Section 2.6 - Differentiability

- Definition: A function f is called differentiable at x if

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists.

- Note: Graphically, this means f has a well-defined, non-vertical tangent line (i.e., the graph is smooth) at x.
- When is a Function Not Differentiable?
- If f is not continuous at f.

- If f has a sharp corner (also called a cusp) at x.

- If f has a vertical tangent line at x (since the derivative is the slope of the tangent line and the slope of a vertical line is undefined).

- Theorem: If $f(x)$ is differentiable at $x=a$, then $f(x)$ is continuous at $x=a$.
- Note: Another way of stating the the theorem is: if $f(x)$ is not continuous at $x=a$, then $f(x)$ is not differentiable at $x=a$. In short, all differentiable functions are continuous, but not all continuous functions are differentiable.
- Example: Is

$$
f(x)= \begin{cases}x, & x<1 \\ x^{2}, & x \geq 1\end{cases}
$$

differentiable at $x=1$?
Solution: We first check if $f(x)$ is continuous at $x=1$. If it isn't continuous, the theorem says it can't be differentiable, in which case we don't even have to try to compute the derivative. Since $\lim _{x \rightarrow 1^{-}} f(x)=f(1)=\lim _{x \rightarrow 1^{+}} f(x), f(x)$ is continuous at $x=1$. Because $f(x)$ is continuous at $x=1$, the theorem does not apply, and we will have to try to compute the derivative from the limit definition to see if the function is differentiable:

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0^{+}} \frac{(1+h)^{2}-(1)^{2}}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{1+2 h+h^{1}-1}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{2 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0^{+}} 2+h \\
& =2
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{(1+h)-(1)}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{h}{h} \\
& =\lim _{h \rightarrow 0^{+}} 1 \\
& =1
\end{aligned}
$$

Since the two limits don't agree, $f(x)$ is not differentiable at $x=1$. So, $f(x)$ is continuous at $x=1$, but it is not differentiable at $x=1$. Notice that this means that the theorem above doesn't work the other way: in general, continuity does not imply differentiability. We can see the cusp at $x=1$ on the graph below.

