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m× n matrices

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


is called an m× n matrix
with m rows and n columns.

The aij ’s are called the coefficients of the matrix,
and m× n is its dimension.
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Special cases

A square matrix (for which m = n) is called a diagonal matrix if all
elements aij for which i 6= j are zero.

If all elements aii are one, then the matrix is called an identity
matrix, denoted with Im (depending on the context, the subscript
m may be left out).

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


If all matrix entries are zero (i.e. aij = 0 for all i, j), then the
matrix is called a zero matrix, denoted with 0.
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Matrix addition

For an mA × nA matrix A and an mB × nB matrix B, we can
define addition as

A + B = C, with cij = aij + bij

for all 1 ≤ i ≤ mA, mB and 1 ≤ j ≤ nA, nB.

For example: 1 4
2 5
3 6

+

7 10
8 11
9 12

 =

 8 14
10 16
12 18


Notice, that the dimensions of the matrices A and B have to fulfill
the following conditions: mA = mB and nA = nB.
Otherwise, addition is not defined.
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Matrix subtraction

Similarly, we can define subtraction between an mA × nA matrix A
and an mB × nB matrix B as

A−B = C, with cij = aij − bij

for all 1 ≤ i ≤ mA, mB and 1 ≤ j ≤ nA, nB.

For example: 1 4
2 5
3 6

−
9 12

8 11
7 10

 =

−8 −8
−6 −6
−4 −4


Again, for the dimensions of the matrices A and B we must have
mA = mB and nA = nB.
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Multiplication with a scalar

Multiplying a matrix with a scalar is defined as follows:

cA = B, with bij = caij

for all 1 ≤ i ≤ mA and 1 ≤ j ≤ nA.

For example:

2

1 2 3
4 5 6
7 8 9

 =

 2 4 6
8 10 12
14 16 18


Obviously, there are no restrictions in this case
(other than c being a scalar value, of course).
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Matrix multiplication

The multiplication of two matrices with dimensions mA × nA and
mB × nB is defined as

AB = C with cij =
∑nA

k=1 aikbkj

For example:

(
6 5 1 −3
−2 1 8 4

)
1 0 0
−1 1 0
5 0 2
0 1 0

 =
(

6 2 2
37 5 16

)

Again, we see that certain conditions have to be fulfilled, i.e.

nA = mB.

The dimensions of the resulting matrix C are mA × nB.
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Matrix multiplication

Useful notation when doing this on paper:
1 0 0
−1 1 0
5 0 2
0 1 0


(

6 5 1 −3
−2 1 8 4

)
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Properties of matrix multiplication

Matrix multiplication is distributive over addition:

A(B + C) = AB + AC

(A + B)C = AC + BC

and it is associative:

(AB)C = A(BC)

However, it is not commutative, i.e. in general,

AB is not the same as BA.
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Properties of matrix multiplication

Proof that matrix multiplication is not commutative,
i.e. that in general, AB 6= BA.

Proof:
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Properties of matrix multiplication

Proof that matrix multiplication is not commutative,
i.e. that in general, AB 6= BA.

Alternative proof (proof by counterexample):

Assume two matrices A =
(

1 2
3 4

)
and B =

(
5 6
7 8

)
.

(
5 6
7 8

)
(

1 2
3 4

)
(

1 2
3 4

)
(

5 6
7 8

)
Graphics 2011/2012, 4th quarter Lecture 4: matrices, determinants



Matrices
Gaussian elimination

Determinants

Definitions
Addition and subtraction
Multiplication
Transpose and inverse

Identity and zero matrix revisited

Identity matrix Im:

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



With matrix multiplication we get IA = AI = A
(hence the name “identity matrix”).
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Identity and zero matrix revisited

Zero matrix 0:

0 =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



With matrix multiplication we get 0A = A0 = 0.
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Transpose of a matrix

The transpose AT of an m× n matrix A is an n×m matrix that
is obtained by interchanging the rows and columns of A, so aij

becomes aji for all i, j:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn


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Transpose of a matrix

Example:

A =
(

1 2 3
4 5 6

)
AT =

1 4
2 5
3 6



For the transpose of the product of two matrices we have

(AB)T = BT AT
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Transpose of a matrix

For the transpose of the product of two matrices we have (AB)T = BT AT .
Let’s look at the left side first:

B =

 b11 · · · b1j · · · b1nB

...
. . .

...
. . .

...
bnA1 · · · bnAj · · · bnAnB



A =



a11 · · · a1nA

...
. . .

...
ai1 · · · ainA

...
. . .

...
amA1 · · · amAnA

 , AB =



c11 · · · · · · · · · c1nB

...
. . .

...
. . .

...
... · · · cij · · ·

...
...

. . .
...

. . .
...

cmA1 · · · · · · · · · cmAnB


So, for AB, we get cij = ai1b1j + ai2b2j + · · ·+ ainAbnAj

for all 1 ≤ i ≤ mA and 1 ≤ j ≤ nB
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Transpose of a matrix

Now let’s look at the right side of the equation:

AT =

 a11 · · · ai1 · · · amA1

...
. . .

...
. . .

...
a1nA · · · ainA · · · amAnA



BT =



b11 · · · bnA1

...
. . .

...
b1j · · · bnAj

...
. . .

...
b1nB · · · bnAnB

 , BT AT =



d11 · · · · · · · · · d1nB

...
. . .

...
. . .

...
... · · · dji · · ·

...
...

. . .
...

. . .
...

dmA1 · · · · · · · · · dmAnB


So, for BT AT we get dji = b1jai1 + b2jai2 + · · ·+ bnAjainA

for all 1 ≤ i ≤ mA and 1 ≤ j ≤ nB
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Comment

Notice the differences in the two proofs:

For AB 6= BA, we showed that the general statement
AB = BA is not true.

Hence, it was enough to give one example where this general
statement was not fulfilled.

For (AB)T = BT AT , we needed to show that this general
statement is true.

Hence, it is not enough to just give one (or more) examples,
but we have to prove that it is fulfilled for all possible values.
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Inverse matrices

The inverse of a matrix A is a matrix A−1 such that

AA−1 = I

Only square matrices possibly have an inverse.

Note that the inverse of A−1 is A, so we have

AA−1 = A−1A = I
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The dot product revisited

If we regard (column) vectors as n× 1 matrices, we see that the
dot product of two vectors can be written as u · v = uT v:1

2
3

 ·
4

5
6

 =
(
1 2 3

)4
5
6

 = 32

(A 1× 1 matrix is simply a number, and the brackets are omitted.)

Note: Remember the different vector notations, e.g.

~v =

v1

v2

v3

 = (v1, v2, v3) = (v1 v2 v3)T
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Linear equation systems (LES)

The system of m linear equations in n variables x1, x2, . . ., xn

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

can be written as a matrix equation by Ax = b, or in full
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




x1

x2

...
xn

 =


b1

b2

...
bm


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LESs in graphics

Suppose we want to solve the following system:

x + y + 2z = 17
2x + y + z = 15
x + 2y + 3z = 26

Q: what is the geometric interpretation of this system?
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LESs in graphics

Suppose we want to solve the following system:

x + y + 2z − 17 = 0
2x + y + z − 15 = 0
x + 2y + 3z − 26 = 0

Q: what is the geometric interpretation of this system?
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Gaussian elimination

If an LES has a unique solution, it can be solved with Gaussian
elimination. Matrices are not necessary for this, but very
convenient, especially augmented matrices.

The augmented matrix corresponding to a system of m linear
equations is 

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


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LESs in graphics

Example:

The previous LES:

x + y + 2z − 17 = 0
2x + y + z − 15 = 0
x + 2y + 3z − 26 = 0

And its related augmented matrix: 1 1 2 17
2 1 1 15
1 2 3 26



Graphics 2011/2012, 4th quarter Lecture 4: matrices, determinants



Matrices
Gaussian elimination

Determinants

Linear equation systems
Gaussian elimination
Geometric interpretation

Gaussian elimination

Basic idea of Gaussian elimination:
Apply certain operations to the matrix that do not change the
solution, in order to bring the matrix into a from where we can
immediately “see” the solution.

These permitted operations in Gaussian elimination are

interchanging two rows.

multiplying a row with a (non-zero) constant.

adding a multiple of another row to a row.
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Gaussian elimination: example

 1 1 2 17
2 1 1 15
1 2 3 26

 
 1 1 2 17

0 −1 −3 −19
0 1 1 9

 
 1 1 2 17

0 1 3 19
0 1 1 9



 

 1 0 −1 −2
0 1 3 19
0 0 −2 −10

 
 1 0 −1 −2

0 1 3 19
0 0 1 5

 
 1 0 0 3

0 1 0 4
0 0 1 5



Permitted operations:
(1) exchange rows
(2) multiply row with scalar

(3) add multiple of 1 row to another
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Gaussian elimination: example

Remember that the augmented matrix represents the linear
equation system Ax = b, i.e. 1 0 0 3

0 1 0 4
0 0 1 5

 is equivalent to
1x + 0y + 0z = 3
0x + 1y + 0z = 4
0x + 0y + 1z = 5

which directly gives us the solution x = 3, y = 4, and z = 5
Q: what is the geometric interpretation of this solution?
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Intersection of two planes

Q: what is the geometric interpretation of this system?

1st: intersection of 2 planes
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Intersection of three planes
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Gaussian elimination

Q: what about the other cases (e.g. line or no intersection)?
Q: and what if an LGS can not be reduced to a triangular form?

Three possible situations:

We get a line 0x + 0y + 0z = b (with b 6= 0)

Or we get one line like 0x + 0y + 0z = 0

Or we get two lines like 0x + 0y + 0z = 0
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Gaussian elimination

Note: In the literature you also find a slightly different procedure

1st: ”Put 0’s in the lower triangle ...” (forward step)
2nd: ”.. then work your way back up” (backward step)

∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗

 

∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 1 ∗



Another note: Gaussian elimination can also be used to invert
matrices (and you will do this in the tutorials)
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Determinants

The determinant of an n× n
matrix is the signed volume
spanned by its column vectors.
The determinant det A of a
matrix A is also written as |A|.
For example,

A =
(

a11 a12

a21 a22

)

det A = |A| = a11 a12

a21 a22

(a11, a21)

(a12, a22)
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Determinants: geometric interpretation

In 2D: detA is the oriented area
of the parallelogram defined by
the 2 vectors.

det A = |A| = a11 a12

a21 a22

In 3D: detA is the oriented area
of the parallelepiped defined by
the 3 vectors.

(a11, a21)

(a12, a22)
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Computing determinants

Using Laplace’s expansion determinants can be computed as
follows:

The determinant of a matrix is the sum of the products of the
elements of any row or column of the matrix with their cofactors

If only we knew what cofactors are. . .
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Cofactors

Take a deep breath. . .

The cofactor of an entry aij in an n× n matrix A is the
determinant of the (n− 1)× (n− 1) matrix A′ that is obtained
from A by removing the i-th row and the j-th column, multiplied
by −1i+j .

Right: long live recursion!
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Cofactors

Example: for a 4× 4 matrix A, the cofactor of the entry a13 is

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ac
13 =

a21 a22 a24

a31 a32 a34

a41 a42 a44

and |A| = a11a
c
11 + a12a

c
12 + a13a

c
13 + a14a

c
14
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Determinants and cofactors

Example:

0 1 2
3 4 5
6 7 8

= 0
4 5
7 8

− 1
3 5
6 8

+ 2
3 4
6 7

= 0
−1(3|8|(−1)(1+1) + 5|6|(−1)(1+2))
+2(4|6|(−1)(1+2) + 7|3|(−1)(2+2))

= 0− 1(24− 30) + 2(21− 24)

= 0.
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Computing determinants for 3× 3 matrices

3x3 matrices:

a b c
d e f
g h i

= a
e f
h i

− . . .

= (aei + bfg + cdh)− (ceg + afh + bdi)

An easy way to do this on paper (Rule of Sarrus):

a b c a b c
d e f d e f
g h i g h i
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Computing determinants for 2× 2 matrices

It also works for 2x2 matrices:

a b
c d

= ad− bc

But unfortunately not for higher dimensions than 3!
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The cross product revisited

Let’s look at another example:

x y z
v1 v2 v3

w1 w2 w3

From
x y z x y z
v1 v2 v3 v1 v2 v3

w1 w2 w3 w1 w2 w3

we get
(v2w3 − v3w2) x +
(v3w1 − v1w3) y +
(v1w2 − v2w1) z
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Systems of linear equations and determinants

Consider our system of linear equations again:

x + y + 2z = 17
2x + y + z = 15

x + 2y + 3z = 26

Such a system of n equations in n unknowns can be solved by
using determinants using Cramer’s rule:

If we have Ax = b, then xi = |Ai|
|A|

where Ai is obtained from A by replacing the i-th column with b.
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Systems of linear equations and determinants

So for our system 1 1 2
2 1 1
1 2 3

x
y
z

 =

17
15
26


we have

x =

17 1 2
15 1 1
26 2 3
1 1 2
2 1 1
1 2 3

y =

1 17 2
2 15 1
1 26 3
1 1 2
2 1 1
1 2 3

z =

1 1 17
2 1 15
1 2 26
1 1 2
2 1 1
1 2 3
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Systems of linear equations and determinants

xi = |Ai|
|A| . Why? In 2D:

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

From the image we see:

|x1 ~a1 ~a2| = |~b ~a2|

(because shearing a parallelogram
doesn’t change its volume) and

x1| ~a1 ~a2| = |~b ~a2|

(because scaling one side of a
parallelogram changes its volume
by the same factor)
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Systems of linear equations and determinants

xi = |Ai|
|A| . Why? In 2D:

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

From the image we see:

|x1 ~a1 ~a2| = |~b ~a2|

(because shearing a parallelogram
doesn’t change its volume) and

x1| ~a1 ~a2| = |~b ~a2|

(because scaling one side of a
parallelogram changes its volume
by the same factor)
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Determinants and inverse matrices

Determinants can also be used to compute the inverse A−1 of an
invertible matrix A:

A−1 =
Ã

|A|

where Ã is the adjoint of A, which is the transpose of the cofactor
matrix of A.

The cofactor matrix of A is obtained from A by replacing every
entry aij by its cofactor ac

ij .
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