Graphics 2011/2012, 4th quarter

Lecture 4
Matrices, determinants

$m \times n$ matrices

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

is called an $m \times n$ matrix
with m rows and n columns.

The $a_{i j}$'s are called the coefficients of the matrix, and $m \times n$ is its dimension.

Special cases

A square matrix (for which $m=n$) is called a diagonal matrix if all elements $a_{i j}$ for which $i \neq j$ are zero.
If all elements $a_{i i}$ are one, then the matrix is called an identity matrix, denoted with I_{m} (depending on the context, the subscript m may be left out).

$$
I=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

If all matrix entries are zero (i.e. $a_{i j}=0$ for all i, j), then the matrix is called a zero matrix, denoted with 0 .

Matrix addition

For an $m_{A} \times n_{A}$ matrix A and an $m_{B} \times n_{B}$ matrix B, we can define addition as

$$
A+B=C, \text { with } c_{i j}=a_{i j}+b_{i j}
$$

for all $1 \leq i \leq m_{A}, m_{B}$ and $1 \leq j \leq n_{A}, n_{B}$.
For example:

$$
\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)+\left(\begin{array}{ll}
7 & 10 \\
8 & 11 \\
9 & 12
\end{array}\right)=\left(\begin{array}{cc}
8 & 14 \\
10 & 16 \\
12 & 18
\end{array}\right)
$$

Notice, that the dimensions of the matrices A and B have to fulfill the following conditions: $m_{A}=m_{B}$ and $n_{A}=n_{B}$.
Otherwise, addition is not defined.

Matrix subtraction

Similarly, we can define subtraction between an $m_{A} \times n_{A}$ matrix A and an $m_{B} \times n_{B}$ matrix B as

$$
A-B=C, \text { with } c_{i j}=a_{i j}-b_{i j}
$$

for all $1 \leq i \leq m_{A}, m_{B}$ and $1 \leq j \leq n_{A}, n_{B}$.
For example:

$$
\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)-\left(\begin{array}{ll}
9 & 12 \\
8 & 11 \\
7 & 10
\end{array}\right)=\left(\begin{array}{ll}
-8 & -8 \\
-6 & -6 \\
-4 & -4
\end{array}\right)
$$

Again, for the dimensions of the matrices A and B we must have $m_{A}=m_{B}$ and $n_{A}=n_{B}$.

Multiplication with a scalar

Multiplying a matrix with a scalar is defined as follows:

$$
c A=B, \text { with } b_{i j}=c a_{i j}
$$

for all $1 \leq i \leq m_{A}$ and $1 \leq j \leq n_{A}$.
For example:

$$
2\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)=\left(\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12 \\
14 & 16 & 18
\end{array}\right)
$$

Obviously, there are no restrictions in this case (other than c being a scalar value, of course).

Matrix multiplication

The multiplication of two matrices with dimensions $m_{A} \times n_{A}$ and $m_{B} \times n_{B}$ is defined as

$$
A B=C \text { with } c_{i j}=\sum_{k=1}^{n_{A}} a_{i k} b_{k j}
$$

For example:

$$
\left(\begin{array}{cccc}
6 & 5 & 1 & -3 \\
-2 & 1 & 8 & 4
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
5 & 0 & 2 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
6 & 2 & 2 \\
37 & 5 & 16
\end{array}\right)
$$

Again, we see that certain conditions have to be fulfilled, i.e.

$$
n_{A}=m_{B}
$$

The dimensions of the resulting matrix C are $m_{A} \times n_{B}$.

Matrix multiplication

Useful notation when doing this on paper:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
5 & 0 & 2 \\
0 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{cccc}
6 & 5 & 1 & -3 \\
-2 & 1 & 8 & 4
\end{array}\right)
\end{aligned}
$$

Properties of matrix multiplication

Matrix multiplication is distributive over addition:

$$
\begin{aligned}
& A(B+C)=A B+A C \\
& (A+B) C=A C+B C
\end{aligned}
$$

and it is associative:

$$
(A B) C=A(B C)
$$

However, it is not commutative, i.e. in general,
$A B$ is not the same as $B A$.

Properties of matrix multiplication

Proof that matrix multiplication is not commutative, i.e. that in general, $A B \neq B A$.

Proof:

Properties of matrix multiplication

Proof that matrix multiplication is not commutative, i.e. that in general, $A B \neq B A$.

Alternative proof (proof by counterexample):

$$
\text { Assume two matrices } A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right) \text {. }
$$

$$
\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)
$$

Identity and zero matrix revisited

Identity matrix I_{m} :

$$
I=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

With matrix multiplication we get $I A=A I=A$ (hence the name "identity matrix").

Identity and zero matrix revisited

Zero matrix 0 :

$$
0=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

With matrix multiplication we get $0 A=A 0=0$.

Transpose of a matrix

The transpose A^{T} of an $m \times n$ matrix A is an $n \times m$ matrix that is obtained by interchanging the rows and columns of A, so $a_{i j}$ becomes $a_{j i}$ for all i, j :

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \quad A^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right)
$$

Transpose of a matrix

Example:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

For the transpose of the product of two matrices we have

$$
(A B)^{T}=B^{T} A^{T}
$$

Transpose of a matrix

For the transpose of the product of two matrices we have $(A B)^{T}=B^{T} A^{T}$. Let's look at the left side first:

$$
\begin{gathered}
B=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 j} \\
\cdots & \cdots & b_{1 n_{B}} \\
\vdots & \ddots & \vdots \\
b_{n_{A} 1} & \cdots & b_{n_{A} j} \\
\cdots & \cdots & b_{n_{A} n_{B}}
\end{array}\right) \\
A=\left(\begin{array}{cccccc}
a_{11} & \cdots & a_{1 n_{A}} \\
\vdots & \ddots & \vdots \\
a_{i 1} & \cdots & a_{i n_{A}} \\
\vdots & \ddots & \vdots \\
a_{m_{A} 1} & \cdots & a_{m_{A} n_{A}}
\end{array}\right), \quad A B=\left(\begin{array}{ccccc}
c_{11} & \cdots & \cdots & \cdots & c_{1 n_{B}} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\vdots & \cdots & c_{i j} & \cdots & \vdots \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m_{A} 1} & \cdots & \cdots & \cdots & c_{m_{A} n_{B}}
\end{array}\right)
\end{gathered}
$$

So, for $A B$, we get $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n_{A}} b_{n_{A} j}$
for all $1 \leq i \leq m_{A}$ and $1 \leq j \leq n_{B}$

Transpose of a matrix

Now let's look at the right side of the equation:

$$
\begin{gathered}
A^{T}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{i 1} \\
\cdots & a_{m_{A} 1} \\
\vdots & \ddots & \vdots \\
a_{1 n_{A}} & \cdots & a_{i n_{A}} \\
\cdots & \cdots \\
B^{T}=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{n_{A} 1} \\
\vdots & \ddots & \vdots \\
b_{1 j} & \cdots & b_{n_{A} j} \\
\vdots & \ddots & \vdots \\
b_{1 n_{B}} & \cdots & b_{n_{A} n_{B}}
\end{array}\right), \quad B^{T} A^{T}=\left(\begin{array}{ccccc}
d_{11} & \cdots & \cdots & \cdots & d_{1 n_{B}} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
\vdots & \cdots & d_{j i} & \cdots & \vdots \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
d_{m_{A} 1} & \cdots & \cdots & \cdots & d_{m_{A} n_{B}}
\end{array}\right)
\end{array} .\left\{\begin{array}{c}
\\
\vdots
\end{array}\right)\right.
\end{gathered}
$$

So, for $B^{T} A^{T}$ we get $d_{j i}=b_{1 j} a_{i 1}+b_{2 j} a_{i 2}+\cdots+b_{n_{A} j} a_{i n_{A}}$
for all $1 \leq i \leq m_{A}$ and $1 \leq j \leq n_{B}$

Comment

Notice the differences in the two proofs:

- For $A B \neq B A$, we showed that the general statement $A B=B A$ is not true.
Hence, it was enough to give one example where this general statement was not fulfilled.
- For $(A B)^{T}=B^{T} A^{T}$, we needed to show that this general statement is true.

Hence, it is not enough to just give one (or more) examples, but we have to prove that it is fulfilled for all possible values.

Inverse matrices

The inverse of a matrix A is a matrix A^{-1} such that

$$
A A^{-1}=I
$$

Only square matrices possibly have an inverse.
Note that the inverse of A^{-1} is A, so we have

$$
A A^{-1}=A^{-1} A=I
$$

The dot product revisited

If we regard (column) vectors as $n \times 1$ matrices, we see that the dot product of two vectors can be written as $u \cdot v=u^{T} v$:

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=32
$$

(A 1×1 matrix is simply a number, and the brackets are omitted.)

Note: Remember the different vector notations, e.g.

$$
\vec{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(v_{1}, v_{2}, v_{3}\right)=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)^{T}
$$

Linear equation systems (LES)

The system of m linear equations in n variables $x_{1}, x_{2}, \ldots, x_{n}$

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

can be written as a matrix equation by $A x=b$, or in full

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

LESs in graphics

Suppose we want to solve the following system:

$x+y+2 z$	$=17$
$2 x+y+z$	$=15$
$x+2 y+3 z$	$=26$

Q: what is the geometric interpretation of this system?

LESs in graphics

Suppose we want to solve the following system:

$$
\begin{array}{r}
x+y+2 z-17=0 \\
2 x+y+z-15=0 \\
x+2 y+3 z-26=0
\end{array}
$$

Q: what is the geometric interpretation of this system?

Gaussian elimination

If an LES has a unique solution, it can be solved with Gaussian elimination. Matrices are not necessary for this, but very convenient, especially augmented matrices.

The augmented matrix corresponding to a system of m linear equations is

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

LESs in graphics

Example:

The previous LES:

$$
\begin{array}{r}
x+y+2 z-17=0 \\
2 x+y+z-15=0 \\
x+2 y+3 z-26=0
\end{array}
$$

And its related augmented matrix:

$$
\left(\begin{array}{lll|l}
1 & 1 & 2 & 17 \\
2 & 1 & 1 & 15 \\
1 & 2 & 3 & 26
\end{array}\right)
$$

Gaussian elimination

Basic idea of Gaussian elimination:
Apply certain operations to the matrix that do not change the solution, in order to bring the matrix into a from where we can immediately "see" the solution.

These permitted operations in Gaussian elimination are

- interchanging two rows.
- multiplying a row with a (non-zero) constant.
- adding a multiple of another row to a row.

Gaussian elimination: example

$$
\begin{aligned}
& \left(\begin{array}{rrr|r}
1 & 1 & 2 & 17 \\
2 & 1 & 1 & 15 \\
1 & 2 & 3 & 26
\end{array}\right) \rightsquigarrow\left(\begin{array}{rrr|r}
1 & 1 & 2 & 17 \\
0 & -1 & -3 & -19 \\
0 & 1 & 1 & 9
\end{array}\right) \rightsquigarrow\left(\begin{array}{lll|r}
1 & 1 & 2 & 17 \\
0 & 1 & 3 & 19 \\
0 & 1 & 1 & 9
\end{array}\right) \\
& \rightsquigarrow\left(\begin{array}{rrr|r}
1 & 0 & -1 & -2 \\
0 & 1 & 3 & 19 \\
0 & 0 & -2 & -10
\end{array}\right) \rightsquigarrow\left(\begin{array}{rrr|r}
1 & 0 & -1 & -2 \\
0 & 1 & 3 & 19 \\
0 & 0 & 1 & 5
\end{array}\right) \rightsquigarrow\left(\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right)
\end{aligned}
$$

Permitted operations:
(1) exchange rows
(2) multiply row with scalar
(3) add multiple of 1 row to another

Gaussian elimination: example

Remember that the augmented matrix represents the linear equation system $A x=b$, i.e.

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right) \text { is equivalent to } \begin{aligned}
& 1 x+0 y+0 z=3 \\
& 0 x+1 y+0 z=4 \\
& 0 x+0 y+1 z=5
\end{aligned}
$$

which directly gives us the solution $x=3, y=4$, and $z=5$
Q: what is the geometric interpretation of this solution?

Intersection of two planes

Q: what is the geometric interpretation of this system?
1st: intersection of 2 planes

Determinants

Intersection of three planes

Gaussian elimination

Q: what about the other cases (e.g. line or no intersection)?
Q: and what if an LGS can not be reduced to a triangular form?
Three possible situations:

- We get a line $0 x+0 y+0 z=b($ with $b \neq 0)$
- Or we get one line like $0 x+0 y+0 z=0$
- Or we get two lines like $0 x+0 y+0 z=0$

Gaussian elimination

Note: In the literature you also find a slightly different procedure
1st: "Put 0's in the lower triangle ..." (forward step)
2nd: ".. then work your way back up" (backward step)

$$
\left(\begin{array}{lllll|l}
* & * & * & * & * & * \\
0 & * & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * & *
\end{array}\right) \rightsquigarrow\left(\begin{array}{lllll|l}
* & * & * & * & * & * \\
0 & * & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 1 & *
\end{array}\right)
$$

Another note: Gaussian elimination can also be used to invert matrices (and you will do this in the tutorials)

Determinants

The determinant of an $n \times n$ matrix is the signed volume spanned by its column vectors.
The determinant $\operatorname{det} A$ of a matrix A is also written as $|A|$. For example,

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \\
\operatorname{det} A=|A|=\left\lvert\, \begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right.
\end{gathered}
$$

Determinants: geometric interpretation

In 2D: $\operatorname{det} A$ is the oriented area of the parallelogram defined by the 2 vectors.

$$
\operatorname{det} A=|A|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

In 3D: $\operatorname{det} A$ is the oriented area of the parallelepiped defined by the 3 vectors.

Computing determinants

Using Laplace's expansion determinants can be computed as follows:

The determinant of a matrix is the sum of the products of the elements of any row or column of the matrix with their cofactors

If only we knew what cofactors are...

Cofactors

Take a deep breath. . .
The cofactor of an entry $a_{i j}$ in an $n \times n$ matrix A is the determinant of the $(n-1) \times(n-1)$ matrix A^{\prime} that is obtained from A by removing the i-th row and the j-th column, multiplied by -1^{i+j}.

Right: long live recursion!

Cofactors

Example: for a 4×4 matrix A, the cofactor of the entry a_{13} is

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right) \quad a_{13}^{c}=\left|\begin{array}{ccc}
a_{21} & a_{22} & a_{24} \\
a_{31} & a_{32} & a_{34} \\
a_{41} & a_{42} & a_{44}
\end{array}\right|
$$

and $|A|=a_{11} a_{11}^{c}+a_{12} a_{12}^{c}+a_{13} a_{13}^{c}+a_{14} a_{14}^{c}$

Determinants and cofactors

Example:

$$
\begin{aligned}
\left|\begin{array}{lll}
0 & 1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right|= & 0\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right|-1\left|\begin{array}{cc}
3 & 5 \\
6 & 8
\end{array}\right|+2\left|\begin{array}{ll}
3 & 4 \\
6 & 7
\end{array}\right| \\
= & 0 \\
& -1\left(3|8|(-1)^{(1+1)}+5|6|(-1)^{(1+2)}\right) \\
& +2\left(4|6|(-1)^{(1+2)}+7|3|(-1)^{(2+2)}\right) \\
= & 0-1(24-30)+2(21-24) \\
= & 0
\end{aligned}
$$

Computing determinants for 3×3 matrices

3×3 matrices:

$$
\begin{aligned}
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right| & =a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-\ldots \\
& =(a e i+b f g+c d h)-(c e g+a f h+b d i)
\end{aligned}
$$

An easy way to do this on paper (Rule of Sarrus):

$$
\left|\begin{array}{llllll}
a & b & c & a & b & c \\
d & e & f & d & e & f \\
g & h & i & g & h & i
\end{array}\right|
$$

Computing determinants for 2×2 matrices

It also works for 2×2 matrices:

$$
\left.\begin{array}{ll}
a & b \\
c & d
\end{array} \right\rvert\,=a d-b c
$$

But unfortunately not for higher dimensions than 3!

Determinants

The cross product revisited

Let's look at another example:
$\left|\begin{array}{ccc}x & y & z \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|$

From
$\left|\begin{array}{cccccc}x & y & z & x & y & z \\ v_{1} & v_{2} & v_{3} & v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3} & w_{1} & w_{2} & w_{3}\end{array}\right|$
we get

$$
\begin{array}{llll}
\left(v_{2} w_{3}\right. & \left.-v_{3} w_{2}\right) & x & + \\
\left(v_{3} w_{1}\right. & - & \left.v_{1} w_{3}\right) & y \\
\left(v_{1} w_{2}\right. & - & \left.v_{2} w_{1}\right) & z
\end{array}
$$

Systems of linear equations and determinants

Consider our system of linear equations again:

$$
\begin{aligned}
x+y+2 z & =17 \\
2 x+y+z & =15 \\
x+2 y+3 z & =26
\end{aligned}
$$

Such a system of n equations in n unknowns can be solved by using determinants using Cramer's rule:

If we have $A x=b$, then $x_{i}=\frac{\left|A^{i}\right|}{|A|}$
where A^{i} is obtained from A by replacing the i-th column with b.

Determinants

Systems of linear equations and determinants

So for our system

$$
\left(\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
17 \\
15 \\
26
\end{array}\right)
$$

we have

Systems of linear equations and determinants

$$
\begin{aligned}
& x_{i}=\frac{\left|A^{i}\right|}{|A|} . \text { Why? In 2D: } \\
& \qquad \begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
\\
a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{array}
\end{aligned}
$$

From the image we see:

$$
\left|x_{1} \overrightarrow{a_{1}} \overrightarrow{a_{2}}\right|=\left|\vec{b} \overrightarrow{a_{2}}\right|
$$

(because shearing a parallelogram doesn't change its volume) and

$$
x_{1}\left|\overrightarrow{a_{1}} \overrightarrow{a_{2}}\right|=\left|\vec{b} \overrightarrow{a_{2}}\right|
$$

(because scaling one side of a
 parallelogram changes its volume by the same factor)

Determinants

Systems of linear equations and determinants

$$
\begin{aligned}
x_{i}= & \frac{\left|A^{i}\right|}{|A|} . \text { Why? In 2D: } \\
& =a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

From the image we see:

$$
\left|x_{1} \overrightarrow{a_{1}} \overrightarrow{a_{2}}\right|=\left|\vec{b} \overrightarrow{a_{2}}\right|
$$

(because shearing a parallelogram doesn't change its volume) and

$$
x_{1}\left|\overrightarrow{a_{1}} \overrightarrow{a_{2}}\right|=\left|\vec{b} \overrightarrow{a_{2}}\right|
$$

(because scaling one side of a parallelogram changes its volume
 by the same factor)

Determinants and inverse matrices

Determinants can also be used to compute the inverse A^{-1} of an invertible matrix A :

$$
A^{-1}=\frac{\tilde{A}}{|A|}
$$

where \tilde{A} is the adjoint of A, which is the transpose of the cofactor matrix of A.

The cofactor matrix of A is obtained from A by replacing every entry $a_{i j}$ by its cofactor $a_{i j}^{c}$.

