Chapter 3

Matrix

1 Mark Questions

Q1 Write the number of possible matrices which can be made if it has 12 elements.
Q2 Let $A=\left[a_{i j}\right]$ be a matrix of order 2×3 and

$$
\mathbf{a}_{\mathrm{ij}}=\frac{i-j}{i+j}, \text { write the value of } \mathbf{a}_{23} .
$$

Q3

Q4 If following information regarding the number of men and women workers in three factories I, II and III is written in the form of $\mathbf{3 x 2}$ matrix. What does the entry in third row and second column represent? Men workers Women workers

Factory I	30	25
Factory II	25	31
Factory III	27	26

Q5
If, $\quad \mathbf{A}=\left[\mathbf{a}_{\mathbf{i j}}\right]=\left[\begin{array}{ccc}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right] \quad$ and $\mathbf{B}=\left[\mathbf{b}_{\mathbf{i j}}\right]=\left[\begin{array}{cc}2 & -1 \\ -3 & 4 \\ 1 & 2\end{array}\right]$
Write the value of \quad (i) $a_{22}+b_{21}$
(ii) $\mathbf{a}_{11} \mathbf{b}_{11}+\mathbf{a}_{22} \mathbf{b}_{22}$

Q6 Is it possible to have the product of two matrices to be the null matrix while neither of them is the null matrix? If it is so, give an example.
Q7 Under what conditions is the matrix equation

$$
\mathrm{A}^{2}-\mathrm{B}^{2}=(\mathrm{A}-\mathrm{B})(\mathrm{A}+\mathrm{B}) \text { is true }
$$

Q8 Write the order of matrix B if A is any matrix of order $m \times n$ such that

AB and BA both are defined.
Q10

$$
\text { If } \mathbf{A}=\left[\begin{array}{lll}
-1 & 2 & -5
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{c}
2 \\
-1 \\
7
\end{array}\right]
$$

write the orders of AB and BA .
Q11 Give an example of two non-zero matrices A and B such that

$$
\mathrm{AB}=0 \text { but } \mathrm{BA} \neq 0
$$

Q12
If $A=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right]$ find A^{6}.
Q13

Q14

Q17 If A and B are square matrices of same order and B is symmetric, show that $\mathbf{A}^{\prime} \mathbf{B A}$ is also symmetric.

Q18 Give an example of a matrix which is both symmetric and skew symmetric
Q19

Q20 If A is square matrix then write the value of A(AdjA)

4 Mark Questions

Q1 For what values of x and y are the following matrices equal

$$
\mathbf{A}=\left[\begin{array}{cc}
2 x+1 & 3 y \\
0 & y^{2}-5 y
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cc}
x+3 & y^{2}+2 \\
0 & -6
\end{array}\right]
$$

Q2

Q3
Find the values of x and y for which the following matrix equation

$$
\mathrm{A}-3 \mathrm{~B}=\mathrm{C} \quad \text { is satisfied, where }
$$

$$
\mathbf{A}=\left[\begin{array}{l}
x^{2} \\
y^{2}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{c}
x \\
2 y
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{c}
-2 \\
9
\end{array}\right]
$$

$$
\mathbf{B}=\left[\begin{array}{ccc}
-2 & 2 & 0 \\
3 & 1 & 4
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{ccc}
2 & 0 & -2 \\
7 & 1 & 6
\end{array}\right]
$$

Find matrix A such that $\mathbf{2 A}-3 \mathrm{~B}+5 \mathrm{C}=0$ where,

Q4
Let $f(x)=x^{2}-5 x+6$, find $f(A)$

$$
\text { If, } \mathbf{A}=\left[\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right]
$$

5. If, $\mathbf{A}=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$ find all those values of $\boldsymbol{\alpha}$ for which

$$
\mathrm{A}=\mathrm{B} .
$$

. Using Principle of Mathematical Induction, prove that

$$
\mathbf{A}^{\mathrm{n}}=\left[\begin{array}{cc}
1+2 n & -4 n \\
n & 1-2 n
\end{array}\right] \quad \text { Where, } \quad \mathbf{A}=\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right]
$$

6 Mark Questions

Q1
If $\mathbf{A}=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right] \quad$ find \mathbf{x}, \mathbf{y} such that $\mathbf{A}^{2}+\mathbf{x I}=\mathbf{y A}$
Hence find A^{-1}.
Q2
. If $\mathbf{A}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \quad$ Prove that, $\mathbf{A}=\left[\begin{array}{lll}3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1}\end{array}\right] \quad$ for every positive integer n.

Q3 The sum of three numbers is $\mathbf{- 1}$. If we multiply the second number by 2 , third number by 3 and add them we get 5 . If we subtract the third number from the sum of first and second numbers we get $\mathbf{- 1}$. Represent it by a system of equations. Find the three numbers using inverse of a matrix .

If $A\left(x_{1}, \mathbf{y}_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are the vertices of an equilateral triangle with each side equal to ' a ' units, prove that,

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|=\sqrt{3} \mathrm{a}^{2}
$$

Answers: Matrix

1 Mark Questions

6
$-1 / 5$

$$
a=2 b\{a=4, b=2\}
$$

Number of women workers in factory III.
1, 20
$\mathbf{A}=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ll}\mathbf{1} & \mathbf{O} \\ \mathbf{O} & \mathbf{O}\end{array}\right] \quad \mathbf{A B}=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$
$A B=B A \quad$ ie, if the matrices $A \& B$ commute with each other.
n x m

Q9

$$
k=4, a=-4, b=-10, c=0
$$

Q10 $\quad 1 \times 1,3 \times 3$,
Q10

$$
\mathbf{B}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Q12

$$
\mathbf{A}^{6}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Q13

$$
\boldsymbol{\alpha}^{2}+\boldsymbol{\beta} \gamma=\mathbf{1}
$$

Q14

$$
x=\pi / 6
$$

Q15

$$
a=-2, b=0, c=-3
$$

Q18
Q19

Q20

Q1
Q2

Q3
Q4

Q5
Q6

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Null Matrix

$$
\mathbf{P}=\left[\begin{array}{ll}
2 & 2 \\
2 & 0
\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

$|\mathbf{A}| \mathbf{I}$

4 Marks Questions

Q1 $\mathrm{x}=2, \mathrm{y}=\mathbf{2}$

$$
\mathbf{A}=\left[\begin{array}{ccc}
-8 & 3 & 5 \\
-13 & -1 & -9
\end{array}\right]
$$

$$
x=1,2 \quad y=3 \pm 3 \sqrt{2}
$$

$$
\mathbf{f}(\mathbf{A})=\left[\begin{array}{ccc}
1 & -1 & -3 \\
-1 & -1 & -10 \\
-5 & 4 & 4
\end{array}\right]
$$

No values of α can be found for which $A^{\mathbf{2}}=\boldsymbol{B}$ is true. order of $A=2 \times 3$

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -2 & -5 \\
3 & 4 & 0
\end{array}\right]
$$

6 Mark Questions

Q1 $\quad \mathbf{x}=8 \quad \mathrm{y}=8$
Q2 $\quad \mathbf{A}^{-1}=\frac{1}{8}\left[\begin{array}{cc}5 & -1 \\ -7 & 3\end{array}\right]$
Q3 Let numbers be $\mathbf{x}, \mathbf{y}, \mathbf{z}$ then

$$
\begin{aligned}
& x+y+z=-1 \\
& 2 y+3 z=5 \\
& x+y-z=-1
\end{aligned}
$$

Ans $x=-\frac{7}{2}, \quad y=\frac{5}{2} \quad, \quad z=0$

