#421319

Topic: Direction Cosines and Direction Ratios

If a line makes angles 90° , 135° , 45° with x, y, z axes respectively, find its direction cosines.

Solution

Let the direction cosines of the line be I, m, n.

$$I = \cos 90^{\circ} = 0$$

$$m = \cos 135^{\circ} = -\frac{1}{\sqrt{2}}$$

$$n = \cos 45^\circ = \frac{1}{\sqrt{2}}$$

Therefore, the direction cosines of the line are $0, -\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$.

#421321

Topic: Direction Cosines and Direction Ratios

Find the direction cosines of a line which makes equal angles with the coordinate axes.

Solution

Let the direction cosines of the line make an angle a with each of the coordinate axes.

$$\therefore$$
 $I = \cos a, m = \cos a, n = \cos a$

We know
$$j^2 + m^2 + n^2 = 1$$

$$\Rightarrow \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$$

$$\Rightarrow 3\cos^2\alpha = 1$$

$$\Rightarrow \frac{1}{\cos^2 \alpha = \frac{1}{3}}$$

$$\Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{3}}$$

Thus, the direction cosines of the line which is equally inclined to the coordinate axes are $\frac{1}{\pm}\frac{1}{\sqrt{3}}$, $\pm\frac{1}{\sqrt{3}}$ and $\pm\frac{1}{\sqrt{3}}$.

#421323

Topic: Direction Cosines and Direction Ratios

If a line has the direction ratios -18, 12, -4, then what are its direction cosines?

Solution

If a line has direction ratios of -18, 12 and -4, then its direction cosines are

$$\frac{-18}{\sqrt{(-18)^2 + (12)^2 + (-4)^2}}, \frac{12}{\sqrt{(-18)^2 + (12)^2 + (-4)^2}}, \frac{-4}{\sqrt{(-4)^2 + (12)^2 + (-4)^2}}$$

i.e.,
$$\frac{-18}{22}$$
, $\frac{12}{22}$, $\frac{-4}{22}$, $\frac{9}{22}$, $\frac{6}{22}$, $\frac{-2}{11}$, $\frac{-2}{11}$

#421325

Topic: Lines

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3\hat{i} + 2\hat{i} - 2\hat{k}$

Therefore, the position vector through A is $\frac{1}{a} = \hat{i} + 2\hat{j} + 3\hat{k}$

$$_{b}^{\star}=3\hat{_{i}}+2\hat{_{j}}-2\hat{_{k}}$$

It is known that the line which passes through point A and parallel to \dot{h} is given by $\dot{h} = \dot{h}$, where \dot{h} is a constant.

$$\Rightarrow \dot{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda \left(3\hat{i} + 2\hat{j} - 2\hat{k}\right)$$

This is the required equation of the line.

#421328

Topic: Lines

Find the equation of the line in vector and in Cartesian form that passes through the point with position vector $2\hat{j} - \hat{j} + 4\hat{k}$ and is in the direction $\hat{j} + 2\hat{j} - \hat{k}$

Solution

It is given that the line passes through the point with position vector,

$$_{a}^{*} = 2\hat{j} - \hat{j} + 4\hat{k} \dots (1)$$

$$_{D}^{*} = \hat{i} + 2\hat{j} - \hat{k} \dots (2)$$

It is known that a line through a point with position vector \dot{a} and parallel to \dot{b} is given by the equation, $\dot{r} = \dot{a} + \lambda \dot{b}$

$$\Rightarrow \dot{r} = 2\hat{j} - \hat{j} + 4\hat{k} + \lambda \left(\hat{i} + 2\hat{j} - \hat{k}\right)$$

This is the required equation of the line in vector form.

$$\Rightarrow \hat{x_i} - \hat{y_j} + z_k^2 = (\lambda + 2)\hat{}_i + (2\lambda - 1)\hat{}_j + (-\lambda + 4)\hat{}_k$$

Eliminating λ , we obtain the Cartesian form equation as

$$\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-4}{-1}$$

#421333

Topic: Lines

Find the Cartesian equation of the line which passes through the point (-2, 4, -5) and parallel to the line given by $\frac{x+3}{2} = \frac{y-4}{5} = \frac{z+8}{5}$

Solution

It is given that the line passes through the point (-2, 4, -5) and is parallel to $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ (1)

The direction ratios of the line (1) are 3, 5 and 6.

The required line is parallel to equation (1).

Therefore, its direction ratios are 3k, 5k and 6k, where $k \neq 0$.

It is known that the equation of the line through the point (x_1, y_1, z_1) and with direction ratios, a, b, c is given by $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{a}$

Therefore, the equation of the required line is,

$$\frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6}$$

$$\Rightarrow \frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6}$$

#421334

Topic: Lines

The Cartesian equation of a line is $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$. Write its vector form.

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2} \dots (1)$$

The given line passes through the point (5, -4, 6). The position vector of this point is $\frac{1}{6} = 5\hat{j} - 4\hat{j} + 6\hat{k}$.

Also, the direction ratios of the given line are 3, 7 and 2.

This means that the line is in the direction of vector $\dot{h} = 3\hat{j} + 7\hat{j} + 2\hat{k}$

It is known that the line through position vector $\frac{1}{h}$ and in the direction of the vector $\frac{1}{h}$ is given by the equation,

This is the required equation of the given line in vector form.

#421337

7/4/2018

Topic: Lines

Find the vector and the Cartesian equations of the lines that pass through the origin and (5, -2, 3)

Solution

The required line passes through the origin. Therefore, its position vector is given by,

$$\dot{a} = \dot{0} \dots (1)$$

The direction ratios of the line through origin and (5, -2, 3) are

$$(5-0) = 5, (-2-0) = -2, (3-0) = 3$$

The line is parallel to the vector given by the equation, $\overset{\star}{b} = 5\hat{i} - 2\hat{j} + 3\hat{k}$

The equation of the line in vector form through a point with position vector \dot{a} and parallel to \dot{b} is , $\dot{r} = \dot{a} + \lambda \dot{b}$, $\lambda \in R$

$$\Rightarrow \Rightarrow \hat{r} = \hat{0} + \lambda \left(5\hat{i} - 2\hat{j} + 3\hat{k}\right)$$
$$\Rightarrow \hat{r} = \lambda \left(5\hat{i} - 2\hat{j} + 3\hat{k}\right)$$

The equation of the line through the point (x_1, y_1, z_1) and direction ratios a, b, c is given by, $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$

Therefore, the equation of the required line in the Cartesian form is

$$\frac{x-0}{5} = \frac{y-0}{-2} = \frac{z-0}{3}$$

$$\Rightarrow \frac{x}{5} = \frac{y}{-2} = \frac{z}{3}$$

#421343

Topic: Lines

Find the vector and the Cartesian equations of the line that passes through the points (3, -2, -5), (3, -2, 6)

Solution

Let the line passing through the points P(3, -2, -5) and Q(3, -2, 6) be PQ. Since PQ passes through P(3, -2, -5), its position vector is given by,

$$_{a}^{\star}=3\hat{_{i}}-2\hat{_{j}}-5\hat{_{k}}$$

The direction ratios of PQ are given by,

$$(3-3) = 0, (-2+2) = 0, (6+5) = 11$$

The equation of the vector in the direction of PQ is

$$_{b}^{*} = \hat{0_{i}} - \hat{0_{j}} + 11\hat{k} = 11\hat{k}$$

The equation of PQ in vector form is given by $\dot{r} = \dot{a} + \lambda_b^{\star}$, $\lambda \in R$

$$\Rightarrow \dot{r} = (3\hat{i} - 2\hat{j} - 5\hat{k}) + 11\lambda\hat{k}$$

The equation of PQ in Cartesian form is

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

$$\Rightarrow \frac{x-3}{0} = \frac{y+2}{0} = \frac{z+5}{11}$$

#421354 Topic: Lines

Find the angle between the following pair of lines:

(i)
$$_{\hat{r}} = 2\hat{j} - 5\hat{j} + \hat{k} + \lambda \left(3\hat{j} - 2\hat{j} + 6\hat{k}\right)$$
 and $_{\hat{r}} = 7\hat{j} - 6\hat{k} + \mu \left(\hat{i} + 2\hat{j} + 2\hat{k}\right)$

(ii)
$$\dot{\tau} = 3\hat{j} + \hat{j} - 2\hat{k} + \lambda (\hat{j} - \hat{j} - 2\hat{k})$$
 and $\dot{\tau} = 2\hat{j} - \hat{j} - 56\hat{k} + \mu (\hat{3}\hat{j} - 5\hat{j} - 4\hat{k})$

Solution

(i)

If θ be the angle between the given lines.

Then
$$\cos\theta = \left| \frac{b_1 \cdot b_2}{\left| b_1 \right| \left| b_2 \right|} \right|$$

where
$$b_1 = (3\hat{i} + 2\hat{j} + 6\hat{k})$$
 and $b_2 = (\hat{i} + 2\hat{j} + 2\hat{k})$

$$\therefore |b_1| = \sqrt{3^2 + 2^2 + 6^2} = 7$$

$$\begin{vmatrix} b_2 \\ b_2 \end{vmatrix} = \sqrt{1^2 + 2^2 + 2^2} = 3$$

$$b_1 \cdot b_2 = (3\hat{j} + 2\hat{j} + 6\hat{k}) \cdot (\hat{j} + 2\hat{j} + 2\hat{k})$$

$$\Rightarrow \cos\theta = \frac{19}{7 \times 3}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{19}{21}\right)$$

(ii)

The given lines are parallel to the vectors,

$$\stackrel{\rightarrow}{b_1} = (\hat{i} - \hat{j} - 2\hat{k}) \text{ and } \stackrel{\rightarrow}{b_2} = (3\hat{i} - 5\hat{j} - 4\hat{k}) \text{ respectively.}$$

$$\therefore |\vec{b}_1| = \sqrt{(1)^2 + (-1)^2 + (-2)^2} = \sqrt{6}$$

$$\begin{vmatrix} b_2 \\ b_2 \end{vmatrix} = \sqrt{(3)^2 + (-5)^2 + (-4)^2} = 5\sqrt{2}$$

$$\stackrel{\rightarrow}{b_1} \stackrel{\rightarrow}{b_2} = \left(\hat{i} - \hat{j} - 2\hat{k}\right) \cdot \left(3\hat{i} - 5\hat{j} - 4\hat{k}\right)$$

$$1.3 - 1(-5) - 2(-4) = 3 + 5 + 8 = 16$$

If θ is the angle between the given lines then,

$$\cos\theta = \left| \frac{b_1 \cdot b_2}{\left| b_1 \right| \left| b_2 \right|} \right|$$

$$\Rightarrow \cos\theta = \frac{16}{\sqrt{6.5\sqrt{2}}} = \frac{16}{\sqrt{2.}\sqrt{3.5\sqrt{2}}} = \frac{16}{10\sqrt{3}}$$

$$\Rightarrow \cos\theta = \frac{8}{5\sqrt{3}}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{8}{5\sqrt{3}}\right)$$

#421364 Topic: Lines

Find the angle between the following pair of lines:

$$_{7}^{+} = 3\hat{j} + \hat{j} - 2\hat{k} + \lambda \left(\hat{i} - \hat{j} - 2\hat{k}\right) \text{ and } _{7}^{+} = 2\hat{j} - \hat{j} - 56\hat{k} + \mu \left(\hat{3}\hat{i} - 5\hat{j} - 4\hat{k}\right)$$

Solution

The given lines are parallel to the vectors, $\vec{b}_1 = (\hat{i} - \hat{j} - 2\hat{k})$ and $\vec{b}_2 = (3\hat{i} - 5\hat{j} - 4\hat{k})$ respectively.

Therefore,
$$\left| \stackrel{\rightarrow}{b_1} \right| = \sqrt{(1)^2 + (-1)^2 + (-2)^2} = \sqrt{6}$$

and
$$\left| b_2^{+} \right| = \sqrt{(3)^2 + (-5)^2 + (-4)^2} = 5\sqrt{2}$$

Thus
$$b_1 \cdot b_2 = (\hat{i} - \hat{j} - 2\hat{k}) \cdot (3\hat{i} - 5\hat{j} - 4\hat{k})$$

If $\boldsymbol{\theta}$ is the angle between the given lines then,

$$\cos\theta = \left| \frac{b_1 \cdot b_2}{\left| b_1 \cdot \left| b_2 \right|} \right|$$

$$\Rightarrow \cos\theta = \frac{16}{\sqrt{6.5}\sqrt{2}} = \frac{16}{\sqrt{2.}\sqrt{3.5}\sqrt{2}} = \frac{16}{10\sqrt{3}}$$

$$\Rightarrow \cos\theta = \frac{8}{5\sqrt{3}}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{8}{5\sqrt{3}}\right)$$

This the required angle between the given pair of lines.

#421370

Topic: Lines

Find the angle between the following pair of lines:

(i)
$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$

(ii)
$$\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$$
 and $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$

Let b_1 and b_2 be the vectors parallel to the pair of lines,

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and

$$\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$$
 respectively,

then
$$\stackrel{\star}{b_1} = \stackrel{\hat{i}}{2} + \stackrel{\hat{i}}{5} - \stackrel{\hat{i}}{3} \stackrel{\hat{k}}{k}$$
 and $\stackrel{\star}{b_2} = \stackrel{\hat{i}}{k} - \stackrel{\hat{i}}{i} + \stackrel{\hat{i}}{8} + \stackrel{\hat{i}}{4} \stackrel{\hat{k}}{k}$

$$\begin{vmatrix} \star \\ b_1 \end{vmatrix} = \sqrt{(2)^2 + (5)^2 + (-3)^2} = \sqrt{38}$$

$$\begin{vmatrix} b_2 \\ b_2 \end{vmatrix} = \sqrt{(-1)^2 + (8)^2 + (4)^2} = \sqrt{81} = 9$$

$$b_1 \cdot b_2 = \begin{pmatrix} \hat{1} + 5\hat{j} - 3\hat{k} \\ \hat{1} - \hat{j} + 8\hat{j} + 4\hat{k} \end{pmatrix}$$

The angle θ between the given pair of lines is given by the relation,

$$\Rightarrow \cos\theta = \left| \frac{b_1 \cdot b_2}{\left| b_1 \right| \left| b_2 \right|} \right|$$

$$\Rightarrow \cos\theta = \frac{\frac{26}{9\sqrt{38}}}$$

$$\Rightarrow \theta = \cos^{-1} \left(\frac{26}{9\sqrt{38}} \right)$$

(ii)

We have

$$b_1 = \begin{pmatrix} 1 & 1 & 1 \\ 2i & 1 & 1 \end{pmatrix}$$

$$b_2 = \left(4\hat{j} + \hat{j} + 8\hat{k}\right)$$

$$\begin{vmatrix} b_1 \\ b_1 \end{vmatrix} = \sqrt{(2)^2 + (2)^2 + (1)^2} = \sqrt{9} = 3$$

$$\begin{vmatrix} b_2 \\ b_2 \end{vmatrix} = \sqrt{(4)^2 + (1)^2 + (8)^2} = \sqrt{81} = 9$$

If θ is the angle between the given pair of lines, then $\cos \theta = \frac{\left| \frac{b_1 \cdot b_2}{b_1} \right|}{\left| \frac{b_1}{b_2} \right|}$

$$\Rightarrow \cos\theta = \frac{18}{3 \times 9} = \frac{2}{3}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{2}{3}\right)$$

#421372

Topic: Lines

The angle between the following pair of lines:

$$\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$$
 and $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$ is $\theta = \cos^{-1}\frac{a}{3}$ then $a = \cos^{-1}\frac{a}{3}$

Answer: 2

Solution

The drs of given two lines are 2, 2, 1 and 4, 1, 8

Let the angle between those two lines be heta

We have
$$\cos\theta = \frac{2 \times 4 + 2 \times 1 + 1 \times 8}{3 \times 9} = \frac{18}{27} = \frac{2}{3}$$

Therefore $\theta = \cos^{-1}\frac{2}{3}$

#421409

Topic: Lines

Find the values of
$$p$$
 so the line $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles.

Solution

The given equations can be written in the standard form as

$$\frac{x-1}{-3} = \frac{y-2}{\frac{2p}{7}} = \frac{z-3}{2} \text{ and } \frac{x-1}{\frac{-3p}{7}} = \frac{y-5}{1} = \frac{z-6}{-5}$$

The direction ratios of the lines are -3, $\frac{-3p}{7}$, $\frac{3p}{7}$, $\frac{-3p}{7}$, $\frac{-3p}{7}$, $\frac{-5}{7}$ respectively.

Two lines with direction ratios a_1 , b_1 , c_1 and a_2 , b_2 , c_2 , are perpendicular to each other, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$.

$$\therefore (-3)\left(\frac{-3p}{7}\right) + \left(\frac{-3p}{7}\right) \cdot (1) + (2) \cdot (-5) = 0$$

$$\Rightarrow \frac{9p}{7} + \frac{2p}{7} = 10$$

$$\Rightarrow$$
 11 $p = 70$

#421468

Topic: Lines

Find the shortest distance between the lines

$$\dot{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$$
 and

$$\dot{\tau} = \hat{j} - \hat{j} - \hat{k} + \mu \left(2i + \hat{j} + 2\hat{k} \right)$$

The equations of the given lines are

$$\vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$$
 and

$$\dot{r} = \hat{j} - \hat{j} - \hat{k} + \mu \left(2i + \hat{j} + 2\hat{k} \right)$$

It is known that the shortest distance between the lines $\dot{r} = \frac{1}{a_1} + \lambda \dot{b_1}$ and $\dot{r} = \frac{1}{a_2} + \mu \dot{b_2}$ is given by,

$$d = \left| \frac{\begin{pmatrix} \overset{\bullet}{b_1} \times \overset{\bullet}{b_2} \end{pmatrix} \begin{pmatrix} \overset{\bullet}{a_1} - \overset{\bullet}{a_2} \\ \\ & b_1 \times \overset{\bullet}{b_2} \end{pmatrix}}{\begin{pmatrix} \overset{\bullet}{b_1} \times \overset{\bullet}{b_2} \end{pmatrix}} \right| \dots (1)$$

Comparing the given equations, we obtain

$$\hat{a}_1 = \hat{i} + 2\hat{j} + \hat{k}$$

$$b = \hat{j} - \hat{j} + \hat{j}$$

$$=2\hat{j}-\hat{j}-$$

$$\stackrel{\rightarrow}{b} = 2\hat{i} + \hat{i} + 2$$

$$b_1 \times b_2 = (-2 - 1)\hat{i} - (2 - 2)\hat{j} + (1 + 2)\hat{k} = -3\hat{i} + 3\hat{k}$$

$$\Rightarrow \left| b_1^{+} \times b_2^{-} \right| = \sqrt{(-3)^2 + (3)^2} = \sqrt{18} = 3\sqrt{2}$$

Substituting all the values in equation (1), we obtain

$$d = \left| \frac{\left(\hat{3}_{j}^{2} + 3\hat{k}\right) \cdot \left(\hat{j} - 3\hat{j} - 2\hat{k}\right)}{3\sqrt{2}} \right|$$

$$\Rightarrow d = \frac{-3.1 + 3(-2)}{3\sqrt{2}}$$

$$\Rightarrow d = \left| \frac{-9}{3\sqrt{2}} \right|$$

$$\Rightarrow d = \frac{3}{\sqrt{2}} = \frac{3 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{3\sqrt{2}}{2}$$

Therefore, the shortest distance between the two lines is $\frac{3\sqrt{2}}{2}$ units.

#421639

Topic: Lines

Find the shortest distance between lines $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

It is known that the shortest distance between the two lines,

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} \text{ and } \frac{x - x_2}{a} = \frac{y - y_2}{b} = \frac{z - z_2}{c} \text{ is given by,}$$

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

$$d = \sqrt{(b_1c_2 - b_2c_1)^2 + (c_1a_2 - c_2a_1)^2 + (a_1b_2 - a_2b_1)^2} \cdot \dots (1)$$

Comparing the given equations, we obtain

$$x_1 = -1, y_1 = -1, z_1 = -1$$

$$a_1 = 7$$
, $b_1 = -6$, $c_1 = 1$

$$x_2 = 3, y_2 = 5, z_2 = 7$$

$$a_2 = 1, b_2 = -2, c_2 = 1$$

Then,
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} 7 & -6 & 1 \\ 7 & -6 & 1 \\ 7 & -2 & 1 \end{vmatrix}$$

$$= 4(-6+2)-6(7-1)+8(-14+6)$$

$$\Rightarrow \sqrt{\left(b_1c_2-b_2c_1\right)^2+\left(c_1a_2-c_2a_1\right)^2+\left(a_1b_2-a_2b_1\right)^2} = \sqrt{\left(-6+2\right)^2+\left(1+7\right)^2+\left(-14+6\right)^2} = \sqrt{16+36+64} = \sqrt{116} = 2\sqrt{29}$$

Substituting all the values in equation (1), we obtain

$$d = \frac{116}{2\sqrt{29}} = \frac{-58}{\sqrt{29}} = \frac{-2 \times 29}{\sqrt{29}} = -2\sqrt{29}$$

Since distance is always non-negative, the distance between the given lines is $2\sqrt{29}$ units.

#421786

Topic: Lines

Find the shortest distance between the lines whose vector equations are

$$\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - 3\hat{j} + 2\hat{k})$$
 and

$$_{r}^{*} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \mu \left(2\hat{i} + 3\hat{j} + \hat{k}\right)$$

The given lines are $\dot{f} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - 3\hat{j} + 2\hat{k})$ and

$$\dot{\tau} = 4\hat{j} + 5\hat{j} + 6\hat{k} + \mu \left(2\hat{i} + 3\hat{j} + \hat{k}\right)$$

It is known that the shortest distance between the lines, $\dot{r} = \frac{1}{a_1} + \lambda \dot{b}_{1}$ and $\dot{r} = \frac{1}{a_2} + \mu \dot{b}_{2}$ is given by,

$$d = \left| \frac{\begin{pmatrix} \overset{\bullet}{b_1} \times \overset{\bullet}{b_2} \end{pmatrix} \begin{pmatrix} \overset{\bullet}{a_1} - \overset{\bullet}{a_2} \\ \\ & b_1 \times \overset{\bullet}{b_2} \end{pmatrix}}{\begin{pmatrix} \overset{\bullet}{b_1} \times \overset{\bullet}{a_2} \end{pmatrix}} \right| \dots (1)$$

Comparing the given equations with $\overset{\bullet}{r} = \overset{\bullet}{a_1} + \lambda \overset{\bullet}{b_1}$ and $\overset{\bullet}{r} = \overset{\bullet}{a_1} + \mu \overset{\bullet}{b_1}$, we obtain

$$\hat{\partial}_1 = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$b_i = \hat{j} - 3\hat{j} + 2\hat{j}$$

$$b_2 = \hat{j} + 3\hat{j} + \hat{j}$$

$$\begin{array}{l}
\stackrel{+}{\rightarrow} - \stackrel{+}{\rightarrow} = (4\hat{i} + 5\hat{j} + 6\hat{k}) - ((\hat{i} + 2\hat{j} + 3\hat{k}) = 3\hat{i} + 3\hat{j} + 3\hat{k} \\
\stackrel{+}{\rightarrow} + \stackrel{+}{\rightarrow} = \sqrt{(-9)^2 + (3)^2 + (9)^2} = \sqrt{18 + 9 + 81} = \sqrt{171} = 3\sqrt{19}
\end{array}$$

$$\begin{pmatrix} \overrightarrow{b}_1 \times \overrightarrow{b}_2 \end{pmatrix} \cdot \begin{pmatrix} \overrightarrow{a}_1 - \overrightarrow{a}_2 \\ \overrightarrow{a}_1 - \overrightarrow{a}_2 \end{pmatrix} = \begin{pmatrix} -9\hat{i}_1 + 3\hat{j} + 9\hat{k} \end{pmatrix} \cdot \begin{pmatrix} 3\hat{i}_1 + 3\hat{j} + 3\hat{k} \end{pmatrix}$$

$$= -9 \times 3 + 3 \times 3 + 9 \times 3 = 9$$

Substituting all the values in equation (1), we obtain

$$d = \left| \frac{9}{3\sqrt{19}} \right| = \frac{3}{\sqrt{19}}$$

Therefore, the shortest distance between the two given lines is $\frac{3}{4\sqrt{10}}$ units.

#421811

Topic: Lines

Find the shortest distance between the lines whose vector equations are

$$_{T}^{\star} = (1 - t)_{\hat{i}} + (t - 2)_{\hat{j}} + (3 - 2t)_{\hat{k}}$$
 and

$$_{i}^{*} = (s+1)\hat{j} + (2s-1)\hat{j} - (2s+1)\hat{k}$$

7/4/2018

The given lines are

$$\dot{\tau} = (1 - t)\hat{i} + (t - 2)\hat{j} + (3 - 2t)\hat{k}
\Rightarrow \dot{\tau} = (\hat{i} - 2\hat{j} + 3\hat{k}) + t(-\hat{i} + \hat{j} - 2\hat{k}) \dots (1)$$

$$\dot{\tau} = (s+1)\hat{j} + (2s-1)\hat{j} - (2s+1)\hat{k}$$

$$\Rightarrow \dot{\tau} = (\hat{i} - \hat{j} + 3\hat{k}) + s(\hat{i} + 2\hat{j} - 2\hat{k}).....(2)$$

It is known that the shortest distance between the lines,

$$\dot{r} = \overset{\rightarrow}{a_1} + \lambda \overset{\rightarrow}{b_1}$$
 and $\dot{r} = \overset{\rightarrow}{a_2} + \mu \overset{\rightarrow}{b_2}$, is given by

$$d = \begin{bmatrix} \begin{pmatrix} \bullet & \star & \bullet \\ b_1 & \star & b_2 \end{pmatrix} & & \bullet \\ \hline & & b_1 & \star & \bullet \\ \hline & & & b_1 & \star & \bullet \\ \hline & & & b_1 & \star & \bullet \\ \hline & & & & & & & \\ \end{bmatrix} & \dots (1)$$

For the given equations,

$$\hat{a}_1 = \hat{i} - 2\hat{j} + 3\hat{k}$$

$$b_2 = -\hat{j} + \hat{j} - 2\hat{j}$$

$$\frac{\rightarrow}{a_2} = \hat{j} - \hat{j} - \hat{j}$$

$$b_{ij} = \hat{j} + 2\hat{j} - 2\hat{j}$$

$$\begin{pmatrix} \stackrel{\bullet}{b_1} \times \stackrel{\bullet}{b_2} \end{pmatrix} \begin{pmatrix} \stackrel{\bullet}{a_1} - \stackrel{\bullet}{a_2} \\ \stackrel{\bullet}{a_1} - \stackrel{\bullet}{a_2} \end{pmatrix} = \begin{pmatrix} \stackrel{\hat{i}}{i} & \stackrel{\hat{j}}{k} & \stackrel{\hat{k}}{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{pmatrix}$$

=
$$(-2+4)\hat{j} - (2+2)\hat{j} + (2-1)\hat{k}$$

$$\Rightarrow \left| b_1^{+} \times b_2 \right| = \sqrt{(2)^2 + (-4)^2 + (-3)^2} = \sqrt{4 + 16 + 9} = \sqrt{29}$$

$$\therefore \begin{pmatrix} \overrightarrow{b}_1 \times \overrightarrow{b}_2 \\ b_1 & a_1 \end{pmatrix} = \begin{pmatrix} 2\hat{i} - 4\hat{j} - 3\hat{k} \\ 0 & a_1 \end{pmatrix} \cdot \begin{pmatrix} \hat{j} - 4\hat{k} \\ 0 & a_1 \end{pmatrix} = -4 + 12 = 8$$

Substituting all the values in equation (3), we obtain,

$$d = \left| \frac{8}{\sqrt{29}} \right| = \frac{8}{\sqrt{29}}$$

Therefore, the shortest distance between the lines is $\frac{8}{\sqrt{29}}$ units.

#421823

Topic: Plane

In the following case, determine the direction cosines of the normal to the plane and the distance from the origin.

(i)
$$z = 2$$

(ii)
$$x + y + z = 1$$

(iii)
$$2x + 3y - 5 = 0$$

(iv)
$$5y + 8 = 0$$

(i) The equation of the plane is z = 2 or 0x + 0y + z = 2...(1)

The direction ratios of normal are 0, 0 and 1

$$\therefore \sqrt{0^2 + 0^2 + 1^2} = 1$$

Dividing both sides of equation (1) by 1, we obtain

$$0.x + 0.y + 1.z = 2$$

This is of the form $l_X + m_Y + n_Z = d$, where l_i , m_i , n_i are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

Therefore, the direction cosines are 0, 0, 1 and the distance of the from the origin is 2 units.

(ii)
$$x + y + z = 1.....(1)$$

The direction ratios of normal are 1, 1 and 1.

$$\therefore \sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{3}$$

Dividing both sides of equation (1) by $\sqrt{3}$, we obtain

$$\frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y + \frac{1}{\sqrt{3}}z = \frac{1}{\sqrt{3}}\dots(2)$$

This equation is of the form $I_X + m_Y + n_Z = d$, where I_1, m_1, n_2 are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal are $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$ and the distance of normal from the origin is $\frac{1}{\sqrt{3}}$ units.

(iii)
$$2x + 3y - z = 5$$
.....(1)

The direction ratios of normal are 2, 3 and -1

$$\sqrt{(2)^2 + (3)^2 + (-1)^2} = \sqrt{14}$$

Dividing both sides by $\sqrt{14}$, we obtain

$$\frac{2}{\sqrt{14}}x + \frac{3}{\sqrt{14}}y - \frac{1}{\sqrt{14}}z = \frac{5}{\sqrt{14}}$$

This equation of the form $J_X + my + nz = d$, where J_1, m_1, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal to the plane are $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$ and $\frac{-1}{\sqrt{14}}$ and the distance of normal from the origin is $\frac{5}{\sqrt{14}}$ units

(iv)
$$5y + 8 = 0$$

$$\Rightarrow 0x - 5y + 0z = 8....(1)$$

The direction ratios of normal are 0, -5 and 0.

$$\sqrt{0+(-5)^2+0}=5$$

This equation is of the form $l_X + my + nz = d$, where l_1, m_2, m are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal to the plane are 0, -1 and 0 and the distance of normal from the origin is $\stackrel{\circ}{-}$ units.

#421828

Topic: Direction Cosines and Direction Ratios

Passage

In the following case, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1

Given, x + y + z = 1.....(1)

The direction ratios of normal are 1, 1 and 1.

Now
$$\sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{3}$$

Therefore, the direction cosines of the normal are $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$

and the distance of plane from the origin is $= \left| \frac{0+0+0-1}{\sqrt{1^2+1^2+1^2}} \right| = \frac{1}{\sqrt{3}}$

#421832

Topic: Plane

Passage

In the following case, determine the direction cosines of the normal to the plane and the distance from the origin.

2x + 3y - z = 5

Solution

Given,
$$2x + 3y - z = 5$$
.....(1)

The direction ratios of normal are 2, 3 and -1.

$$\therefore \sqrt{(2)^2 + (3)^2 + (-1)^2} = \sqrt{14}$$

Dividing both sides by $\sqrt{14}$, we obtain

$$\frac{2}{\sqrt{14}}x + \frac{3}{\sqrt{14}}y - \frac{5}{\sqrt{14}}z = \frac{5}{\sqrt{14}}$$

This equation of the form $I_X + m_Y + n_Z = d$, where $I_X = d$, where $I_X = d$, where $I_X = d$ where I_X

Therefore, the direction cosines of the normal to the plane are $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$ and $\frac{-1}{\sqrt{14}}$ and the distance of normal from the origin is $\frac{5}{\sqrt{14}}$ units.

#421835

Topic: Plane

Passage

In the following case, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0

Solution

Given, 5y + 8 = 0

$$\Rightarrow 0x - 5y + 0z = 8....(1)$$

The direction ratios of normal are 0, -5 and 0.

Now
$$\sqrt{0 + (-5)^2 + 0} = 5$$

Therefore, the direction cosines of the normal to the plane are 0, -1 and 0

and the distance of plane from the origin is = $\left| \frac{5(0) + 8}{\sqrt{0^2 + 5^2 + 0^2}} \right| = \frac{8}{5}$

#421866

Topic: Plane

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3\hat{j} + 5\hat{j} - 6\hat{k}$

The normal vector is $\dot{n} = 3\hat{j} + 5\hat{j} - 6\hat{k}$

$$\dot{n} = \frac{\dot{n}}{|\dot{n}|} = \frac{3\hat{j} + 5\hat{j} - 6\hat{k}}{\sqrt{(3)^2 + (5)^2 + (6)^2}} = \frac{3\hat{j} + 5\hat{j} - 6\hat{k}}{\sqrt{70}}$$

It is known that the equation of the plane with position vector \dot{r} is given by, \dot{r} , $\hat{n} = d$

$$\Rightarrow \dot{r} \cdot \left(\frac{3\hat{i} + 5\hat{j} - 6\hat{k}}{\sqrt{70}} \right) = 7$$

This is the vector equation of the required plane.

#421869

Topic: Plane

Passage

Find the Cartesian equation of the following planes:

$$\hat{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 2$$

Solution

It is given that equation of the plane is

$$_{r}^{*}$$
. $(\hat{i} + \hat{j} - \hat{k}) = 2....(1)$

For any arbitrary point P(x, y, z) on the plane, position vector \dot{r} is given by,

$$\dot{r} = x\hat{i} + y\hat{j} - z\hat{k}$$

Substituting the value of $\dot{\tau}$ in equation (1), we obtain

$$\left(x\hat{j}+y\hat{j}-z\hat{k}\right).\left(x\hat{j}+y\hat{j}-z\hat{k}\right)=2$$

$$\Rightarrow x + y - z = 2$$

This is the Cartesian equation of the plane.

#421871

Topic: Plane

Passage

Find the Cartesian equation of the following planes:

$$_{r}^{\star}\cdot\left(2\hat{j}+3\hat{j}-4\hat{k}\right) =1$$

Solution

Given,
$$\frac{1}{i}$$
. $(2\hat{j} + 3\hat{j} - 4\hat{k}) = 1.....(1)$

For any arbitrary point P(x, y, z) on the plane, position vector $\hat{\tau}$ is given by

$$\dot{r} = \left(x\hat{j} + y\hat{j} + z\hat{k}\right)$$

Substituting the value of $\dot{\gamma}$ in equation (1), we obtain

$$(x\hat{j} + y\hat{j} + z\hat{k})$$
. $(2\hat{j} + 3\hat{j} - 4\hat{k}) = 1 \Rightarrow 2x + 3y - 4z = 1$

This is the Cartesian equation of the plane.

#421876

Topic: Plane

Passage

Find the Cartesian equation of the following planes:

$$_{\hat{f}^*}\left[(s-2t)\hat{j}+(3-t)\hat{j}+(2s+t)\hat{k}\right]=15$$

$$_{f}$$
 $[(s-2t)\hat{j}+(3-t)\hat{j}+(2s+t)\hat{k}] = 15....(1)$

For any arbitrary point P(x, y, z) on the plane, position vector \hat{r} is given by,

$$\dot{r} = \left(\hat{x_i} + \hat{y_j} + \hat{z_k}\right)$$

7/4/2018

Substituting the value of \dot{r} in equation (1), we obtain

$$(x\hat{j} + y\hat{j} + z\hat{k})$$
. $[(s - 2t)\hat{j} + (3 - t)\hat{j} + (2s + t)\hat{k}] = 15$

$$\Rightarrow$$
 $(s-2t)x+(3-t)y+(2s+t)z=15$

This is the Cartesian equation of the given plane.

#421882

Topic: Direction Cosines and Direction Ratios

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

$$2x + 3y + 4z - 12 = 0$$

Solution

Let the coordinates of the foot of perpendicular O from the origin to the plane be (x_1, y_1, z_1)

$$2x + 3y + 4z - 12 = 0$$

$$\Rightarrow$$
 2x + 3y + 4z = 12.....(1)

The direction ratios of normal are 2, 3 and 4

$$\therefore \sqrt{(2)^2 + (3)^2 + (4)^2} = \sqrt{29}$$

Dividing both sides of equation (1) by $\sqrt{29}$, we obtain

$$\frac{2}{\sqrt{29}} \frac{3}{x + \sqrt{29}} \frac{4}{y + \sqrt{29}} \frac{12}{z = \sqrt{29}}$$

This equation is of the form $l_X + my + nz = d$, where $l_X + mz + nz = d$, where $l_X + mz + nz = d$

The coordinates of the foot of the perpendicular are given by (Id, md, nd)

Therefore, the coordinates of the foot of the perpendicular are

$$\left(\frac{2}{\sqrt{29}} \cdot \frac{12}{\sqrt{29}}, \frac{3}{\sqrt{29}} \cdot \frac{12}{\sqrt{29}}, \frac{4}{\sqrt{29}} \cdot \frac{12}{\sqrt{29}} \right) \text{ i.e., } \left(\frac{24}{29}, \frac{36}{29}, \frac{48}{29}\right)$$

#421886

Topic: Direction Cosines and Direction Ratios

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

$$3y + 4z - 6 = 0$$

A
$$(0, \frac{24}{25}, \frac{18}{25})$$

B
$$\frac{24}{0, \frac{25}{25}, \frac{25}{25}}$$

$$(0, \frac{18}{25}, \frac{24}{25})$$

D None of these

Solution

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_1, y_1, z_1)

$$3y + 4z - 6 = 0$$

$$\Rightarrow$$
 0x + 3y + 4z = 6 = 6....(1)

The direction ratios of the normal are 0, 3 and 4

$$\sqrt{0+(3)^2+(4)^2}=5$$

Dividing both sides of equation (1) by 5, we obtain

This equation is of the form $l_X + my + nz = d$, where l_1, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are

$$\left(0, \frac{3}{5}, \frac{6}{5}, \frac{4}{5}, \frac{6}{5}\right)$$
 i.e., $\left(0, \frac{18}{25}, \frac{24}{25}\right)$

#421887

Topic: Direction Cosines and Direction Ratios

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

$$x + y + z = 1$$

Solution

Let the coordinates of the foot of perpendicular p from the origin to the plane be (x_1, y_1, z_1)

$$x + y + z = 1$$
.....(1)

The direction ratios of the normal are 1, 1 and 1

$$\therefore \sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{3}$$

Dividing both sides of equation (1) by $\sqrt{3}$, we obtain

$$\frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y + \frac{1}{\sqrt{3}}z = \frac{1}{\sqrt{3}}$$

This equation is of the form $I_X + m_Y + m_Z = d$, where $I_X + m_X + m_X = d$ and $I_X + m_X + m_X = d$ and $I_X + m_X + m_X = d$.

The coordinates of the foot of the perpendicular are given by (Id, md, nd)

Therefore, the coordinates of the foot of the perpendicular are

$$\sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3}$$
 i.e., $\sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3}$

#421888

Topic: Direction Cosines and Direction Ratios

Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 5y + 8 = 0.

Let the coordinates of the foot of perpendicular P from the origin to the given plane be (x_1, y_1, z_1) .

We have,
$$5y + 8 = 0$$

$$\Rightarrow$$
 0x - 5y + 0z = 8.....(1)

The direction ratios of the normal are 0, $\,$ – 5 and 0

$$1. \sqrt{0 + (5)^2 + 0} = 5$$

Dividing both sides of equation (1) by 5, we obtain

This equation is of the form $l_X + my + nz = d$, where $l_x + mz = d$ and $l_x + mz = d$.

The coordinates of the foot of the perpendicular are given by (Id. md, nd)

Therefore, the given coordinates of the foot of the perpendicular are

$$(0, -1(\frac{8}{5}), 0)$$
 i.e., $(0, -\frac{8}{5}, 0)$

#421908

Topic: Plane

Passage

Find the vector and Catesian equation of the planes

that passes through the point (1, 0, -2) and the normal to the plane is $\hat{i} + \hat{j} - \hat{k}$

Solution

The position vector of point (1, 0, -2) is $_{N}^{\star}$ perpendicular to the plane is $_{N}^{\star} = \hat{j} + \hat{j} - \hat{k}$

The vector equation of the plane is given by, $(r - a) \cdot N = 0$

$$\Rightarrow \left[\hat{r} - (\hat{i} - 2\hat{k})\right] \cdot \left(\hat{i} + \hat{j} - \hat{k}\right) = 0.....(1)$$

The position vector of any point P(x, y, z) in the plane is given by,

$$\dot{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Therefore, equation (1) becomes

$$\begin{aligned} & \left[\left(\hat{x^i} + y \hat{j} - z \hat{k} \right) - \left(\hat{i} - 2 \hat{k} \right) \right] \cdot \left(\hat{i} + \hat{j} - \hat{k} \right) = 0 \\ & \Rightarrow \left[(x - 1) \hat{i} + y \hat{j} + (z + 2) \hat{k} \right] \cdot \left(\hat{i} + \hat{j} - \hat{k} \right) = 0 \\ & \Rightarrow (x - 1) + y - (z + 2) = 0 \end{aligned}$$

$$\Rightarrow x + y - z - 3 = 0$$

$$\Rightarrow x + y - z = 3$$

#421919

Topic: Plane

Passage

Find the vector and Catesian equation of the planes

that passes through the point (1, 4, 6) and the normal vector to the plane is $\hat{j} - 2\hat{j} + \hat{k}$

The position vector of point (1, 4, 6) is $\frac{1}{a} = \hat{i} + 4\hat{j} + 6\hat{k}$

The normal vector $_{N}^{\star}$ perpendicular to the plane is $_{N}^{\star} = \hat{j} - 2\hat{j} + \hat{k}$

The vector equation of the plane is given by $(\dot{r} - \dot{a}) \cdot \dot{N} = 0$

$$\Rightarrow \left[\hat{r} - (\hat{i} + 4\hat{j} + 6\hat{k})\right] \cdot \left(\hat{i} - 2\hat{j} + \hat{k}\right) = 0.....(1)$$

Where \dot{r} is the position vector of any point P(x, y, z) in the plane.

And given by, $\dot{r} = x_{\hat{i}} + y_{\hat{j}} + z_{\hat{k}}$

Therefore, the equation(1) becomes

$$\Rightarrow \left[(x-1)\hat{j} + (y-4)\hat{j} + (z-6)\hat{k} \right] \cdot \left(\hat{i} - 2\hat{j} + \hat{k} \right) = 0$$

$$\Rightarrow$$
 $(x-1)-2(y-4)+(z-6)=0$

$$\Rightarrow x - 2y + z + 1 = 0$$

#421923

Topic: Plane

Passage

Find the equations of the planes that passes through three points.

$$(1, 1, -1), (6, 4, -5), (-4, -2, 3)$$

Solution

The given points are A(1, 1, -1), B(6, 4, -5) and C(-4, -2, 3).

$$\begin{vmatrix} 6 & 4 & -5 \\ -4 & -2 & 3 \end{vmatrix} = (12 - 10) - (18 - 20) - (12 + 16) = 2 + 2 - 4 = 0$$

⇒ Points are collinear.

Since A, B, C are collinear points, there will be infinite number of planes passing through the given points.

#421954

Topic: Plane

Passage

Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (-2, 2, -1)

Solution

It is known that the equation of the plane through the points $(x_1, y_1, z_1), (x_2, y_2, z_2)$ and (x_3, y_3, z_3) is,

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 0 & 1 & 1 \\ -3 & 1 & -1 \end{vmatrix} = 0$$

$$\Rightarrow$$
 $(-2)(x-1)-3(y-1)+3z=0$

$$\Rightarrow$$
 $-2x - 3y + 3z + 2 + 3 = 0$

$$\Rightarrow -2x - 3y + 3z = -5$$

$$\Rightarrow$$
 2x + 3y - 3z = 5

This is the Cartesian equation of the required plane.

#421969

Topic: Plane

Solution

Given, 2x + y - z = 5

$$\Rightarrow \frac{x}{5/2} + \frac{y}{5} + \frac{z}{-5} = 1$$

It is known that the equation of a plane in intercept from is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, where a, b, c are the intercepts cut off by the plane at x, y and z axes respectively.

Therefore, for the given equation,

$$a = \frac{5}{2}$$
, $b = 5$ and $c = -5$

Thus, the intercepts cut off by the given plane are $\frac{5}{2}$, $\frac{5}{5}$ and -5.

#421971

Topic: Plane

Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

Solution

The equation of the plane ZOX is y = 0.

Any plane parallel to it is of the form y = a.

Since the y-intercept of the plane is 3,

Thus, the equation of the required plane is y = 3.

#422067

Topic: Plane

Find the equation of the plane through the intersection of the planes 3x - y + 2z - 4z = 0 and x + y + z - 2 = 0 and passes through the point (2, 2, 1)

Solution

Equation of plane passing through line of intersection of given planes is given by,

$$(3x - y + 2z - 4) + \alpha(x + y + z - 2) = 0$$
, where $\alpha \in R$(1)

The plane passes through the point (2, 2, 1).

Therefore, this point will satisfy equation (1),

$$\therefore$$
 (3 × 2 - 2 + 2 × 1 - 4) + α (2 + 2 + 1 - 2) = 0

$$\Rightarrow$$
 2 + 3 α = 0

$$\Rightarrow \alpha = -\frac{2}{3}$$

Substituting $\alpha = -\frac{2}{3}$ in equation (1), we obtain

$$\Rightarrow (3x - y + 2z - 4) - \frac{2}{3}(x + y + z - 2) = 0$$

$$\Rightarrow$$
 $(9x-3y+6z-12)-2(x+y+z-2)=0$

$$\Rightarrow 7x - 5y + 4z - 8 = 0$$

This is the required equation of the plane.

#422108

Topic: Plane

Find the vector equation of the plane passing through the intersection of the planes

$$_{\hat{r}^*}\left(2\hat{i}+2\hat{j}-3\hat{k}\right)=7, _{\hat{r}^*}\left(2\hat{i}+5\hat{j}+3\hat{k}\right)=9$$
 and through the point (2, 1, 3)

Solution

The equations of the planes are

$$\Rightarrow \hat{r} \left(2\hat{j} + 2\hat{j} - 3\hat{k} \right) - 7 = 0....(1)$$

$$_{\hat{f}}$$
 $(2\hat{i} + 5\hat{j} + 3\hat{k}) - 9 = 0....(2)$

The equations of the planes through the intersection of the planes given in equations (1) and (2) is given by,

$$\left[\dot{r}\left(2\hat{j}+2\hat{j}-3\hat{k}\right)-7\right]+\lambda\left[\dot{r}\left(2\hat{j}+5\hat{j}+3\hat{k}\right)-9\right]=0$$
, where $\lambda\in R$

$$_{r}^{*}\left[\left(2\hat{i}+2\hat{j}-3\hat{k}\right)+\lambda\left(2\hat{i}+5\hat{j}+3\hat{k}\right)\right]=9\lambda+7$$

$$\dot{r} \left[(2 + 2\lambda)\hat{j} + (2 + 5\lambda)\hat{j} + (3\lambda - 3)\hat{k} \right] = 9\lambda + 7.....(3)$$

The plane passes through the point (2, 1, 3). Therefore, its poisition vector is given by,

$$_{i}^{*} = 2\hat{i} + \hat{i} + 3\hat{k}$$

Substituting in equation (3), we obtain

$$(2\hat{j}+\hat{j}-3\hat{k})$$
. $[(2+2\lambda)\hat{j}+(2+5\lambda)\hat{j}+(3\lambda-3)\hat{k}]=9\lambda+7$

$$\Rightarrow \ 2(2+2\lambda)+(2+5\lambda)-3(3\lambda-3)=9\lambda+7$$

$$\Rightarrow 9\lambda = 8$$

$$\Rightarrow 9\gamma = 8 \Rightarrow \gamma = \frac{8}{8}$$

Substituting $\lambda = \frac{8}{9}$ in equation (3), we obtain

$$\vec{r} \cdot \left(\frac{34}{9} \hat{i} + \frac{58}{9} \hat{j} - \frac{3}{9} \hat{k} \right) = 15$$

#422156

Find the equation of the plane through the line of intersection of the planes

x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x - y + z = 0

Solution

The equation of the plane through the intersection of the plane x + y + z = 1 and 2x + 3y + 4z = 5 is

$$(x+y+z-1)+\lambda(2x+3y+4z-5)=0$$

$$\Rightarrow \ (2\lambda+1)x+(3\lambda+1)y+(4\lambda+1)z-(5\lambda+1)=0.....(1)$$

The direction ratios a_1 , b_1 , c_1 of this plane are (2 λ + 1), (3 λ + 1) and (4 λ + 1)

The plane in equation (1) is perpendicular to x - y + z = 0

Its direction ratios $a_{2},\,b_{2},\,c_{2}$ are 1, $\,$ – 1 and 1

Since the planes are perpendicular,

$$a_1a_2 + b_1b_2 + c_1c_2 = 0$$

$$\Rightarrow$$
 $(2\lambda + 1) - (3\lambda + 1) + (4\lambda + 1) = 0$

$$\Rightarrow$$
 3 λ + 1 = 0

$$\Rightarrow \lambda = -\frac{1}{2}$$

Substituting $\lambda = -\frac{1}{3}$ in equation (1), we obtain

$$\frac{1}{3}x - \frac{1}{3}z + \frac{2}{3} = 0$$

$$\Rightarrow x-z+2=0$$

This is the required equation of the plane.

#422211 Topic: Plane

Find the angle between the planes whose vector equations are

$$_{i}$$
, $(2\hat{i} + 2\hat{j} - 3\hat{k}) = 5$ and $_{i}$, $(3\hat{i} - 3\hat{j} + 5\hat{k}) = 3$

The equations of the given planes are $\frac{1}{j_r}\left(2\hat{i}+2\hat{j}-3\hat{k}\right)=5$ and $\frac{1}{j_r}\left(3\hat{i}-3\hat{j}+5\hat{k}\right)$

It is known that if $\frac{1}{n_1}$ and $\frac{1}{n_2}$ are normal to the planes $\frac{1}{r}$ $\frac{1}{n_1} = d_1$ and $\frac{1}{r}$ $\frac{1}{n_2} = d_2$ then the angle between them, θ is given by

$$\cos\theta = \left| \frac{n_1 \cdot n_2}{n_1 \mid n_2 \mid} \right| \dots (1)$$

Here
$$n_1 = 2\hat{i} + 2\hat{j} - 3\hat{k}$$
 and $n_2 = 3\hat{i} - 3\hat{j} + 5\hat{k}$

$$\therefore n_1 \cdot n_2 = (2\hat{i} + 2\hat{j} - 3\hat{k})(3\hat{i} - 3\hat{j} + 5\hat{k}) = 2.3 + 2.(-3) + (-3).5 = -15$$

$$\begin{vmatrix} + \\ n_1 \end{vmatrix} = \sqrt{(2)^2 + (2)^2 + (-3)^2} = \sqrt{17}$$

$$\left| \frac{1}{n_2} \right| = \sqrt{(3)^2 + (-3)^2 + (5)^2} = \sqrt{43}$$

Substituting the value of $\stackrel{\bullet}{n_1} \stackrel{\bullet}{n_2}$ and $\begin{vmatrix} \stackrel{\bullet}{n_1} \\ | \stackrel{\bullet}{n_2} \end{vmatrix}$ in equation (1), we obtian

$$\cos\theta = \frac{-15}{\sqrt{17. \sqrt{43}}}$$

$$\Rightarrow \cos\theta = \frac{15}{\sqrt{731}}$$

$$\Rightarrow \theta = \frac{15}{\cos^{-1} \sqrt{731}}$$

#422387

Topic: Plane

Passage

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

7x + 5y + 6z + 30 = 0 and 3x - y - 10z + 4 = 0

The direction ratios of normal to the plane, L_1 : $a_1x + b_1y + c_1z = 0$ are a_1 , b_1 , c_1 and L_2 : $a_1x + b_2y + c_2z = 0$ are a_2 , b_2 , c_2

$$L_1 \parallel L_2$$
, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

$$L_1 \perp L_2$$
, if $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$

The angle between L_1 and L_2 is given by,

$$\theta = \cos^{-1} \sqrt{\frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_1^2}}}$$

The equations of the planes are 7x + 5y + 6z + 30 = 0 and 3x - y - 10z + 4 = 0.

Here,
$$a_1 = 7$$
, $b_1 = 5$, $c_1 = 6$

$$a_2, b_2 = -1, c_2 = -10$$

$$a_1a_2 + b_1b_2 + c_1c_2 = 7 \times 3 + 5 \times (-1) + 6 \times (-10) = -44 \neq 0$$

Therefore, the given planes are not perpendicular

$$\frac{a_1}{a_2} = \frac{7}{3}, \frac{b_1}{b_2} = \frac{5}{-1} = -5, \frac{c_1}{c_2} = \frac{6}{-10} = \frac{-3}{5}$$

It can be seen that
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

Therefore, the given planes are not parallel.

The angle between them is given by,

$$\theta = \cos^{-1} \left[\frac{7 \times 3 + 5(-1) + 6 \times (-10)}{\sqrt{(7)^2 + (5)^2 + (6)^2} \times \sqrt{(3)^2 + (-1)^2 + (-10)^2}} \right]$$

$$= \cos^{-1} \left| \frac{21 - 5 - 60}{\sqrt{110} \times \sqrt{110}} \right|$$

$$= \cos^{-1} \left| \frac{44}{110} \right| = \cos^{-1} \frac{2}{5}$$

#422404

Topic: Plane

Passage

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x + y + 3z - 2 = 0 and x - 2y + 5 = 0

Solution

The direction ratios of normal to the plane, L_1 : $a_1x + b_1y + c_1z = 0$ are a_1 , b_1 , c_1 and L_2 : $a_1x + b_2y + c_2z = 0$ are a_2 , b_2 , c_2

$$L_1 \parallel L_2$$
, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

$$L_1 \perp L_2$$
, if $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$

The angle between L_1 and L_2 is given by,

$$\theta = \cos^{-1} \sqrt{\frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_1^2}}}$$

Here the equations of the planse are 2x + y + 3z - 2 = 0 and x - 2y + 5 = 0

$$\Rightarrow a_1 = 2, b_1 = -2, c_1 = 3 \text{ and } a_2 = 1, b_2 = -2, c_2 = 0$$

Now
$$a_1a_2 + b_1b_2 + c_1c_2 = 2 \times 1 + 1 \times (-2) + 3 \times 0 = 0$$

Thus, the given planes are perpendicular to each other.

Topic: Plane

Passage

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

$$2x-2y+4z+5=0$$
 and $3x-3y+6z-1=0$

Solution

The direction ratios of normal to the plane, L_1 : $a_1x + b_1y + c_1z = 0$ are a_1 , b_1 , c_1 and L_2 : $a_1x + b_2y + c_2z = 0$ are a_2 , a_2 , a_3 are a_4 , a_5 are a_5 a_5 and a_5 are a_5 are

$$L_1 \parallel L_2$$
, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

$$L_1 \perp L_2$$
, if $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$

The angle between L_1 and L_2 is given by,

$$\theta = \cos^{-1} \sqrt{\frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2 \cdot \sqrt{a_2^2 + b_2^2 + c_1^2}}}}$$

The equations of the planse are 2x - 2y + 4z + 5 = 0 and 3x - 3y + 6z - 1 = 0.

Here
$$a_1 = 2$$
, $b_1 = -2$, $c_1 = 4$ and

$$a_2 = 3, b_2 = -3, c_2 = 6$$

$$a_1a_2 + b_1b_2 + c_1c_2 = 2 \times 3 + (-2)(-3) + 4 \times 6 = 6 + 6 + 24 = 36 \neq 0$$

Thus, the given planes are nor perpendicular to each other.

Now
$$\frac{a_1}{a_2} = \frac{2}{3}, \frac{b_1}{b_2} = \frac{-2}{-3} = \frac{2}{3} \text{ and } \frac{c_1}{c_2} = \frac{4}{6} = \frac{2}{3}$$

$$\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Thus, the given planes are parallel to each other

#422431

Topic: Plane

Passage

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

$$2x - y + 3z - 1 = 0$$
 and $2x - y + 3z + 3 = 0$

Solution

The direction ratios of normal to the plane, L_1 : $a_1x + b_1y + c_1z = 0$ are a_1 , b_1 , c_1 and L_2 : $a_1x + b_2y + c_2z = 0$ are a_2 , b_2 , c_2

$$L_1 \parallel L_2$$
, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

$$L_1 \perp L_2$$
, if $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$

The angle between L_1 and L_2 is given by,

$$\theta = \cos^{-1} \sqrt{\frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_1^2}}}$$

The equations of the planes are 2x - y + 3z - 1 = 0 and 2x - y + 3z + 3 = 0

Here,
$$a_1 = 2$$
, $b_1 = -1$, $c_1 = 3$ and $a_2 = 2$, $b_2 = -1$, $c_2 = 3$

$$\frac{a_1}{a_2} = \frac{2}{2} = 1, \frac{b_1}{b_2} = \frac{-1}{-1} = 1 \text{ and } \left(c \left(c \right)_{1} \right) \left(c \right)_{2} = c \left(2 \right) = c \left(3 \right)_{3} = 1$$

Thus, the given lines are parallel to each other.

#422484

Topic: Plane

Passage

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

4x+8y+z-8=0 and y+z-4=0

Solution

The direction ratios of normal to the plane, $(L_1)_{a=1}x_b=0$ are $(a_1)_{b=1}$, $(b_1)_{b=1}$

 $\label{locality} $$ L_{1}\simeq L_{2}, if \cfrac(a)_{1}(a)_{2}=\cfrac(b)_{1}(b)_{2}=\cfrac(c)_{1}(c)_{2} $$$

 $\begin{array}{lll} \label{localization} $$ L_{1}\to \{L_{2}, if a_{1}(a_{2})+b_{1}(b_{2})+c_{1}(c_{2})=0 \\ \end{array} $$

The angle between $\{L\}_{1}$ and $\{L\}_{2}$ is given by,

}^{2}}}} } right| }

The equations of the given planes are 4x+8y+z-8=0 and y+z-4=0.

Here {a}_{1}=4,{b}_{1}=8, {c}_{1}=1 and {a}_{2}=0,{b}_{2}=1, {c}_{1}=1

 $\{a\}_{1}\{a\}_{2}+\{b\}_{1}\{b\}_{2}+\{c\}_{1}\{c\}_{2}=4\times 0+8\times 1+1=9\times 0$

Therefore, the given lines are not perpendicular to each other.

 $\cfrac \{ \{ a \ \ \ \} \} = \cfrac \{ \{ b \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfrac \{ \{ c \ \ \ \ \ \} \} = \cfra$

Therefore, the given lines are not parallel to each other.

The angle between the planes is given by,

 $$ \left(1 \right) ^{2} + \left$

\right)]^{ 2 }+{ \left(1 \right) }^{ 2 }} \ \right| }

=\cos ^{ -1 }{ \left| \cfrac { 9 }{ 9\sqrt { 2 } } \right| }

=\cos ^{ -1 }{ \cfrac { 1 }{ \sqrt { 2 } } } = [45]^{o}

#422500

Topic: Plane

Passage

In the following case, find the distance of each of the given points from the corresponding given plane

Point, Plane: (0,0,0), 3x-4y+12z=3

Solution

We know that the distance between a point $p(x)_1, y_1, z_1, z_1)$ and a plane Ax+By+Cz=D is given by,

Thus distance of point (0,0,0) from the plane 3x-4y+12z=3 is

d=\left| \cfrac { 3\times 0-4\times 0+12\times 0-3 } \sqrt { \left(3 \right) }^{2} + \left(-4 \right) }^{2} + \left(12 \right) }^{2}} \right| = \cfrac { 3 }{ \sqrt { 169 } } = \cfrac { 3 }{ 13 }

#422506

Topic: Plane

Passage

In the following case, find the distance of each of the given points from the corresponding given plane

Point, Plane: (3,-2,1), 2x-y+2z+3=0

We know that the distance between a point $p(x_1, y_1)$, and a plane Ax+By+Cz=D is given by,

 $d=\left(A_{x}_{1}+B_{y}_{1}+B_{y}_{1}+C_{z}_{1}+D_{x}_{1}+C_{x}_{1}+D_{x}_{1}+C_{x}_{1}+D_{x}_{1$

Thus distance of point (3,-2,1) from the plane 2x-y+2z+3=0 is

 $d = \left(2 \right) ^{2} + \left(2 \right) ^{2} +$

#422514

7/4/2018

Topic: Plane

Passage

In the following case, find the distance of each of the given points from the corresponding given plane

Point (2,3,-5), plane x+2y-2z=9

Solution

We know that the distance between a point $p(x_{1}, y_{1}, y_{1}, z_{1})$ and a plane Ax+By+Cz=D is given by,

 $d=\left(A_{x}_{1}+B_{y}_{1}+C_{z}_{1}-D_{x}\right) \left(A_{x}_{1}+B_{y}_{1}+B_{y}_{1}+C_{z}_{1}-D_{x}\right) \left(A_{x}_{1}+B_{y}_$

Thus distance of point (2,3,-5) from the plane x+2y-2z=9 is

#422522

Topic: Plane

Passage

In the following case, find the distance of each of the given points from the corresponding given plane

Point, Plane: (-6,0,0), 2x-3y+6z-2=0

Solution

We know that the distance between a point $p(x_{1}, y_{1}, y_{1}, z_{1})$ and a plane Ax+By+Cz=D is given by,

 $d=\left(A_{x}_{1}+B_{y}_{1}+C_{z}_{1}-D_{x}\right) \left(A_{x}_{1}+B_{y}_{1}+B_{y}_{1}+C_{z}_{1}-D_{x}\right) \left(A_{x}_{1}+B_{y}_$

Thus distance of point (-6,0,0) from plane 2x-3y+6z-2=0 is

 $d = \left(2(-6)-3\times 0 + 6\times 0 - 2 \right) \left(\left(1 \right)^{2} + \left(1 \right)^{2} + \left(1 \right)^{2} + \left(2 \right)^{2} \right) \right)^{2} + \left(2 \right)^{2} \right) \right)$

#422539

Topic: Lines

Find the angle between the lines whose direction ratios are a,b,c and b-c, c-a, a-b

Solution

The angle \theta between the lines with direction cosines a,b,c and b-c, c-a, a-b is given by,

 $\cos \{ \theta \} = \left(a(b-c) + b(c-a) + (a-b) \right) \left(a(b-c) + b(c-a) \right) \left(a(b-c) + b(c-a) \right) \left(a(b-c) + (a-b) + (a-b) \right) \left(a(b-c) + (a-b) + (a-b)$

 $\label{eq:Rightarrow} $$ \operatorname{cos} { \theta } = 0 $$$

 $\label{eq:Rightarrow theta=} $$ \Pr _{-1}{ 0 } $$

Thus, the angle between the lines is $\{90\}^{\circ}$ (o).

#422545

Topic: Lines

Find the equation of a line parallel to x-axis and passing through the origin

The line parallel to x-axis and passing through the origin is x-axis itself.

Let A be a point on x-axis.

Therefore, the coordinates of A are given by (a,0,0), where a\in R.

Direction ratios of OA are (a-0)=a,0,0.

The equation of OA is given by,

 $\cfrac{x-0}{a}=\cfrac{y-0}{0}=\cfrac{z-0}{0}$

 $\cfrac{x}{1} = \cfrac{y}{0} = \cfrac{z}{0} = a$

#422559

Topic: Lines

If the coordinates of the points A,B,C,D be (1,2,3), (4,5,7), (-4,3,-6) and (2,9,2) respectively, then find the angle between the lines AB and CD

Solution

The coordinates of A,B,C and D are (1,2,3), (4,5,7), (-4,3,-6) and (2,9,2) respectively.

The direction ratios of AB are (4-1)=3, (5-2)=3 and (7-3)=4

The direction ratios of CD are (2-(-4))=6, (9-3)=6 and (2-(-6))=8

 $It \ can \ be \ seen \ that \ \ \ \{a \ 1\} \ a \ 2\} = \ \{b \ 1\} \ \{b \ 2\} = \ \{c \ 2\} = \ \{b \ 2\} = \ \{c \ 2\} = \$

Therefore, AB is parallel to CD.

Thus, the angle between AB and CD is either $\{0\}^{\circ}\{o\}$ or $\{180\}^{\circ}\{o\}$.

#422576

Topic: Lines

 $If the lines \cfrac(x-1)[-3] = \cfrac(y-2)[2k] = \cfrac(z-3)[2) and \cfrac(x-1)[3k] = \cfrac(y-1)[1] = \cfrac(z-6)[-5] are perpendicular, find the value of k and the value of k are perpendicular. The value of k are perpendicular in the value of k are perpendicular. The value of k are perpendicular in the value of k are perpendicular in the value of k are perpendicular. The value of k are perpendicular in the value of k are perpendicular in the value of k are perpendicular. The value of k are perpendicular in the value of k are perpendicular in the value of k are perpendicular. The value of k are perpendicular in the value of k are p$

Solution

The direction of ratios of the lines $\frac{(y-2)}{2k}=\frac{(y-2)}{2k} = \frac{(y-2)}{2k} =$

It is known that two lines with direction ratios $\{a\}_{1}, \{b\}_{1}, \{c\}_{1} \text{ and } \{a\}_{2}, \{b\}_{2}, \{c\}_{2} \text{ are perpendicular, if } \{a\}_{1}, a\}_{2}+\{b\}_{1}, b\}_{2}+\{c\}_{1}, c\}_{2}=0$

 $\frac{-3(3k)+2k\times 1+2(-5)=0}{}$

\Rightarrow -9k+2k-10=0

\Rightarrow 7k=-10

\Rightarrow k=\cfrac{-10}{7}

Therefore for $k=-\sqrt{10}$, the given lines are perpendicular to each other.

#422590

Topic: Plane

Solution

The position vector of the point (1,2,3) is $\ensuremath{\text{vec}} \{ r \}_{1} = \hat{i} +2\hat{j} +3\hat{j} +3\hat$

The direction ratios of the normal to the plane $\ensuremath{\ensuremath{\mbox{\mbox{$|$}}}-5\hat{\ensuremath{\mbox{$|$}}}-5\hat{\ensuremath{\mbox{$|$}}}+9=0, are 1,2 and -5 and the normal vector is <math>\ensuremath{\mbox{$|$}} = \hat{\ensuremath{\mbox{$|$}}}-5\hat{\ensuremath{\mbox{$|$}}}-5\hat{\ensuremath{\mbox{$|$}}}$

The equation of a line passing through a point and perpendicular to the given plane is given by, \vec { r } =\vec { r_1} +\lambda \vec { N },

\lambda \in R

#422614

Topic: Plane

Find the equation of the plane passing through (a,b,c) and parallel to the plane $\ensuremath{\mbox{\sc f}}$.\left(\hat { i } +\hat { j } +\hat { k } \right) = 2

```
Any plane to parallel to the plane \ensuremath{\mbox{\sc r}}\.\left( \hat { i } +\hat { j } +\hat { k } \right) =2 is for the form
\label{lem:lembda} $\operatorname{r}.\left( \operatorname{hat}\left\{ i\right\} +\operatorname{hat}\left\{ j\right\} \right) = \label{lembda} .....(1) $$
```

The plane passes through the point (a,b,c). Therefore, the position vector \vec{r} of this point is $a\hat{i} + b\hat{i} + \hat{j} + c\hat{i}$.

Therefore, equation (1) becomes

 $(a \hat{i} + b \hat{j} + c \hat{k}).(\hat{i} + \hat{j} + c \hat{k}).(\hat{i} + \hat{j} + \hat{j} + \hat{k}) = (a \hat{j} + \hat{k})$

\Rightarrow a+b+c=\lambda

Substituting $\lambda = a+b+c$ in equation (1) we obtain

This is the vector equation of the required plane.

Substituting $\ensuremath{\mbox{vec}} \{r\} = x \hat{j} + y \hat{j} + z \hat{j} + z \hat{k}$ in equation (2), we obtain

 $(x \hat{i} + y \hat{j} + z \hat{j} + z \hat{i}).(\hat{i} + \hat{j} + \hat{j}) + (\hat{k})) = a + b + c$

\Rightarrow x+y+z=a+b+c

#422667

Topic: Lines

Find the shortest distance between lines $\ensuremath{\text{li}} + 2\hat{i} + 2\hat{i}$

Solution

The given lines are

```
\label{eq:linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_linear_continuous_
```

 $\label{lem:left} $\operatorname{r}=-4\hat{i}-4\hat{i}-\frac{i}-2\hat{j}-2\hat{i}-2\hat{k}(2)$$

It is known that the shortest distance between two lines, \ec{b}_{1} is given by, \ec{b}_{1} and \ec{b}_{1} is given by, \ec{b}_{1} is given by,

.....(3)

 $\ensuremath{\mbox{vec} \{ \{ a \}_{\{ 1 \} \} = 6 \land \{ i \} + 2 \land \{ j \} + 2 \land \{ k \} \}}$

 $\ensuremath{\mbox{vec} \{ \{ a \}_{ } \} =-4 \hat \{ i \} -\hat \{ k \} }$

 $\ensuremath{\mbox{vec} \{ \{ b \}_{ } = 3 \land \{ i \} - 2 \land \{ j \} - 2 \land \{ k \} \}}$

+(-2+6)\hat { k } =8\hat { i } +8\hat { j } +4\hat { k }

} \right) =-80-16-12=-108

Substituting all the values in equation (1), we obtain

 $d=\left(-108 \right) 12$ \right| =9

Therefore, the shortest distance between the two given lines is 9 units.

#422804

Topic: Plane

Find the coordinates of the point where the line through (5,1,6) and (3,4,1) crosses the ZX-plane

7/4/2018

The line passing through the points (5,1,6) and (3,4,1) is given by,

 $\cfrac{x-5}{3-5}=\cfrac{y-1}{4-1}=\cfrac{z-6}{1-6}$

 $\ensuremath{$\operatorname{\ensuremath{\mbox{Rightarrow \cfrac{x-5}{-2}=\cfrac{y-1}{3}=\cfrac{z-6}{-5}=k (say)}$}$

Rightarrow x=5-2k, y=3k+1, z=6-5k

Any point on the line is of the form P(5-2k, 3k+1, 6-5k).

Since the line passes through ZX-plane,

\Rightarrow Y-coordinate of point P will be 0 \Rightarrow 3k+1=0\Rightarrow k=-\cfrac{1}{3}

Therefore, the required point is $\left(\frac{17}{3}, 3, 0, \frac{23}{3} \right) \right).$

#422817

Topic: Plane

Find the coordinates of the point where the line through (3,-4,-5) and (2,-3,1) crosses the plane 2x+y+z=7

Solution

Equation of line passes through the points (3,-4,-5) and (2,-3,1) is given by

 $\cfrac{x-3}{2-3}=\cfrac{y+4}{-3+4}=\cfrac{z+5}{1+5}$

\Rightarrow x=3-k, y=k, z=6k-5

Therefore, any point on the line is of the form (3-k, k-4, 6k-5)

This point lies on the plane 2x+y+z=7

\therefore 2(3-k)+(k-4)+(6k-5)=7

\Rightarrow 5k-3=7\Rightarrow k=2

Hence, the coordinates of the required point are (3-2, 2-4, 6\times 2-5) i.e,(1,-2,7)

#422829

Topic: Plane

Find the equation of the plane passing through the point (-1,2,3) and perpendicular to each of the planes x+2y+3z=5 and 3x+3y+z=0

Solution

2bThe equation of the plane passing through (-1,2,3) will be given by a(x+1) + b(y-2) + c(z-3) = 0, where a,b and c are the direction ratios of the normal to the plane.

Also, this plane is perpendicular to the planes x+2y+3z=5 and 3x+3y+z=0. According to the perpendicularity condition of planes, the dot product of the direction ratios of the normals to the two planes should be 0.

Rightarrow a+2b+3c = 0 and 3a+3b+c=0

 $\Rightarrow c = -\cfrac{a+2b}3$

Substituting this in the second equation,

 $3a+3b - \frac{a+2b}{3=0}$

Rightarrow 9a+9b - a - 2b = 0

\Rightarrow 8a+7b = 0

 $\left(a = -\left(8a \right) \right)$

Substituting these values of b and c in the equation of the plane,

a(x+1) - dfrac(8a)7(y-2) + dfrac(3a)7(z-3) = 0

 $\Re 7(x+1) - 8(y-2) + 3(z-3) = 0$

Rightarrow 7x-8y+3z + 7 + 16 - 9 = 0

\Rightarrow 7x-8y+3z +14=0

Hence, the equation of the required plane is 7x-8y+3z + 14 = 0

#422837

Topic: Plane

If the points (1,1,p) and (-3, 0, 1) be equidistant from the plane

 $\ensuremath{\mbox{\sc {r}}.\ensuremath{\mbox{\sc {r}}}-12\hat{\sc {k}} \rightarrow 13=0, then find the value of p.}$

Solution

The position vector through the point (1,1,p) is $\ensuremath{\mbox{ \left} \{ a \}_{1} } = \ensuremath{\mbox{ \left} \{ i \} + \ensuremath{\mbox{ \left} \{ j \} + \ensuremath{\mbox{ \left} \{ k \} } = \ensuremath{\mbox{ \left} \{ i \} + \ensuremath{\mbox{ \left} \{ j \} + \ensuremath{\mb$

Similarly, the position vector through the point (-3,0,1) is $\sqrt{2} =-3\hat{i} + \hat{i} + \hat$

The equation of the given plane is $\ensuremath{\mbox{\sc {r}}}.\ensuremath{\mbox{\sc {i}}} + 4\hat {j}-12\hat {k} \hat {k} \hat {j}-12\hat {k} \hat {k}$

It is known that the perpendicular distance between a point whose position vector is $\text{vec}\{a\}$ and the plane $\text{vec}\{r\}$. $\text{vec}\{N\}$ =d, is given by

 $D = \left\{ \left(\left(N \right) - d \right) \right\} \left(\left(N \right) - d \right) \right\} \\ \left(\left(N \right) \right) \\ \left(\left(N$

Here, $\ensuremath{\text{Vec}}\{N\} = \left(3 \right) + 4\left(j\right) - 12\left(k\right) \right)$ and d=-13

Therefore, the distance between the point (1,1,p) and the given plane is

 $\label{left} $$\left(\frac{3+4-12p+13 \right) {\left(\frac{3 \right) }{2 + \left(\frac{4 \right) }{2 + \left(\frac{12 \right) }{12 }} } \right) $$$

\Rightarrow \cfrac { \left| 20-12p \right| }{ 13 }(1)

Similarly, the distance between the point (-3, 0, 1) and the given plane is

[D] 2]=\cfrac{\left|\left(-3\\hat{i}+\hat{k}\right).\left(3\\hat{i}+4\\hat{j}-12\\hat{k}\right)+13\right|}\left(3\\hat{i}+4\\hat{j}-12\\hat{k}\right|)

 $\label{left} $$\left(-9-12+13 \right) {\left(-12 \right) } \left(-9+12+13 \right) {\left(-12 \right) } (2) {\left(-12 \right) } (2) }$

\Rightarrow {D}_{2}=\cfrac{8}{13}.....(2)

It is given that, the difference between the required plane and the points (1,1,p) and (-3,0,1) is equal

\therefore $\{D\}_{1}=\{D\}_{2}$

\Rightarrow 20-12p=8 or -(20-12p)=8

\Rightarrow 12p=12 or 12p=28

 $\P = 1 \text{ or } p=1 \text{ or } p=$

#422846

Topic: Plane

Find the equation of the plane passing through the line of intersection of the planes \vec{r}.\left(\hat{i}+\hat{j}+\hat{j}}-\nat{j} +\hat{j} = 1 and \vec{r}.\left(2\hat{j}+3\hat{j}-1).

 $\hat{k} \rightarrow 4=0$ and parallel to x-axis.

Solution

The given planes are

 $\c \{r\}.\c \{r\}.\c \{i\}+\c \{j\}+\c \{k\}\c \}$

& $\ensuremath{\mbox{\ensuremath{\mbox{$\&$}}} \left(2\hat{\ensuremath{\mbox{\downarrow}}} +3\hat{\ensuremath{\mbox{\downarrow}}} \right) +4=0$

The equation of any plane passing through the line of intersection of these planes is

 $\label{left} $\left(\left(hat \{i\} + hat \{j\} + hat \{k\} \right) + 4 \left(hat \{i\} + hat \{j\} + hat \{k\} \right) + 4 \left(hat \{i\} + hat \{j\} + hat \{k\} \right) + 4 \left(hat \{i\} + hat \{j\} + hat \{k\} \right) + 4 \left(hat \{i\} + hat \{j\} + hat \{j\} + hat \{k\} \right) + 4 \left(hat \{i\} + hat \{j\} + hat$

 $\label{eq:lambda +1} $$ \operatorname{left}(2\lambda +1)\hat{i} + (3\lambda +1)\hat{i}$

Its direction ratios are (2 \advarphi), (3 \advarphi) and (1- \advarphi) and (1- \advarphi)

The required plane is parallel to x-axis. Therefore, its normal is perpendicular to x-axis.

The direction ratios of x-axis are 1,0 and 0.

 $\theta = 1.(2\lambda + 1) + 0(3\lambda + 1) + 0(1-\lambda + 2) = 0$

 $\label{lem:lembda} $$ \operatorname{lambda+1=0} \operatorname{lambda=-\cfrac}(1)_{2} $$$

Substituting $\adjust{lambda=-\cfrac{1}{2}}$ in equation (1), we obtain

Therefore, its cartesian equation is y-3z+6=0

#422860

Topic: Plane

If O be the origin and the coordinates of P be (1,2,-3), then find the equation of the plane passing through P and perpendicular to OP.

Solution

The coordinates of the points O and P are (0,0,0) and (1,2,-3) respectively.

Therefore, the direction ratios of OP are

(1-0)=1,(2-0)=2 and (-3-0)=-3

Thus the direction ratios of normal are 1,2 and -3 and the point P is (1,2,-3).

Thus, the equation of the required plane is

1(x-1)+2(y-2)-3(z+3)=0

 $\Rightarrow x+2y-3z-14=0$

#422861

Topic: Plane

Find the equation of the plane which contains the line of intersection of the planes

Solution

 $\ensuremath{\mbox{vec} \{r\}.\ensuremath{\mbox{hat} \{i\}+2\hat} \{j\}+3\hat\{k\}\right)-4=0.....(1)}$

The equations of the plane passing through the line intersection of the plane given in equation (1) and equation (2) is

 $\label{left} \left(\left(r\right) . \left(hat \{i\} + 2 \hat{j} + 3 \hat{j} + 3 \hat{k} \right) + 2 \hat{j} + 3 \hat{k} \right) + 2 \hat{j} + 3 \hat{k} \right) + 3 \hat{k} + 3 \hat{k$

 $\label{eq:continuous} $\operatorname{left}(2\lambda +1)\hat{i} + (\lambda + 1) +$

The plane in equation (3) is perpendicular to the plane

 $\t 5(2\lambda +1)+3(\lambda +2)-6(3-\lambda +2)=0$

\Rightarrow 19\lambda-7=0

 $\label{lem:lembda=\cfrac{7}{19}} $$ \Box{19} \A = \cfrac{7}{19} $$$

Substituting $\lambda = \sqrt{7}(19)$ in equation (3) we obtain

This is the vector equation of the required plane.

The cartesian equation of this plane can be obtained by substituting $\ensuremath{\mbox{vec}\{r\}=x\hat{j}+y\hat{j}+z\hat{k}}$ in equation (3).

 $(x \hat{i} + y \hat{j} + z \hat{j} + z \hat{k}). \left(33 \hat{i} + 45 \hat{j} + 50 \hat{k} \right) -41 = 0$

\Rightarrow 33x+45y+50z-41=0

#422862

Topic: Plane

Find the distance of the point (-1,-5,-10) from the point of intersection of the line $\ensuremath{\mbox{\sc r}} = \ensuremath{\mbox{\sc r}} + 2\hat{j} + 2\hat{j}$

7/4/2018

 $\label{left} $\operatorname{left}(2\hat{j}+2\hat{j}+2\hat{k}) + \operatorname{left}(3\hat{j}+4\hat{j}+2\hat{j}+2\hat{k}) = \operatorname{left}(3\hat{j}+4\hat{j}+2\hat{j}+2\hat{k}) + \operatorname{left}(3\hat{j}+2\hat{j}+2\hat{k}) = \operatorname{left}(3\hat{j}+2\hat{j$

The equation of the given plane is

The equation of the given line is

 $\ensuremath{\operatorname{vec}} r \ .\ensuremath{\operatorname{left}} \rightarrow \ensuremath{\operatorname{hat}} \ j \ +\hat \ k \ \ right) = 5......(2)$

Substituting the value of $\ensuremath{\mbox{\sc substitution}}$ (2), we get,

 $\label{left} $\left(2\hat{j}+2\hat{k}\right) + \left(j\right)+2\hat{k} \ \left(j\right)+2\hat{k$

\implies \lambda =0

Thus the point of intersection of the given line and the plane is,

 $\ensuremath{\text{vec}} \{r\} = 2\hat{\{i\}} -\hat{\{j\}} + 2\hat{\{k\}} = (2,-1,2)$

This means that the position vector of the point of intersection of the line and plane is given by the coordinates (2,-1,2). The point is (-1,-5,-10).

Hence, distance d between the points, (2,-1,2) and (-1,-5,-10) is

#422863

Topic: Plane

Find the vector equation of the line passing through (1,2,3) and parallel to the planes \vec { r } .\left(\hat { i } -\hat { j } +2\hat { k } \right) =5 and \vec { r } .\left(3\hat { i } +\hat { j } +2\hat { k } \right) =5 and \vec { r } .\left(3\hat { i } +\hat { j } +2\hat { j } +2\hat { k } \right) =5 and \vec { r } .\left(3\hat { j } +2\hat { j } +\hat { k } \right) =6.

Solution

Let the required line be parallel to vector $\ensuremath{\mathsf{vec}}\xspace \{\ b\ \}$ is given by,

 $\eg(r) = (b)_{1}\hat{ (i)} + (b)_{2}\hat{ (j)} + (b)_{3}\hat{ (k)}$

The position vector of the point (1,2,3) is $\ensuremath{\text{vec}} \{a\} = \text{hat} \{i\} + 2 \text{hat} \{j\} + 3 \text{hat} \{k\}.$

The equation of line passing through (1,2,3) and parallel to \vec { b } is given by,

 $\ensuremath{\mbox{vec} \{ r \} = \ensuremath{\mbox{vec} \{ a \} + \ensuremath{\mbox{lambda} \ensuremath{\mbox{vec} \{ b \} }}$

The equations of the given planes are

 $\ensuremath{\mbox{vec} \{r\}.\ensuremath{\mbox{hat}\{i\}-\hat}\{j\}+2\hat\{k\}\right)=5.....(2)$

 $\ensuremath{\mbox{vec} \{ r } .\ensuremath{\mbox{left(3\hat { i } } +\hat { j } +\hat { k } \hat { i } +\hat { k } \hat { l } = 6.....(3)}$

The line in equation (1) and plane in equation (2) are parallel. Therefore, the normal to the plane of equation (2) and the given line are perpendicular.

 $\label{left(hat {i}-\hat{j}+b_{2}\hat{j}+b_{3}\hat{k} \wedge ight).lambda \left(\{b_{1}\hat{j}+b_{2}\hat{j}+b_{3}\hat{j}+b_{3}\hat{k} \rangle \right) = 0.$

 $\left(b_{1}-b_{2}+2b_{3}\right)=0$

 $\label{linear_property} $$ \Pr\{b\}_{1}-\{b\}_{2}+2\{b\}_{3}=0.....(4) $$$

 $Similarly, \left(3 \hat{ j} + \hat{ j} + \hat{ j} + \hat{ k} \right) . \left(b)_{1}\hat{ j} + \hat{ j} + \hat{ j} + \hat{ k} \right) . \left(b)_{1}\hat{ j} + \hat{ j} +$

 $\Rightarrow \add(3{b}_{1}+{b}_{2}+{b}_{3})=0$

\Rightarrow 3{b}_{1}+{b}_{2}+{b}_{3}=0......(5)

From equations (4) and (5), we obtain

Therefore, the direction ratios of \vec { b } are -3,5 and 4.

 $\label{thm:condition} $$ \left(b = (b)_{1}\hat{ } + (b)_{2}\hat{ } + (b)_{3}\hat{ } + (k) = -3\hat{ } + (i) + 5\hat{ } + (j) + 4\hat{ } \\ k \right) = -3\hat{ } + (i) + 5\hat{ } + (i) + ($

Substituting the value of $\ensuremath{\mbox{\sc vec}}$ { b } in equation (1), we obtain

This is the equation of the required line.

#422865

Topic: Lines

Find the vector equation of the line passing through the point (1,2,-4) and perpendicular to the two lines: $\cfrac(x-8)[3]=\cfrac(y+19)[-16]=\cfrac(z-10)[7]$ and $\cfrac(x-15)[3]=\cfrac(y-29)[8]=\cfrac(z-5)[-5]$.

Solution

Let the required line be parallel to the vector $\ensuremath{\text{vec}} \{b\} \text{ given by } \ensuremath{\text{vec}} \{b\} = \{b\}_{1}\hat\{i\} + \{b\}_{2}\hat\{i\} + \{b\}_{3}\hat\{k\} \}$

The position vector of the point (1,2,-4) is $\ensuremath{\mbox{ \node vec}} \{a\} = \hat \{i\} + 2 \hat \{j\} - 4 \hat \{k\}.$

The equation of the line passing through (1,2,-4) and parallel to vector \vec{b} is $\vec{r} = \vec{a} + \lambda \cdot \vec{b}$.

The equations of the lines are,

 $\cfrac{x-8}{3}=\cfrac{y+19}{-16}=\cfrac{z-10}{7}....(2)$

 $\cfrac{x-15}{3}=\cfrac{y-29}{8}=\cfrac{z-5}{-5}.....(3)$

Line (1) and line (2) are perpendiciuar to each other.

\therefore 3{b}_{1}-16{b}_{2}+7{b}_{3}=0......(4)

Also, line (1) and line (3) are perpendicular to each other.

\therefore 3{b}_{1}+8{b}_{2}-5{b}_{3}=0......(5)

From equations (4) and (5), we obtain

 $\label{lem:cfrac} $$ \operatorname{l}_{1}(-16)(-5)-8\times 7=\operatorname{l}_{2}(7\times 3-3(-5))=\operatorname{l}_{3}(3\times 8-3(-16)) $$ $$ $(-16)(-5)-8\times 7=\operatorname{l}_{2}(7\times 3-3(-5))=\operatorname{l}_{3}(3\times 3-3(-5))=\operatorname{l$

\therefore direction of \vec { b } are 2,3 and 6.

Substituting $\ensuremath{\mbox{vec}}\{b\}=2\hat\{i\}+3\hat\{j\}+6\hat\{k\}\ \mbox{in equation (1), we obtain }$

This is the equation of the required line.

#422867

Topic: Lines

Distance between the two planes : 2x+3y+4z=4 and 4x+6y+8z=12 is

- A 2 units
- B 4 units
- C 8 units

D \cfrac{2}{\sqrt {29}} units

Solution

The equations of the planes are

2x+3y+4z=4....(1)

4x+6y+8z=12

\Rightarrow 2x+3y+4z=6.....(2)

It can be seen that the given planes are parallel.

Thus distance (D) between them is given by.

 $D = \left\{ \left\{ \begin{array}{c} d \leq 2 \right\} + \left\{ \begin{array}{c} a \leq 2 \end{array} \right\} + \left$

#428867

Topic: Direction Cosines and Direction Ratios

Find the direction cosines of the vector $\hat{j}+2\hat{j}+3\hat{k}$.

Let $\ensuremath{\text{lot}} = \hat{j}+3\hat{k}$

\therefore |\vec {a}|=\sqrt {1^2+2^2+3^2}=\sqrt {1+4+9}=\sqrt {14}

Hence, the direction cosines of \vec {a} are \left (\dfrac {1}(\sqrt {14}), \dfrac {2}(\sqrt {14}), \dfrac {3}(\sqrt {14})\right).

#428871

Topic: Direction Cosines and Direction Ratios

Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.

Solution

The given points are A (1, 2, -3) and B (-1, -2, 1).

 $Hence, the direction cosines of \vec \{AB\} are \left (-\dfrac \{2\}\{6\}, \dfrac \{4\}\{6\}, \dfrac \{4\}\{6\}, \dfrac \{1\}\{3\}, \dfrac \{2\}\{3\}, \dfrac \{2\}\}, \dfrac \{2\}\{3\}, \dfrac \{2\}\{3\}, \dfrac \{2\}\}, \dfrac \{2\}\{3\}, \dfrac \{2\}\{3\}, \dfrac \{2\}\{3\}, \dfrac \{2\}\}, \dfrac \{2\}\{3\}, \dfrac \{2\}\}, \dfrac \{2\}\{3\}, \dfrac \{2\}\}, \dfrac \{2\}\{3\}, \dfrac \{2\}\}, \d$

#428872

Topic: Direction Cosines and Direction Ratios

Solution

Let $\ensuremath{\text{lot}} \{a\}=\hat \{i\}+\hat \{j\}+\hat \{k\}$

Then, $|\sqrt {a}| = \sqrt {1^2+1^2+1^2} = \sqrt 3$

Therefore, the direction cosines of \vec {a} are \left (\dfrac {1}{\sqrt {3}}), \dfrac {1}{\sqrt {3}}}, \dfrac {1}{\sqrt {3}}}

Now, let \alpha, \beta, and \gamma be the angles formed by \vec {a} with the positive direction directions of x, y, and z axes.

 $Then, we have \cos\alpha = \dfrac \ensuremath{\cite{1}{\hspace{-0.07cm}}} sqrt \ensuremath{\cite{3}{\hspace{-0.07cm}}}, \cos\beta = \dfrac \ensuremath{\cite{1}{\hspace{-0.07cm}}} sqrt \ensuremath{\cite{3}{\hspace{-0.07cm}}}, \cos\gamma = \dfrac \ensuremath{\cite{1}{\hspace{-0.07cm}}} sqrt \ensuremath{\cite{3}{\hspace{-0.07cm}}}.$

Hence, the given vector is equally inclined to axes OX, OY, and OZ.