.32 can also be written   

 

   

2

321

321

2

321

321

2

321

321

2

111111111

4 yyy

xxx

xxx

zzz

zzz

yyy

A ++=   4.2.33 

 
 

This gives the area explicitly in terms of the coordinates of the vertices.  If it is zero, the points are 

collinear.   

 

The volume of a tetrahedron is 1
6

×  base × height.  By combining equation 4.2.33 for the area of a 

triangle with equation 4.2.14 for the perpendicular distance of a point from a plane, we can 

determine that the volume of the tetrahedron whose vertices are 

 

(x0 , y0 , z0 ),  (x1 , y1 , z1 ),  (x2 , y2  , z2 ),  (x3 , y3 , z3 ) 

 

is     

1

1

1

1

6

1

333

222

111

000

zyx

zyx

zyx

zyx

     4.2.34 

 

If this determinant is zero, the four points are coplanar. 
    



 9 

In three-dimensional coordinate geometry, a straight line is described by two equations, being the 

intersection of two planes: 

 

    a1x + b1y + c1z = 1      4.2.35  

 

    a2x + b2y + c2z = 1      4.2.36 

 

If a a b b c c1 2 1 2 1 2/ / / ,= = the normals to the two planes have the same direction ratios, so the planes 

are parallel and do not intersect.  Otherwise the normals to the two planes have different direction 

ratios (a1 , b1 , c1 ), (a2 , b2 , c2 ), and, since the line of intersection of the planes is at right angles to  

both normals, the direction ratios of the line are found from the cross product of vectors normal to 

the planes.  The direction ratios of the line of intersection are therefore 

 

   (b1c2  − b2c1  , c1a2  − c2a1  , a1b2  − a2b1 )    4.2.37 

 

The line crosses the yz-, zx- and xy- planes at 
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=    4.2.38 

 

 

   
1221

21

1221

12

acac

cc
x

acac

aa
z

−

−
=

−

−
=    4.2.39 

   

 

   
1221

21

2221

12

baba

aa
y

baba

bb
x

−

−
=

−

−
=    4.2.40 

 

An example of computing a straight line from the intersection of two planes occurs in meteor 

astronomy.  We can assume a flat Earth, which is tantamount to supposing that the height of a 

meteor is negligible compared with the radius of Earth, and the height of an observer above sea 

level is negligible compared with the height of the meteor.  Since the heights of meteors are 

typically a few tens of km, both of these approximations are reasonable, at least for non-

instrumental eyewitness accounts. 

 

We suppose that, relative to an arbitrary origin O on the surface of Earth, a witness A is 15 km east 

and 5 km north of the origin. He sees a fireball start at an angle θ = 25
o
.5 from his zenith and at an 

azimuth φ  =  54
o
.5  counterclockwise from his east, and it  finishes at θ = 36

o
.7,  φ = 16

o
.7.  (See 

figure IV.3.) 
 

Show that the plane containing the witness and the meteor is 
 

   0.0363x + 0.0911y − 0.0454z = 1     4.2.41 
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A second witness, 30 km east and 15 km north of O, estimates the zenith distance and azimuth of 

two points on the meteor track to be θ   = 29
o
.6, φ  = 202

o
.9   and  θ  = 33

o
.6,  φ  = 242

o
.9 

 

Show that the plane containing this second witness and the meteor is 
 

   0.0257x + 0.0153y + 0.0168z = 1     4.2.42 

 

These two equations describe the path of the fireball through the air.  Show that, if the meteoroid 

carries on moving in a straight  line, it will strike the ground as a meteorite 42.4 km east and  6.0 

km south of the origin O. 

 
 

       
 

        

 

             

     

     

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

As we have just discussed, two nonparallel planes intersect in a straight line.  Usually, three 

nonparallel planes intersect at a single unique point; for, if L is a line formed from the intersection 

of planes P1  and P2 , L will usually intersect the plane P3  at a point. 

 

Example:  The planes 

 

     2x + 3y +  4z − 9 = 0     4.2.43 

 

      x +  y − 8z + 6 = 0      4.2.44 

 

     5x + 6y − 12z + 1 = 0     4.2.45 

 

intersect at (1, 1, 1). 
 

It will be recalled from the theory of linear equations that three equations 

 

x (east) O 

A 

y (north) 

z (up) 

FIGURE IV.3 

θ  = 25
o
.5      

φ  =  54
o
.5 

θ  =  36
o
.7     

φ  =  16
o
7 
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                   A1x + B1y + C1z + D1 = 0       4.2.46 

 

              A2x + B2y + C2z + D2   = 0             4.2.47 

  

              A3x + B3y + C3z + D3   = 0     4.2.48 
 

have a unique solution only if 
 

 

    ∆ = ≠

A B C

A B C

A B C

1 1 1

2 2 2

3 2 3

0     4.2.49  

 

 

and, in the geometrical interpretation, this is the condition that three planes meet in a single point. 

 

Consider, however, the three planes  
 

 

               2x + 3y +  4z −  9 = 0      4.2.50 

 

      x +  y −  8z +  6 = 0      4.2.51 

 

                   5x + 6y − 20z + 12 = 0      4.2.52 

 

The direction ratios of the three lines found by combining the planes in pairs (see equation 4.2.37) 

are 
 

(-28, 20, -1)    (-84, 60,-3)    (28, -20, 1) 

 

It will be observed that each is a multiple of either of the others, and the direction cosines of each 

of the three lines are identical apart from sign: ( m  0.813,   ±0.581,  m  0.029).  

  

The three lines are, in fact, parallel, and the three planes enclose a prism.  A condition for this is 

that 
 

                               ∆ = 0.      4.2.53 
 

 

But consider now the planes 
 

          2x + 3y +  4z − 9 = 0         4.2.54 

 

           x +  y −  8z + 6 = 0      4.2.55 

 

         5x + 6y − 20z + 9 = 0      4.2.56 
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Not only does  ∆  = 0, but also 

 

        ∆ ' = =

A B D

A B D

A B D

1 1 1

2 2 2

3 3 3

0    4.2.57 

          

 

The three lines obtained by combining equations 4.2.54,55,56 in pairs are in fact identical, and the 

three planes meet in a single line. Each of equations 4.2.54,55,56 is a linear combination of the 

other two. 

 

In summary, three nonparallel planes meet in a single line if ∆ ≠ 0.  They meet in a single point if       

∆  =  ∆'  =  0.  They enclose a prism if  ∆  = 0,    ∆'  ≠  0.   
 

 

4.3  The Ellipsoid 
 

Consider the equation 
 

     

x

a

z

c

2

2

2

2
1+ = ,       4.3.1 

            

 

with a  > c, in the xz-plane.  The length of the semi major axis is a and the length of the semi minor 

axis is c.  If this figure is rotated through 360
o
  about its minor  (z-) axis, the three- dimensional 

figure so obtained is called an oblate spheroid. The   figure of the Earth is not exactly spherical; it 

approximates to a  very slightly oblate spheroid, the ellipticity (c − a)/a being only 0.00335. (The 

actual figure of the Earth, mean sea level, is often referred to as the geoid.) 

   

The equation to the oblate spheroid referred to above is 

 

     

x

a

y

a

z

c

2

2

2

2

2

2
1+ + = .     4.3.2 

  

 

 

If the ellipse 4.3.1 is rotated through 360
o
  about its major (x-) axis, the figure so obtained is called 

a prolate spheroid. A rugby football (or, to a lesser extent, a North American football, which is a bit 

too pointed) is a good approximation to a prolate spheroid. 

 

The equation to the prolate spheroid just described is 

 

     
x

a

y

c

z

c

2

2

2

2

2

2
1+ + = .     4.3.2  

 

Either type of spheroid can be referred to as an "ellipsoid of revolution". 
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The figure described by the equation 
 

     

x

a

y

b

z

c

2

2

2

2

2

2
1+ + =      4.3.3 

 

is a tri-axial ellipsoid.  Unless stated otherwise, I shall adopt the convention a > b > c, and choose 

the coordinate axes such that the major, intermediate and minor axes are along the x-, y- and z-axes 

respectively.  A tri-axial ellipsoid is not an ellipsoid of revolution; it cannot be obtained by rotating 

an ellipse about an axis. 

 

 

The special case a = b = c: 

 

     x y z a
2 2 2 2+ + =      4.3.4 

is, of course, a sphere.  
       

 

Figure IV.4 shows the cross-section of a tri-axial ellipse in the yz- plane (a), the xz-plane (b) and 

(twice - (c), (d)) the xy-plane.  If you imagine your eye wandering in the xz-plane from the x-axis 

(a) to the z-axis (c), you will be convinced that there is a direction in the xz-plane from which the 
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FIGURE IV.4 
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cross-section of the ellipse is a circle.  There are actually two such directions, symmetrically 

situated on either side of the z-axis, but there are no such directions in either the xy- or the yz-planes 

from which the cross-section of the ellipsoid appears as a circle.  Expressed otherwise, there are 

two planes that intersect the ellipsoid in a circle. This fact is of some importance in the description 

of the propagation of light in a bi-axial crystal, in which one of the wavefronts is a tri-axial 

ellipsoid. 

 

Let us refer the ellipsoid 4.3.3 to a set of axes Ox'y'z' such that the angles z'Oz and x'Ox  are each 

θ , and the y'- and y-axes are identical.  The equation of the ellipsoid referred to the new axes is (by 

making use of the usual formulas for the rotation of axes) 

 

( ) ( )
.1

sin'cos''cos'sin'
2

2

2

2

2

2

=
θ−θ

++
θ+θ

c

xz

b

y

a

xz
    4.3.5 

                  

     

The cross-section of the ellipsoid in the x'y'-plane (i.e. normal to the z'-axis) is found by putting      

z' = 0: 
 

    

( 'cos ) ' ( ' sin )
.

x

a

y

b

x

c

θ θ2

2

2

2

2

2
1+ + =     4.3.6 

 

This is a circle if the coefficients of x'  and y'  are equal.  Thus it is a circle if 

 
 

    

( )
( )222

222
2cos

cab

cba

−

−
=θ  .     4.3.7 

 

 

Thus, a plane whose normal is in the xz-plane (i.e. between the major and minor axis) and inclined 

at an angle θ  to the minor (z-) axis, cuts the tri-axial ellipsoid in a circle.  As viewed from  either of 

these directions, the cross-section of the ellipsoid is a  circle of radius b. 

 
 

As an asteroid tumbles over and over, its brightness varies, for several reasons, such as its changing 

phase angle, the directional reflective properties of its regolith, and, of course, the cross-sectional 

area presented to the observer. The number of factors that affect the light-curve of a rotating 

asteroid is, in fact, so large that it is doubtful if it is possible, from the light-curve alone, to deduce 

with much credibility or accuracy the true shape of the asteroid.  However, it is obviously of some 

interest for a start in any such investigation to be able to calculate the cross-sectional area of the 

ellipsoid 4.3.3 as seen from some direction ( θ  , φ ). 
 

Let us erect a set of coordinate axes Ox'y'z' such that Oz' is in the direction ( θ , φ ), first by a 

rotation through  φ  about Oz to form intermediate axes Ox1y1z1 , followed by a rotation through θ 

about Oy1.  The (x', y', z' ) coordinates are related to the (x, y, z) coordinates by 
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sin0cos
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y

x

    4.3.8 

 

 

 

If we substitute for x, y, z in equation 4.3.3 from equation 4.3.8, we obtain the equation to the 

ellipsoid referred to the Ox'y'z' coordinate systems.  And if we put z' = 0, we see the elliptical cross-

section of the ellipsoid in the plane normal to Oz'.  This will be of the form 
 

     Ax'
 2

  + 2Hx'y' + By' 
2
  = 1,     4.3.9   

    

 

where               
2

2

2

2

2

2
2 sinsincos

cos
cba

A
θ

+






 φ
+

φ
θ= ,           4.3.10 

  

 

     







−φφθ=

22

2 11
cossincos22

ab
H ,     4.3.11  

 

     B
a b

= +
sin cos2

2

2

2

φ φ
 .     4.3.12  

 

This is an ellipse whose axes are inclined at an angle  ψ  from Ox' given by 

 

       tan .2
2

ψ =
−

H

A B
       4.3.13 

 

By replacing x' and y' by x" and y". where 
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










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

ψψ
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



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cossin
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'

'

y

x

y

x
     4.3.14  

 

  

we shall be able to describe the ellipse in a coordinate system Ox"y" whose axes are along the axes 

of the ellipse, and the equation will be of the form 
 

     

x

a

y

b

"

"

"

"

2

2

2

2
1+ =       4.3.15 

 

and the area of the cross-section is πa"b". 
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For example, suppose the semi axes of the ellipsoid are a = 3, b = 2, y = 1, and we look at it from 

the direction  θ  = 60
o
,  φ= 45

o
 .   Following equations 4.4.9,10,11,12, we obtain for the equation of 

the elliptical cross-section referred to the  system Ox'y'z' 

 

   1'5180.0''4069.0'813795.0 22 =++ yyxx &&& .    4.3.16 

 

From equation 4.4.13 we find   ψ  = 3
O
.22338.  Equation 4.4.14 then transforms equation 4.4.16 to 

 

 

            0.797094x" 
2
 +  0.178600y"

 2
  = 1    4.3.17   

 

or      
( ) ( )

.1
3662.2

"

1201.1

"
2

2

2

2

=+
yx

    4.3.18 

 

The area is             π  × 1.1202 × 2.3663  =  8.362. 

 

It is suggested here that the reader could write a computer program in the language of his or her 

choice for calculating the cross-sectional area of an ellipsoid as seen from any direction.  As an 

example, I reproduce below a Fortran program for an ellipse with (a, b, c) = (3, 2, 1).  It is by no 

means the fastest and most efficient Fortran program that could be written, but is sufficiently 

straightforward that anyone familiar with Fortran and probably many who are not should be able to 

follow the steps. 

 

 A=3. 

 B=2. 

 C=1. 

 A2=A*A 

 B2=B*B 

 C2=C*C 

 READ(5,*)TH,PH 

 TH=TH/57.29578 

 PH=PH/57.29578 

STH=SIN(TH) 

CTH=COS(TH) 

SPH=SIN(PH) 

CPH=COS(PH) 

STH2=STH*STH 

CTH2=CTH*CTH 

SPH2=SPH*SPH 

CPH2=CPH*CPH 

AA=CTH2*(CPH2/A2+SPH2/B2)+STH2/C2 

TWOHH=2.*CTH*STH*CPH*(1./B2−1./A2) 

BB=SPH2/A2+CPH2/B2 

PS=.5*ATAN2(TWOHH,AA−BB) 

SPS=SIN(PS) 
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CPS=COS(PS) 

AAA=CPS*(AA*CPS+TWOHH*SPS)+BB*SPS*SPS 

BBB=SPS*(AA*SPS−TWOHH*CPS)+BB*CPS*CPS 

SEMAX1=1./SQRT(AAA) 

SEMAX2=1./SQRT(BBB) 

AREA=3.1415927*SEMAX1*SEMAX2 

WRITE(6,1)AREA 

        1 FORMAT(' Area = ',F7.3) 

 STOP 

 END  

 
 

 

 

4.4  The Paraboloid 

 

The equation x
2
  = 4qz = 2lz is a parabola in the xz-plane.  The distance between vertex and focus is 

q, and the length of the semi latus rectum l = 2q.  The equation can also be written 

 

     
x

a

z

h

2

2
=       4.4.1 

 

 Here a and h are distances such that x = a when z = h, and the length of the semi latus rectum is l 

= a
2
 /(2h). 

 

If this parabola is rotated through 360
o
 about the z-axis, the figure swept out is a paraboloid of 

revolution, or circular paraboloid.  Many telescope mirrors are of this shape.  The equation to the 

circular paraboloid is 
 

     
h

z

a

y

a

x
=+

2

2

2

2

.     4.4.2 

  

The cross-section at z = h is a circle of radius a. 

 

The equation  
 

     

x

a

y

b

z

h

2

2

2

2
+ = ,      4.4.3 

 

in which we shall choose the x- and y-axes such that a  > b, is an elliptic paraboloid and, if a  ≠ b, is 

not formed by rotation of a parabola.  At z = h, the cross section is an ellipse of semi major and 

minor axes equal to a and b respectively.  The section in the plane y = 0 is a parabola of semi latus 

rectum a
2
 /(2h).  The section in the plane x = 0 is a parabola of semi latus rectum b

2
 /(2h).  The 

elliptic paraboloid lies entirely above the xy-plane. 
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The equation 
 

     

x

a

y

b

z

h

2

2

2

2
− =       4.4.4 

 

is a hyperbolic paraboloid, and its shape is not quite so easily visualized.  Unlike the elliptic 

paraboloid, it extends above and below the plane.  It is a saddle-shaped surface, with the saddle 

point at the origin.  The section in the plane y = 0 is the "nose down" parabola x a z h
2 2= /  

extending above the xy-plane.  The section in the plane x = 0 is the "nose up" parabola 

y b z h
2 2= − /  extending below the xy-plane. The section in the plane z = h is the hyperbola 

 

     

x

a

y

b

2

2

2

2
1− = .      4.4.5 

 

The section with the plane z = −h is the conjugate hyperbola 
 

     

x

a

y

b

2

2

2

2
1− = − .      4.4.6 

 

The section with the plane z = 0 is the asymptotes 
 

     

x

a

y

b

2

2

2

2
0− = .      4.4.7 

 

The surface for a = 3, b = 2, h = 1 is drawn in figure IV.4. 
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4.5  The Hyperboloid 

 

The equation 
 

     

x

a

z

c

2

2

2

2
1− =       4.5.1 

 

is a hyperbola, and a is the semi transverse axis.  (As described in Chapter 2, c is the semi 

transverse axis of the conjugate hyperbola.) 

 

If this figure is rotated about the z-axis through 360
o
, the surface swept out is a circular 

hyperboloid (or hyperboloid of revolution) of one sheet.  Its equation is 
 

     

x

a

y

a

z

c

2

2

2

2

2

2
1+ − = .     4.5.2 

 

Imagine two horizontal rings, one underneath the other.  The upper one is fixed.  The lower one is 

suspended from the upper one by a large number of vertical strings attached to points equally  

spaced around the circumference of each ring.  Now twist the lower one through a few degrees 

about a vertical axis, so that the strings are no longer quite vertical, and the lower ring rises slightly.  

These strings are generators of a circular hyperboloid of one sheet. 

 

If this figure is rotated about the x-axis through 360
o
, the surface swept out is a circular 

hyperboloid (or hyperboloid of revolution) of two sheets.  Its equation is 
 

     

x

a

y

c

z

c

2

2

2

2

2

2
1− − = .     4.5.3   

    

 

The equations 
 

     

x

a

y

b

z

c

2

2

2

2

2

2
1+ − =      4.5.4 

 

 

and     

x

a

y

b

z

c

2

2

2

2

2

2
1− − =      4.5.5 

 

 

represent hyperbolas of one and two sheets respectively, but are not hyperbolas of revolution, since 

their cross sections in the planes z = constant and x = constant > a respectively are ellipses  rather 

than circles.  The reader should imagine what the cross- sections of all four hyperboloids are like in 

the planes x = 0,  y = 0 and z = 0. 
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4.6  The Cylinder 
 

In three-dimensional solid geometry the equation 
  

 

     

x

a

y

b

2

2

2

2
1+ =       4.6.1 

 

 

represents a cylinder of elliptical cross-section, whose axis coincides with the z-axis.  The equation 

to a cylinder with an axis in another position and with another orientation can be obtained by the 

usual processes of translation and rotation of axes (see Chapter 3, section 3.7). 

 

 

4.7  The Cone 

 

The equation 
 

     x y a z
2 2 2 2+ =       4.7.1 

 

represents a circular cone whose vertex in at the origin and whose axis coincides with the z-axis.  

The semi-vertical angle α  of the cone is given by 
 

     α = −tan .1
a       4.7.2 

 

In this context, the word "vertical" has nothing to do with "upright"; it merely means "of or at the 

vertex".  A little knowledge of Latin is useful even today! 
 

 

The equation 
 

     

x

a

y

b
z

2

2

2

2

2+ =       4.7.3 

 

is a cone with elliptical cross-section. 

 

If the vertex of the cone remains at the origin, but the vertex is in some arbitrary direction 

(described, for example, by the direction cosines, or by spherical angles θ  and φ ) the equation can 

be derived by a rotation of coordinate axes.  This will introduce terms in yz, zx and xy, but it will 

not produce any terms in x, y or z, nor will it introduce a constant.  Therefore the equation to such a 

cone will have only second degree terms in it. The equation will be of the form 
 

  

   ax
2
  + by

2
  + cz

2
 +  2fyz + 2gzx + 2hxy = 0    4.7.4  

 

With one proviso, the converse is usually true, namely that equation 4.7.4 represents a cone with 

vertex at the origin.  The one proviso is that if  
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a h g

h b f

g f c

= 0     4.7.5 

 

 

equation 4.7.4 will factorize into two linear expressions, and will represent two planes, which 

intersect in a line that contains the origin - and this could be regarded as a special case  of a cone, 

with zero vertical angle.  If, however, the two linear factors are identical, the two planes are 

coincident. 

 

The equation to a cone of semi vertical angle α  whose vertex is at the origin and whose axis has 

direction cosines (l, m, n) can be found as follows.  The equation 
 

     lx + my + nz + h = 0     4.7.6 
 

represents a plane that is perpendicular to the axis of the cone and is at a distance h from the origin 

(i.e. from the vertex of the cone).  Let P (x,y,z) be a point in the plane and also on the surface of the 

cone, at a distance r from the origin.  The semi vertical angle of the cone is then given by 
 

     cos / .α = h r       4.7.7 
 

But     r x y z
2 2 2 2= + +      4.7.8 

 

and, from equation 4.7.6, 

 

       h
2
  =  (lx + my + nz)

2
     4.7.9 

 

Thus      ( ) ( )22222 cos nzmylxzyx ++=α++     4.7.10 
 

is the required equation to the cone. 

 

It might be thought that the equation to an inclined cone is unlikely to find much application in 

astronomy.  Here is an  application. 

   

A fireball (i.e. a bright meteor, potentially capable of depositing a meteorite) moves down through 

the atmosphere with speed V along a straight line trajectory with direction cosines  (l, m, n) referred 

to some coordinate system whose xy-plane is on the surface of Earth (assumed flat).  If v is the 

speed of sound, and V > v, the meteoroid will generate a conical shock front of semi vertical angle 

α  given by 

 

     sin / .α =v V       4.7.11 
 

At a time t before impact, the coordinates of the vertex will be (lVt, mVt, nVt), and the equation to 

the conical shock front will then be 
  

 [(x+lVt)
2
 +(y+mVt)

2
 + (z+nVt)

2
] cos

2α  = [l(x+lVt)+m(y+mVt)+n(z+nVt)]
2
 4.7.12   
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Part of this shock front (at time t before impact) has already reached ground level, and it intersects 

the ground in a conic section given by putting z = 0 in equation 4.7.12: 

 

( ) ( ) ( ) 0sinsin22coscos 2222222222 =α−+α−−−α+−α tVmylxVtlmxyymxl  4.7.13 

  

and witnesses on the ground on any point on this conic section will hear the shock front at the same 

time.  Further details on this can be found in Tatum, J.B., Meteoritics and Planetary Science, 34, 

571 (1999) and Tatum, J.B., Parker, L. C. and Stumpf, L. L., Planetary and Space Science 48, 921 

(2000). 

 

    

4.8  The General Second Degree Equation in Three Dimensions  

 

The general second degree equation in three dimensions is 
 

 ax
2
  + by

2
  + cz + 2fyz + 2gzx + 2hxy + 2ux + 2vy + 2wz + d = 0  4.8.1 

 

This may represent a plane or pair of planes (which, if not parallel, define a straight line), or an 

ellipsoid, paraboloid, hyperboloid, cylinder or cone.  The equation could, if convenient, be divided 

through by d (or any of the other constants), and there are in reality only nine independent 

constants.  Therefore nine points in space are sufficient to determine the second degree surface on 

this they lie. 

   

If d is zero, the surface contains the origin.  If u, v and w are all zero, and the surface is an 

ellipsoid, hyperbolic paraboloid or a hyperboloid, the origin is at the centre of the figure.  If the 

figure is an elliptic paraboloid, the origin is at the vertex. If u, v, w and d are all zero, the surface is 

a cone with the proviso mentioned in section 4.7.  If a, b, c, f, g, h are all zero, the surface is a 

plane. 

  

Let us consider a particular example: 
 

  3x 
2
 − 4y

2
  + 6z

2
  + 8yz − 2zx + 4xy + 14x − 10y − 4z + 5 = 0  4.8.2 

 

What sort of a surface is this? 

 

We need to do two things.  First we need to rotate the coordinate axes so that they are parallel to the 

figure axes.  The equation referred to the figure axes will have no terms in yz, zx or xy. Then we 

need to translate the axes so that the origin is at the centre of the figure (or at the vertex, if it is an 

elliptical paraboloid). 

 

Mathematically, we need to find the eigenvectors of the matrix 
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641

442

123

−

−

−

=

cfg

fbh

gha

     4.8.3 

 

 

Some readers will readily know how to do this.  Others may not, and may not even be quite certain 

what an eigenvector is.  Section 4.9 may be of interest to either group of readers.  In any case, the 

eigenvectors are found to be 
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with corresponding eigenvalues 7.422 7590,  5.953 0969,  3.530 3380. 

 

The elements of the eigenvectors are the direction cosines of the present coordinate axis with 

respect to the figure axes.  To express the equation to the surface relative to coordinate axes that are 

parallel to the figure axes, we replace 
 

 

   x by l11x  + l12y + l13z  

 

   y by l21x  +  l22y  + l23z 

   

   z by l31x  +  l32y  + l33z 

 

This will make the terms in yz, zx and xy vanish; this should be checked numerically, particularly as 

it is easy to rotate the axes in the wrong sense.  When the substitutions are made, the equation is 

found to be 
 

 

7 422 7590 5 9530969 3 5303380 7 9430994 11 2067840 11 104 7998 5 02 2 2. . . . . . .x y z x y z− + − − − + =  

            4.8.4 
 

Notice that there are now no terms in yz, zx or xy. 

 

Now we need to translate the origin of coordinates to the centre of the figure (or to the vertex if it is 

an elliptic paraboloid). It will readily be seen that this can be done by substituting 
 

 

     x − α   for x   

 

     y − β   for y 
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     z  −  γ     for  z 
 

 

where  α  =  (coefficient of x)/(twice the coefficient of x
2
 )  =   − 0.535 050 336 

 

 β =  (coefficient of y)/(twice the coefficient of y
2
) =    + 0.941 256 643 

 

  γ  =  (coefficient of z)/(twice the coefficient of z
2
 )    =  − 1.572 767 224. 

 

   

 

 

The equation then becomes 
 

 7.422 7590 x
2
  −  5.953 0969 y

2
  + 3.530 3380 z

2  − 0.583 3816 = 0   4.8.5 
 

or   

( ) ( ) ( )
.1

507406.0044313.0346280.0
2

2

2

2

2

2

=+−
zyx

   4.8.6  

 

The surface is a hyperboloid of one sheet, elliptical in any y = constant cross-section. 
 

 

The surfaces described by second-degree equations in three dimensions - ellipsoids, paraboloids, 

hyperboloids, cones and cylinders - are generally called quadric surfaces.  The surface described by 

the equation 
 

  

    ( )[ ] abbzayx <=+−+ ,22
2

22 2
1

    4.8.7 
 

is not one of the quadric surfaces.  If the square root is  isolated and squared, the resulting equation 

will contain terms of degree four.  The surface is a fairly familiar one, and the reader should try to 

imagine what it is.  Failing that, if your computer skills are up to it, you might try to draw the 

surface in three-dimensional space.  The only hint I give is to suggest that you put y = 0 in equation 

4.8.7 to see what the section is in the z-x plane. 

 
 

 

4.9  Matrices 
 

This book has assumed a knowledge of matrices, which may or may not be justified.  In this 

section, we do not attempt a thorough treatment of the subject, which must be sought elsewhere, 

but the remarks may be of use both to novices and to the more experienced.  

 

However you may have the opportunity of learning about the manipulation of matrices, it is 

suggested that you should aim to understand and know how to carry out at least the following 

operations on matrices whose elements are real numbers: 
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 Multiply a vector by a matrix 

 Multiply a matrix by a matrix 

 Calculate the determinant of a square matrix 

 Invert a square matrix 

 Diagonalize a symmetric matrix 

 Test a matrix for orthogonality 
 

Numerous other aspects of matrix manipulation are possible, and the subject expands greatly if we 

allow the elements to be complex numbers.  These six, however, are particularly useful for many 

applications.  It might be mentioned, however, that solving simultaneous linear equations by 

Kramers' Rule or by inverting a matrix are very inefficient ways of solving such equations, and that 

is not the main purpose of acquiring the above skills. 
 

Most, or doubtless all, of the above operations are available in many modern mathematical 

computer packages.  This is not what I mean, however, by "understand and know how to carry out".  

The student should carry out at least once by hand calculator, step by step, each of the above 

operations, and, at each step, try to  understand not only the algebraic and arithmetic steps, but also 

try to visualize the geometric interpretation, particularly when rotating axes and calculating 

eigenvectors.  After doing a hand calculation, you should then write a series of short computer 

programs (rather than one vast, all-encompassing matrix package) for each operation, so that when, 

in future, you need to do any of these things, you can instantly obtain the answer without having to 

go through tedious calculations.  For example, in the previous  section, when I needed the 

eigenvectors of the matrix, I was able to generate them with a single word "EIGEN" on a computer; 

a considerable amount of arithmetic was actually performed by the computer.  
  

On the question of testing a matrix for orthogonality, the usual application in mechanical and 

geometrical problems is to test a matrix of direction cosines.  The tests can not only detect 

mistakes, but it can locate them and even suggest what the correct element should be.  Tests for 

orthogonality are as follows.  The student should try to think of the geometric interpretation of 

each. 
 

 

The sum of the squares of the elements in any row or any column is unity.  (This test does 

not guard against mistakes in signs of the elements.) 

 

The sum of the products of corresponding elements in any two rows or in any two columns 

is zero. 

 

 Every element is equal to plus or minus its cofactor. 

 

 The determinant of the matrix is plus or minus one. 
 

 

A minus sign in the last two tests indicates that the two sets of axes differ in chirality (handedness).  

This usually does not matter, and can easily be dealt with by reversing the signs of the elements of 

one eigenvector and of its corresponding eigenvalue.  
 


