\#425682
Topic: Area of Bounded Regions
Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x-axis in the first quadrant.

Solution
The area of the region bounded by the curve, $y^{2}=x$, the lines, $x=1$ and $x=4$, and the x-axis is the area $A B C D$.
Thus area of $A B C D=\int_{1}^{4} y d x$
$=\int_{1}^{4} \sqrt{x} d x$
$=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4}$
$=\frac{2}{3}\left[(4)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right]$
$=\frac{2}{3}[8-1]$
$=\frac{14}{3}$ units

\#425683

Topic: Area of Bounded Regions
Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

Solution

The area of the region bounded by the curve, $y^{2}=9 x, x=2$ and $x=4$, and the x-axis is the area $A B C D$.
Area of $A B C D=\int_{2}^{4} y d x$
$=\int_{2}^{4} 3 \sqrt{\bar{x}} d x$
$=\left.\beta^{\frac{x^{\frac{3}{2}}}{\frac{3}{2}}}\right|_{2} ^{4}$
$=2\left[x^{\frac{3}{2}}\right]_{2}^{4}$
$=2\left[44^{\frac{3}{2}}-\left(2, \frac{3}{2}\right]\right.$
$=2[8-2 \sqrt{2}]$
$=(16-4 \sqrt{2})$ units

\#425684

Topic: Area of Bounded Regions
Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.

Solution
The area of the region bounded by the curve $x^{2}=4 y, y=2$ and $y=4$, and the y-axis is the area $A B C D$.
Area of $A B C D=\int_{2}^{4} x d y$
$=\int_{2}^{4} 2 \sqrt{y} d y$
$=2 \int_{2}^{4} \sqrt{y} d y$
$\left.=2 \frac{\frac{y^{\frac{3}{2}}}{3}}{\frac{3}{2}}\right]_{2}^{4}$
$=\frac{4}{3}[44)^{\frac{3}{2}}-\left(2, \frac{3}{\frac{3}{2}}\right]$
$=\frac{4}{3}[8-2 \sqrt{2}]$
$=\left(\frac{32-8 \sqrt{2}}{3}\right)_{\text {units }}$

\#425685
Topic: Area of Bounded Regions
Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

Solution

The given equation of the ellipse, $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, can be represented as
It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area of $O A B$
Area of $O A B=\int_{0}^{4} y d x$
$=\int_{0}^{4} 3 \sqrt{1-\frac{x^{2}}{16}} d x$
$=\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x$
$=\frac{3}{4}\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4}$
$=\frac{3}{4}\left[2 \sqrt{16-16}+8 \sin ^{-1}(1)-0-8 \sin ^{-1}(0)\right]$
$=\frac{3}{4}\left[\frac{8 \pi}{2}\right]$
$=\frac{3}{4}[4 \pi]=3 \pi$
Therefore, are bounded by the ellipse $=4 \times 3 \pi=12 \pi$ units

\#425686

Topic: Area of Bounded Regions
Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

Solution

The given equation of the ellipse can be represented as
$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
$\Rightarrow y=3 \sqrt{1-\frac{x^{2}}{4}}$

It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area $O A B$
\therefore Area of $O A B=\int_{0}^{2} y d x$
$=\int_{0}^{2} 3 \sqrt{1-\frac{x^{2}}{4}} d x[$ Using (1)]
$=\frac{3}{2} \int_{0}^{2} \sqrt{4-x^{2}} d x$
$=\frac{3}{2}\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}$
$=\frac{3}{2}\left[\frac{2 \pi}{2}\right]=\frac{3 \pi}{2}$
Therefore, area bounded by the ellipse $=4 \times \frac{3 \pi}{2}=6 \pi$ units

\#425687
Topic: Area of Bounded Regions
Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.

Solution

The area of the region bounded by the circle, $x^{2}+y^{2}=4, x=\sqrt{3} y$, and the x-axis is the area $O A B$.
The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3}, 1)$.
Area $O A B=$ Area $\triangle O C A+$ Area $A C B$
Area of $O A C=\frac{1}{2} \times O C \times A C=\frac{1}{2} \times \sqrt{3} \times 1=\frac{\sqrt{3}}{2} \cdots \ldots \ldots \ldots .$. (1)
Area of $A B C=\int_{\sqrt{3}}^{2} y d x$
$=\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{\sqrt{3}}^{2}$
$=\left[2 \times \frac{\pi}{2}-\frac{\sqrt{3}}{2} \sqrt{4-3}-2 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$
$=\left[\pi-\frac{\sqrt{3}}{2}-\frac{2 \pi}{3}\right]$
$=\left[\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right] \ldots \ldots \ldots \ldots \ldots$
Therefore, area enclosed by x-axis, the line $x=\sqrt{3} y$, and the circle $x^{2}+y^{2}=4$ in the first quadrant $=\frac{\sqrt{3}}{2}+\frac{\pi}{3}-\frac{\sqrt{3}}{2}=\frac{\pi}{3}$ units

\#425688

Topic: Area of Bounded Regions
Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$.

Solution

The area of the smaller part of the circle, $x^{2}+y^{2}=a^{2}$, cut off by the line, $x=\frac{a}{\sqrt{2}}$, is the are ABCDA.
It can be observed that the area $A B C D$ is symmetrical about x-axis.
\therefore Area $A B C D=2 \times$ Area $A B C$
Area of $A B C=\int_{\frac{a}{\sqrt{2}}}^{a} y d x$
$=\int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2}-x^{2}} d x$
$=\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{\frac{a}{\sqrt{2}}}^{a}$
$=\left[\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)-\frac{a}{2 \sqrt{2}} \sqrt{a^{2}-\frac{a^{2}}{2}}-\frac{a^{2}}{2} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right]$
$=\frac{a^{2} \pi}{4}-\frac{a}{2 \sqrt{2}} \cdot \frac{a}{\sqrt{2}}-\frac{a^{2}}{2}\left(\frac{\pi}{4}\right)$
$=\frac{a^{2} \pi}{4}-\frac{a^{2}}{4}-\frac{a^{2} \pi}{8}$
$=\frac{a^{2}}{4}\left[\pi-1-\frac{\pi}{2}\right]$
$=\frac{a^{2}}{4}\left[\frac{\pi}{2}-1\right]$
\Rightarrow Area $A B C D=2\left[\frac{a^{2}}{4}\left(\frac{\pi}{2}-1\right)\right]=\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$
Therefore, the area of smaller part of the circle, $x^{2}+y^{2}=a^{2}$, cut off by the line, $x=\frac{a}{\sqrt{2}}$, is $\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$ sq.units.

\#425689

Topic: Area of Bounded Regions
The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.

Solution

The line, $x=a$, divides the area bounded by the parabola and $x=4$ into two equal parts.
\therefore Area $O A D=$ Area $A B C D$
It can be observed that the given area is symmetrical about x-axis.
\Rightarrow Area $O E D=$ Area $E F C D$
Area $O E D=\int_{0}^{a} y d x$
$=\int_{0}^{a} \sqrt{x} d x$
$=\int_{0}^{\frac{x^{\frac{3}{2}}}{2}}{ }_{0}^{a}$
$=\frac{2}{3}(a)^{\frac{3}{2}} \ldots \ldots \ldots \ldots \ldots .$. (1)
Area of $E F C D=\int_{a}^{4} \sqrt{x} d x$
$=\int_{a}^{\frac{x^{\frac{3}{2}}}{2}} 4$
$=\frac{2}{3}\left[8-a^{\frac{3}{2}}\right] \ldots \ldots \ldots .$. (2)
From (1) and (2), we obtain
$\frac{2}{3}(a)^{\frac{3}{2}}=\frac{2}{3}\left[8-(a)^{\frac{3}{2}}\right]$
$\Rightarrow 2 \cdot(a)^{\frac{3}{2}}=8$
$\Rightarrow(a)^{\frac{3}{2}}=4$
$\Rightarrow a=(4)^{\frac{2}{3}}$
Therefore, the value of a is $(4)^{\frac{2}{3}}$.

\#425690
Topic: Area of Bounded Regions
Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.

Solution

The area bounded by the parabola, $x^{2}=y$, and the line, $y=|x|$, can be represented as
The given area is symmetrical about y-axis
\therefore Area $O A C O=$ Area $O D B O$
The point of intersection of parabola, $x^{2}=y$, and line, $y=x$, is $A(1,1)$.
Area of $O A C O=$ Area $\triangle O A B-$ Area $O B A C O$
\therefore Area of $\triangle O A B=\frac{1}{2} \times O B \times A B=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$
Area of OBACO $=\int_{0}^{1} y d x=\int_{0}^{1} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}$
\Rightarrow Area of $O A C O=$ Area of $\triangle O A B-$ Area of $O B A C O$
$=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$
Therefore, required area $=2\left[\frac{1}{6}\right]=\frac{1}{3}$ sq.units.

\#425691
Topic: Area of Bounded Regions
Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.

Solution

The area bounded by the curve, $x^{2}=4 y$, and line, $x=4 y-2$, is represented by the shaded area $O B A O$.
Let A and B be the points of intersection of the line and parabola.
Coordinates of point A are $\left(-1, \frac{1}{4}\right)$
Coordinates of point B are $(2,1)$.
We draw $A L$ and $B M$ perpendicular to x-axis.
It can be observed that,
Area $O B A O=$ Area $O B C O+$ Area $O A C O$........... (1)
Then, Area $O B C O=$ Area $O M B C$ - Area $O M B O$
$=\int_{0}^{2} \frac{x+2}{4} d x-\int_{0}^{2} \frac{x^{2}}{4} d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{0}^{2}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{2}$
$=\frac{1}{4}[2+4]-\frac{1}{4}\left[\frac{8}{3}\right]$
$=\frac{3}{2}-\frac{2}{3}=\frac{5}{6}$
Similarly, Area OACO = Area OLAC- Area OLAO
$=\int_{-1}^{0} \frac{x+2}{4} d x-\int_{-1}^{0} \frac{x^{2}}{4} d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{0}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{-1}^{0}$
$=-\frac{1}{4}\left[\frac{(-1)^{2}}{2}+2(-1)\right]-\left[-\frac{1}{4}\left(\frac{(-1)^{3}}{3}\right)\right]$
$=-\frac{1}{4}\left[\frac{1}{2}-2\right]-\frac{1}{12}$
$=\frac{1}{2}-\frac{1}{8}-\frac{1}{12}=\frac{7}{24}$
Therefore, required area $=\left(\frac{5}{6}+\frac{7}{24}\right)=\frac{9}{8}$ sq. units.

\#427458

Topic: Area of Bounded Regions
Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$

Solution

The region bounded by the parabola, $y^{2}=4 x$, and the line $x=3$ is the area OACO.
The area $O A C O$ is symmetrical about x-axis.
\therefore Area of $O A C O=2($ Area of $O A B)$
Area $O A C O=2\left[\int_{0}^{3} y d x\right]$
$=2 \int_{0}^{3} 2 \sqrt{x} d x$
$=\left.4 \frac{\frac{x^{\frac{3}{2}}}{3}}{2}\right|_{0} ^{3}$
$=\frac{8}{3}\left[(3)^{\frac{3}{2}}\right]$
$=8 \sqrt{3}$
Therefore, the required area is $8 \sqrt{3}$ units.

\#427461

Topic: Area of Bounded Regions
Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is

A π
B $\frac{\pi}{2}$
C $\frac{\pi}{3}$
D $\frac{\pi}{4}$

Solution

The area bounded by the circle and the lines, $x=0$ and $x=2$, in the first quadrant is represented as shaded region in the plot.
\therefore Area $O A B=\int_{0}^{2} y d x$
$=\int_{0}^{2} \sqrt{4-x^{2}} d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}$
$=2\left(\frac{\pi}{2}\right)=\pi$ sq. units
Thus, the correct answer is A .

\#427464

Topic: Area of Bounded Regions

Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is

A 2
B $\quad \frac{9}{4}$
C $\quad \frac{9}{3}$
D $\frac{9}{2}$
Solution
The area bounded by the curve, $y^{2}=4 x, y$-axis, and $y=3$ is represented as shown in the diagram.
\therefore Area $O A B=\int_{0}^{3} x d y$
$=\int_{0}^{3} \frac{y^{2}}{4} d y$
$=\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{0}^{3}$
$=\frac{1}{12}(27)$
$=\frac{9}{4}$ sq. units
Thus, the correct answer is B.

\#427467

Topic: Area of Bounded Regions
Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.

Solution

The required area is represented by the shaded area $O B C D O$.
Solving the given equation of circle, $4 x^{2}+4 y^{2}=9$, and parabola, $x^{2}=4 y$, we obtain the point of intersection as $B\left(\sqrt{2}, \frac{1}{2}\right)$ and $D\left(-\sqrt{2}, \frac{1}{2}\right)$.
It can be observed that the required area is symmetrical about y-axis.
\therefore Area $O B C D O=2 \times$ Area $O B C O$
We draw $B M$ perpendicular to $O A$.
Therefore, the coordinates of M are $(\sqrt{2}, 0)$
Therefore, Area $O B C O=$ Area $O M B C O$ - Area $O M B O$
$=\int_{0}^{\sqrt{2}} \sqrt{\frac{\left(9-4 x^{2}\right)}{4}} d x-\int_{0}^{\sqrt{2}} \frac{x^{2}}{4} d x$
$=\frac{1}{2} \int_{0}^{\sqrt{2}} \sqrt{9-4 x^{2}} d x-\frac{1}{4} \int_{0}^{\sqrt{2}} x^{2} d x$
$=\frac{1}{4}\left[x \sqrt{9-4 x^{2}}+\frac{9}{2} \sin ^{-1} \frac{2 x}{3}\right]_{0}^{\sqrt{2}}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}}$
$=\frac{1}{4}\left[\sqrt{2} \sqrt{9-8}+\frac{9}{2} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]-\frac{1}{12}(\sqrt{2})^{3}$
$=\frac{\sqrt{2}}{4}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}-\frac{\sqrt{2}}{6}$
$=\frac{\sqrt{2}}{12}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}$
$=\frac{1}{2}\left(\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right)$
Therefore, the required area $O B C D O$ is
$\left(2 \times \frac{1}{2}\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]\right)=\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]$ sq. units

\#427472

Topic: Area of Bounded Regions
Find the area bounded by curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.

Solution

The area bounded by the curves, $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$, is represented by the shaded area as
On solving the equations, $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$, we obtain the point of intersection as $A\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $B\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.
It can be observed that the required area is symmetrical about x-axis.
\therefore Area $O B C A O=2 \times$ Area $O C A O$
We join $A B$, which intersects $O C$ at M, such that $A M$ is perpendicular to $O C$.
The coordinates of M are $\left(\frac{1}{2}, 0\right)$.
\Rightarrow Area $O C A O=$ Area $O M A O+$ Area MCAM
$=\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+\int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x\right]$
$=\left[\frac{x-1}{2} \sqrt{1-(x-1)^{2}}+\frac{1}{2} \sin ^{-1}(x-1)\right]_{0}^{\frac{1}{2}}+\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{\frac{1}{2}}^{1}$

$=\left[-\frac{\sqrt{3}}{8}+\frac{1}{2}\left(-\frac{\pi}{6}\right)-\frac{1}{2}\left(-\frac{\pi}{2}\right)\right]+\left[\frac{1}{2}\left(\frac{\pi}{2}\right)-\frac{\sqrt{3}}{8}-\frac{1}{2}\left(\frac{\pi}{6}\right)\right]$
$=\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{12}+\frac{\pi}{4}+\frac{\pi}{4}-\frac{\pi}{12}\right]$
$=\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{6}+\frac{\pi}{2}\right]$
$=\left[\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right]$
Therefore, required area $O B C A O=2 \times\left(\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right)=\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ units

\#427496

Topic: Area of Bounded Regions
Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $x=3$.

Solution

The area bounded by the curves, $y=x^{2}+2, y=x, x=0$, and $x=3$, is represented by the shaded area $O C B A O$ as shown in the diagram.
Then, Area OCBAO = Area ODBAO - Area ODCO
$=\int_{0}^{3}\left(x^{2}+2\right) d x-\int_{0}^{3} x d x$
$=\left[\frac{x^{3}}{3}+2 x\right]_{0}^{3}-\left[\frac{x^{2}}{2}\right]_{0}^{3}$
$=[9+6]-\left[\frac{9}{2}\right]$
$=15-\frac{9}{2}$
$=\frac{21}{2}$ sq. units

\#427505

Topic: Area of Bounded Regions
Using integration find the area of the region bounded by the triangle whose vertices are $(-1,0),(1,3)$ and $(3,2)$

Solution
$B L$ and $C M$ are drawn perpendicular to x-axis.
It can be observed in the following figure that,
$\operatorname{Area}(\triangle A C B)=\operatorname{Area}(A L B A)+\operatorname{Area}(B L M C B)-\operatorname{Area}(A M C A) \ldots \ldots \ldots$ (1)
Equating of line segment $A B$ is
$y-0=\frac{3-0}{1+1}(x+1)$
$y=\frac{3}{2}(x+1)$
$\therefore \operatorname{Area}(A L B A)=\int_{-1}^{1} \frac{3}{2}(x+1) d x=\frac{3}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}=\frac{3}{2}\left[\frac{1}{2}+1-\frac{1}{2}+1\right]=3$ sq. units
Equating of line segment $B C$ is
$y-3=\frac{2-3}{3-1}(x-1)$
$y=\frac{1}{2}(-x+7)$
$\therefore \operatorname{Area}(B L M C B)=\int_{1}^{3} \frac{1}{2}(-x+7) d x=\frac{1}{2}\left[-\frac{x^{2}}{2}+7 x\right]_{1}^{3}=\frac{1}{2}\left[-\frac{9}{2}+21+\frac{1}{2}-7\right]=5$ sq. units
Equation of line segment $A C$ is
$y-0=\frac{2-0}{3+1}(x+1)$
$y=\frac{1}{2}(x+1)$
$\therefore \operatorname{Area}(A M C A)=\frac{1}{2} \int_{-1}^{3}(x+1) d x=\frac{1}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{3}=\frac{1}{2}\left[\frac{9}{2}+3-\frac{1}{2}+1\right]=4$ sq.units
Therefore, from equation (1), we obtain
$\operatorname{Area}(\triangle A B C)=(3+5-4)=4$ sq. units

\#427507

Topic: Area of Bounded Regions
Using integration find the area of the triangular region whose sides have the equations $\mathrm{y}=2 x+1, y=3 x+1$ and $x=4$

Solution

The equations of sides of the triangles are $y=2 x+1, y=3 x+1$, and $x=4$.
On solving these question, we obtain the vertices of triangle as $A(0,1), B(4,13)$, and $C(4,9)$.
It can be observed that,
Area $(\triangle A C B)=\operatorname{Area}(O L B A O)-\operatorname{Area}(O L C A O)$
$=\int_{0}^{4}(3 x+1) d x-\int_{0}^{4}(2 x+1) d x$
$=\left[\frac{3 x^{2}}{2}+x\right]_{0}^{4}-\left[\frac{2 x^{2}}{2}+x\right]_{0}^{4}$
$=(24+4)-(16+4)$
$=28-20=8$ sq. units.

\#427516

Topic: Area of Bounded Regions
Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is

A $2(\pi-2)$
B $\quad \pi-2$

C $\quad 2 \pi-1$
D $\quad 2(\pi+2)$

Solution

The smaller area enclosed by the circle, $x^{2}+y^{2}=4$ and the line, $x+y=2$ is represented by the shaded area $A C B A$ as shown in the diagram.
It can be observed that,
Area $A C B A=$ Area $O A C B O-$ Area $(\triangle O A B)$
$=\int_{0}^{2} \sqrt{4-x^{2}} d x-\int_{0}^{2}(2-x) d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}-\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2}$
$=\left[2 \cdot \frac{\pi}{2}\right]-[4-2]$
$=(\pi-2)$ sq. units
Thus, the correct answer is B.

\#427522
Topic: Area of Bounded Regions
Area lying between the curve $y^{2}=4 x$ and $y=2 x$ is

A $\frac{2}{3}$
B $\frac{1}{3}$
C $\quad \frac{1}{4}$
D $\frac{3}{4}$

Solution

The area lying between the curve, $y^{2}=4 x$ and $y=2 x$ is represented by the shaded area $O B A O$ as shaded in the diagram.
The points of intersection of these curves are $O(0,0)$ and $A(1,2)$.
We draw $A C$ perpendicular to x-axis such that the coordinates of C are $(1,0)$.
\therefore Area $O B A O=\operatorname{Area}(\triangle O C A)-$ Area $(O C A B O)$
$=\int_{0}^{1} 2 x d x-\int_{0}^{1} 2 \sqrt{x} d x$
$=2\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left.2 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right|_{0} ^{1}$
$=\left|1-\frac{4}{3}\right|$
$=\left|-\frac{1}{3}\right|=\frac{1}{3}$ sq. units
Thus, the correct answer is B.

\#428060

Topic: Area of Bounded Regions
Find the area under the given curves and given lines:
(i) $y=x^{2}, x=1, x=2$ and x-axis
(ii) $y=x^{4}, x=1, x=5$ and x-axis

Solution

(i)

The required area is represented by the shaded area $A D C B A$ shown in the diagram.
Area $A D C B A=\int_{1}^{2} y d x$
$=\int_{1}^{2} x^{2} d x$
$=\left[\frac{x^{3}}{3}\right]_{1}^{2}$
$=\frac{8}{3}-\frac{1}{3}$
$=\frac{7}{3}$ sq.units
(i)

The required area is represented by the shaded area $A D C B A$ in the diagram.
Area $A D C B A=\int_{1}^{5} x^{4} d x$
$=\left[\frac{x^{5}}{5}\right]_{1}^{5}$
$=\frac{(5)^{5}}{5}-\frac{1}{5}$
$=(5)^{4}-\frac{1}{5}$
$=625-\frac{1}{5}$
$=624.8$ sq. units

\#428075

Topic: Area of Bounded Regions
Find the area between the curves $y=x$ and $y=x^{2}$.
Solution

The required area is represented by the shaded area $O B A O$ in the diagram.
The points of intersection of the curves, $y=x$ and $y=x^{2}$, is $A(1,1)$.
We draw $A C$ perpendicular to x-axis
\therefore Area $(O B A O)=\operatorname{Area}(\triangle O C A)-$ Area $(O C A B O) ~(1)$
$=\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x$
$=\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}$
$=\frac{1}{2}-\frac{1}{3}$
$=\frac{1}{6}$ sq. units

\#428082

Topic: Area of Bounded Regions
Find the area of the region lying in the first quadrant and bounded by
$y=4 x^{2}, x=0, y=1$ and $y=4$

Solution
The area in the first quadrant bounded by $y=4 x^{2}, x=0, y=1$, and $y=4$ is represented by the shaded area $A B C D A$
\therefore Area $A B C D=\int_{1}^{4} x d x$
$=\int_{1}^{4} \frac{\sqrt{\bar{y}}}{2} d x$
$=\left.\frac{1}{2} \frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right|_{1} ^{4}$
$=\frac{1}{3}\left[(4) \frac{3}{2}-1\right]$
$=\frac{1}{3}[8-1]$
$=\frac{7}{3}$ sq. units

\#428438

Topic: Area of Bounded Regions

Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d x$

Solution

The given equation is $y=|x+3|$
Graph is plotted in the diagram.
It is known that, $(x+3) \leq 0$ for $-6 \leq x \leq-3$ and $(x+3) \geq 0$ for $-3 \leq x \leq 0$
$\therefore \int_{-6}^{0}|(x+3)| d x=-\int_{-6}^{-3}(x+3) d x+\int_{-3}^{0}(x+3) d x$
$=-\left[\frac{x^{2}}{2}+3 x\right]_{-6}^{-3}+\left[\frac{x^{2}}{2}+3 x\right]_{-3}^{0}$
$=-\left[\left(\frac{(-3)^{2}}{2}+3(-3)\right)-\left(\frac{(-6)^{2}}{2}+3(-6)\right)\right]+\left[0-\left(\frac{(-3)^{2}}{2}+3(-3)\right)\right]$
$=-\left[-\frac{9}{2}\right]-\left[-\frac{9}{2}\right]=9$

\#428443

Topic: Area of Bounded Regions
Find the area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$

Solution
The graph of $y=\sin x$ can be drawn as shown in the diagram.
\therefore Required area $=$ Area $O A B O+$ Area $B C D B$
$=\int_{0}^{\pi} \sin x d x+\left|\int_{\pi}^{2 \pi} \sin x d x\right|$
$=[-\cos x]_{0}^{\pi}+\left|[-\cos x]_{\pi}^{2 \pi}\right|$
$=[-\cos \pi+\cos 0]+1-\cos 2 \pi+\cos \pi$
$=1+1+|(-1-1)|$
$=2+|-2|$
$=2+2=4$ sq. units

\#428446

Topic: Area of Bounded Regions
Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$.

Solution

The area enclosed between the parabola, $y^{2}=4 a x$ and the line, $y=m x$ is represented by the shaded area $O A B O$ as
The points of intersection of both the curves are $(0,0)$ and $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$
We draw $A C$ perpendicular to x-axis.
\therefore Area $O A B O=$ Area $O C A B O-\operatorname{Area}(\triangle O C A)$
$=\int \frac{4 a}{\frac{a}{\delta^{2}}} 2 \sqrt{a x} d x-\int \frac{4 a}{\frac{b^{2}}{r^{2}}} m x d x$
$=\left.2 \sqrt{ } \frac{1}{\frac{x^{\frac{3}{2}}}{\frac{3}{2}}}\right|_{0} ^{\frac{4 a}{m^{2}}}-m\left[\frac{x^{2}}{2}\right]_{0}^{\frac{4 a}{m^{2}}}$
$=\frac{4}{3} \sqrt{a}\left(\frac{4 a}{m^{2}}\right)^{\frac{3}{2}}-\frac{m}{2}\left(\left(\frac{4 a}{m^{2}}\right)^{2}\right]$
$=\frac{32 a^{2}}{3 m^{3}}-\frac{m}{2}\left(\frac{16 a^{2}}{m^{4}}\right)$
$=\frac{32 a^{2}}{3 m^{3}}-\frac{8 a^{2}}{m^{3}}$
$=\frac{8 a^{2}}{3 m^{3}}$ sq. units

\#428540

Topic: Area of Bounded Regions
Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$

Solution

The area enclosed between the parabola, $4 y=3 x^{2}$ and the line, $2 y=3 x+12$ is represented by the shaded are $O B A O$
The points of intersection of the given curves are $A(-2,3)$ and $(4,12)$.
We draw $A C$ and $B D$ perpendicular to x-axis.
\therefore Area $O B A O=$ Area $C D B A-($ Area $O D B O+$ Area $O A C O)$
$=\int_{-2}^{4} \frac{1}{2}(3 x+12) d x-\int_{-2}^{4} \frac{3 x^{2}}{4} d x$
$=\frac{1}{2}\left[\frac{3 x^{2}}{2}+12 x\right]_{-2}^{4}-\frac{3}{4}\left[\frac{x^{3}}{3}\right]_{-2}^{4}$
$=\frac{1}{2}[24+48-6+24]-\frac{1}{4}[64+8]$
$=\frac{1}{2}[90]-\frac{1}{4}[72]$
$=45-18$
$=27$ sq. units

\#428542

Topic: Area of Bounded Regions
Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

Solution

The area of the smaller region by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$ represented by the shaded region $B C A B$
\therefore Area $B C A B=$ Area $(O B C A O)-$ Area $(O B A O)$
$=\int_{0}^{3} 2 \sqrt{1-\frac{x^{2}}{9}} d x-\int_{0}^{3} 2\left(1-\frac{x}{3}\right) d x$
$=\frac{2}{3}\left[\int_{0}^{3} \sqrt{9-x^{2}} d x\right]-\frac{2}{3} \int_{0}^{3}(3-x) d x$
$=\frac{2}{3}\left[\frac{x}{2} \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1} \frac{x}{3}\right]_{0}^{3}-\frac{2}{3}\left[3 x-\frac{x^{2}}{2}\right]_{0}^{3}$
$=\frac{2}{3}\left[\frac{9}{2}\left(\frac{\pi}{2}\right)\right]-\frac{2}{3}\left[9-\frac{9}{2}\right]$
$=\frac{2}{3}\left[\frac{9 \pi}{4}-\frac{9}{2}\right]$
$=\frac{2}{3} \times \frac{9}{4}(\pi-2)$
$=\frac{3}{2}(\pi-2)$ sq. units

\#428546
Topic: Area of Bounded Regions
Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$
Solution
The area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$ is represented by the shaded region $B C A B$
\therefore Area $B A C B=\operatorname{Area}(O B C A O)-\operatorname{Area}(O B A O)$
$=\int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x-\int_{0}^{a} b\left(1-\frac{x}{a}\right) d x$
$=\frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x-\frac{b}{a} \int_{0}^{a}(a-x) d x$
$\left.=\frac{4}{0} \frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \oint_{0}^{a}\left\{a x-\frac{x^{2}}{2}\right\}_{0}^{a}\right]_{0}$
$=\frac{b}{a}\left\{\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)\left\{a^{2}-\frac{a^{2}}{2}\right\}\right]$
$=\frac{b}{a}\left[\frac{a^{2} \pi}{4}-\frac{a^{2}}{2}\right]$
$=\frac{b_{a}{ }^{2}}{2 a}\left[\frac{\pi}{2}-1\right]$
$=\frac{a b}{2}\left[\frac{\pi}{2}-1\right]$
$=\frac{a b}{4}(\pi-2)$

\#428548

Topic: Area of Bounded Regions
Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and x-axis.

Solution

The region enclosed by the parabola $x^{2}=y$, the line $y=x+2$, and x-axis is represented by the shaded region $O A B C O$ as
The point of intersection of the parabola $x^{2}=y$ and the line $y=x+2$ is $A(-1,1)$.
\therefore Area $O A B C O=$ Area $(B C A)+$ Area $C O A C$
$=\int_{-2}^{-1}(x+2) d x+\int_{-1}^{0} x^{2} d x$
$=\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{-1}+\left[\frac{x^{3}}{3}\right]_{-1}^{0}$
$=\left[\frac{(-1)^{2}}{2}+2(-1)-\frac{(-2)^{2}}{2}-2(-2)\right]+\left[0-\frac{(-1)^{3}}{3}\right]$
$=\left[\frac{1}{2}-2-2+4+\frac{1}{3}\right]$
$=\frac{5}{6}$ sq. units

\#428550
Topic: Area of Bounded Regions
Using the method of integration find the area bounded by the curve $|x|+|y|=1$

Solution

The required region is bounded by lines $x+y=1, x-y=1,-x+y=1$ and $-x-y=11$
The area bounded by the curve $|x|+|y|=1$ is represented by the shaded region $A D C B$
The curve intersects the axes at points $A(0,1), B(1,0), C(0,-1)$ and $D(-1,0)$.
It can be observed that the given curve is symmetrical about x-axis and y-axis.
\therefore Area $A D C B=4 \times$ Area $O B A O$
$=4 \int_{0}^{1}(1-x) d x$
$=4\left(x-\frac{x^{2}}{2}\right)_{0}^{1}$
$=4\left[1-\frac{1}{2}\right]$
$=4\left(\frac{1}{2}\right)$
$=2$ sq. units

\#428553

Topic: Area of Bounded Regions

Find the area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

Solution
The area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$, is represented by the shaded region as
It can be observed that the required area is symmetrical about y-axis.
Required area $=2[$ Area $(O C A O)-\operatorname{Area}(O C A D O)]$
$=2\left[\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x\right]$
$\left.=2\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}\right]$
$=2\left[\frac{1}{2}-\frac{1}{3}\right]$
$=2\left[\frac{1}{6}\right]=\frac{1}{3}$ sq. units

\#428554
Topic: Area of Bounded Regions
Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$

Solution

The vertices of $\triangle A B C$ are $A(2,0), B(4,5)$, and $C(6,3)$.
Equation of line segment $A B$ is $y-0=\frac{5-0}{4-2}(x-2)$
$2 y=5 x-10$
$y=\frac{5}{2}(x-2)$.
Equation of line segment $B C$ is $y-5=\frac{3-5}{6-4}(x-4)$
$2 y-10=-2 x+8$
$2 y=-2 x+18$
$y=-x+9$.
Equation of line segment $C A$ is $y-3=\frac{0-3}{2-6}(x-6)$
$-4 y+12=-3 x+18$
$4 y=3 x-6$
$y=\frac{3}{4}(x-2)$.
$\therefore \operatorname{Area}(\triangle A B C)=\operatorname{Area}(A B L A)+\operatorname{Area}(B L M C B)-\operatorname{Area}(A C M A)$
$=\int_{2}^{4} \frac{5}{2}(x-2) d x+\int_{4}^{6}(-x+9) d x-\int_{2}^{6} \frac{3}{4}(x-2) d x$
$=\frac{5}{2}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}+\left[\frac{-x^{2}}{2}+9 x\right]_{4}^{6}-\frac{3}{4}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{6}$
$=\frac{5}{2}[8-8-2+4]+[-18+54+8-36]-\frac{3}{4}[18-12-2+4]$
$=5+8-\frac{3}{4}(8)$
$=13-6=7$ sq. units

\#428556
Topic: Area of Bounded Regions
Using the method of integraton find the area of the region bounded by lines: $2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$

Solution

The given equations of lines are
$2 x+y=4 \ldots \ldots \ldots$ (1)
$3 x-2 y=6$. \qquad
And, $x-3 y+5=0$.
The area of the region bounded by the lines is the area of $\triangle A B C . A L$ and $C M$ are the perpendicular on x-axis.
$\operatorname{Area}(\triangle A B C)=\operatorname{Area}(A L M C A)-\operatorname{Area}(A L B)-\operatorname{Area}(C M B)$
$=\int_{1}^{4}\left(\frac{x+5}{3}\right) d x-\int_{1}^{2}(4-2 x) d x-\int_{2}^{4}\left(\frac{3 x-6}{2}\right) d x$
$=\frac{1}{3}\left[\frac{x^{2}}{2}+5 x\right]_{1}^{4}-\left[4 x-x^{2}\right]_{1}^{2}-\frac{1}{2}\left[\frac{3 x^{2}}{2}-6 x\right]_{2}^{4}$
$=\frac{1}{3}\left[8+20-\frac{1}{2}-5\right]-[8-4-4+1]-\frac{1}{2}[24-24-6+12]$
$=\left(\frac{1}{3} \times \frac{45}{2}\right)-(1)-\frac{1}{2}(6)$
$=\frac{15}{2}-1-3$
$=\frac{15}{2}-4=\frac{15-8}{2}=\frac{7}{2}$ sq. units

\#428557
Topic: Area of Bounded Regions
Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

Solution
Given curves are $y^{2}=4 x \quad \ldots .(1)$
$4 x^{2}+4 y^{2}=9 \quad \ldots(2)$
$\Rightarrow x^{2}+y^{2}=\frac{9}{4}$
Center of circle is $(0,0)$ and radius of circle is -

Put the value from eqn (1) in eqn (2),
$4 x^{2}+16 x-9=0$
$\Rightarrow x=\begin{array}{r}1 \\ - \\ 2\end{array},-\frac{9}{2}$
But $\underset{x=-\frac{9}{2}}{9}$, not possible.
So, $x=\frac{1}{2}$
$\Rightarrow y= \pm \sqrt{2}$

So, the points of intersection of both the curves are $\left(\frac{1}{2}, \sqrt{2}\right)$ and $\left(\frac{1}{2},-\sqrt{2}\right)$.

The shaded region $O A B C O$ represents the area bounded by the $\operatorname{curves}\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

Since, the area $O A B C O$ is symmetrical about x-axis.
\therefore Area $O A B C O=2 \times$ Area $O B C$

Area $O B C O=$ Area $O M C+$ Area $M B C$

$$
=\int \frac{1}{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{3} \frac{1}{2} \sqrt{9-4 x^{2}} d x
$$

$=2\left[\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{1 / 2}+\int_{1 / 2}^{3 / 2} \sqrt{\left(\frac{3}{2}\right)^{2}-(x)^{2}} d x\right.$
$=\frac{4}{3} \frac{1}{2 \sqrt{2}}+\left[\frac{x \sqrt{\left(\frac{3}{2}\right)^{2}-(x)^{2}}}{2}+\left.\frac{\frac{9}{2}}{2} \sin ^{\frac{x}{2}}\right|_{1 / 2} ^{\frac{3}{2}}{ }_{1}^{3 / 2}\right.$
$=\frac{\sqrt{2}}{3}+\left[0+\frac{9}{8} \sin ^{-1}(1)-\frac{\frac{1}{2} \sqrt{2}}{2}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)\right]$
$=\frac{\sqrt{2}}{3}+\frac{9 \pi}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)$

Required Area $=2\left[\frac{\sqrt{2}}{3}+\frac{9 \pi}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)\right]$
$=\frac{\sqrt{2}}{6}+\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)$ sq.units

\#428558
Topic: Area of Bounded Regions
Area bounded by the curves $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is

A $\quad-9$
B $-\frac{15}{4}$
C $\frac{15}{4}$

Solution
Required area $=-\int_{-2}^{0} x^{3} d x+\int_{0}^{1} x^{3} d x$
$=-\left[\frac{x^{4}}{4}\right]_{-2}^{0}+\left[\frac{x^{4}}{4}\right]_{0}^{1}$
$=-\left[0-\frac{(-2)^{4}}{4}\right]+\frac{1}{4}$
$=\left(\frac{1}{4}+4\right)=\frac{17}{4}$ sq. units
Thus, the correct answer is D.

\#428560
Topic: Area of Bounded Regions
The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=-1$ and $x=1$ is given by

A 0
B $\quad \frac{1}{3}$
C $\frac{2}{3}$
D $\frac{4}{3}$
Solution
$y=x^{2}$ if $x>0$ and $y=-x^{2}$ if $x<0$
Required area $=\int_{-1}^{1} y d x$
$=\int_{-1}^{1} x|x| d x$
$=\int_{-1}^{0} x^{2} d x+\int_{0}^{1} x^{2} d x$
$=\left[\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{3}}{3}\right]_{0}^{1}$
$=-\left(-\frac{1}{3}\right)+\frac{1}{3}$
$=\frac{2}{3}$ sq. units
Thus, the correct answer is C .

\#428561

Topic: Area of Bounded Regions
The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is
A $\quad \frac{4}{3}(4 \pi-\sqrt{3})$
B $\quad \frac{4}{3}(4 \pi+\sqrt{3})$
C $\frac{4}{3}(8 \pi-\sqrt{3})$
D $\quad \frac{4}{3}(8 \pi+\sqrt{3})$
Solution

The given equations are
$x^{2}+y^{2}=16 \ldots \ldots . .(1)$
$y^{2}=6 x$.
Area bounded by the circle and parabola
$=2[$ Area $(O A D O)+\operatorname{Area}(A D B A)]$
$=2\left[\int_{0}^{2} \sqrt{16 x} d x+\int_{2}^{4} \sqrt{16-x^{2}} d x\right]$
$=2 \sqrt{6} \frac{\frac{1}{2}_{\frac{3}{2}}^{2}}{2} \int_{0}^{2}+2\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{2}^{4}$
$=2 \sqrt{6} \times \frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{2}+2\left[8 \cdot \frac{\pi}{2}-\sqrt{16-4}-8 \sin ^{-1}\left(\frac{1}{2}\right)\right]$
$=\frac{4 \sqrt{6}}{3}(2 \sqrt{2})+2\left[4 \pi-\sqrt{12}-8 \frac{\pi}{6}\right]$
$=\frac{16 \sqrt{3}}{3}+8 \pi-4 \sqrt{3}-\frac{8}{3} \pi$
$=\frac{4}{3}[4 \sqrt{3}+6 \pi-2 \sqrt{3}-2 \pi]=\frac{4}{3}[\sqrt{3}+4 \pi]$
$=\frac{4}{3}[4 \pi+\sqrt{3}]$ sq. units
Area of circle $=\pi(r)^{2}$
$=\pi(4)^{2}$
$=16 \pi$ sq. units
\therefore Required area $=16 \pi-\frac{4}{3}[4 \pi+\sqrt{3}]$
$=\frac{4}{3}[4 \times 3 \pi-4 \pi-\sqrt{3}]$
$=\frac{4}{3}(8 \pi-\sqrt{3})$ sq. units
Thus, the correct answer is C .

\#428566

Topic: Area of Bounded Regions
The area bounded by the y-axis, $y=\cos x$ and $y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$

A $2(\sqrt{2}-1)$
B $\sqrt{2}-1$
C $\sqrt{2}+1$
D $\sqrt{2}$

Solution

The given equations are
$y=\cos x \ldots \ldots$ (1)And, $y=\sin x$. \qquad
Required area $=\operatorname{Area}(A B L A)+\operatorname{area}(O B L O)$
$=\int_{\frac{1}{\sqrt{2}}}^{1} x d y+\int \frac{1}{\frac{1}{\sqrt{2}^{2}}} x d y$
$=\int^{1} \frac{1}{\sqrt{ } 2} \cos ^{-1} y d y+\int \frac{1}{\sigma^{/^{2}}} \sin ^{-1} y d y$
Integrating by parts, we obtain
$=\left[y \cos ^{-1} y-\sqrt{1-y^{2}}\right]_{\frac{1}{\sqrt{2}}}^{1}+\left[x \sin ^{-1} x+\sqrt{1-x^{2}}\right]_{0}^{\frac{1}{\sqrt{2}}}$
$=\left[\cos ^{-1}(1)-\frac{1}{\sqrt{2}} \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}}\right]+\left[\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}}-1\right]$
$=\frac{-\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1$
$=\frac{2}{\sqrt{2}}-1$
$=\sqrt{2}-1$ sq. units
Thus the correct answer is B.

