
Chapter 2

Matrices and Linear Algebra

2.1 Basics

Definition 2.1.1. A matrix is an m× n array of scalars from a given field
F . The individual values in the matrix are called entries.

Examples.

A =
2 1 3
−1 2 4

B =
1 2
3 4

The size of the array is–written as m× n, where
m× n

number of rows number of columns

Notation

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

an1 an2 . . . amn

 ←− rows

columns

A := uppercase denotes a matrix

a := lower case denotes an entry of a matrix a ∈ F.
Special matrices
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(1) If m = n, the matrix is called square. In this case we have

(1a) A matrix A is said to be diagonal if

aij = 0 i = j.

(1b) A diagonal matrix A may be denoted by diag(d1, d2, . . . , dn)
where

aii = di aij = 0 j = i.

The diagonal matrix diag(1, 1, . . . , 1) is called the identity matrix
and is usually denoted by

In =


1 0 . . . 0
0 1
...

. . .

0 1


or simply I, when n is assumed to be known. 0 = diag(0, . . . , 0)
is called the zero matrix.

(1c) A square matrix L is said to be lower triangular if

ij = 0 i < j.

(1d) A square matrix U is said to be upper triangular if

uij = 0 i > j.

(1e) A square matrix A is called symmetric if

aij = aji.

(1f) A square matrix A is called Hermitian if

aij = āji (z̄ := complex conjugate of z).

(1g) Eij has a 1 in the (i, j) position and zeros in all other positions.

(2) A rectangular matrix A is called nonnegative if

aij ≥ 0 all i, j.

It is called positive if

aij > 0 all i, j.

Each of these matrices has some special properties, which we will study
during this course.
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Definition 2.1.2. The set of all m × n matrices is denoted by Mm,n(F ),
where F is the underlying field (usually R or C). In the case where m = n
we write Mn(F ) to denote the matrices of size n× n.
Theorem 2.1.1. Mm,n is a vector space with basis given by Eij , 1 ≤ i ≤
m, 1 ≤ j ≤ n.

Equality, Addition, Multiplication

Definition 2.1.3. Two matrices A and B are equal if and only if they have
the same size and

aij = bij all i, j.

Definition 2.1.4. If A is any matrix and α ∈ F then the scalar multipli-
cation B = αA is defined by

bij = αaij all i, j.

Definition 2.1.5. If A and B are matrices of the same size then the sum
A and B is defined by C = A+B, where

cij = aij + bij all i, j

We can also compute the difference D = A−B by summing A and (−1)B

D = A−B = A+ (−1)B.

matrix subtraction.
Matrix addition “inherits” many properties from the field F .

Theorem 2.1.2. If A,B,C ∈Mm,n(F ) and α,β ∈ F , then
(1) A+B = B +A commutivity

(2) A+ (B + C) = (A+B) + C associativity

(3) α(A+B) = αA+ αB distributivity of a scalar

(4) If B = 0 (a matrix of all zeros) then

A+B = A+ 0 = A

(4) (α+ β)A = αA+ βA
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(5) α(βA) = αβA

(6) 0A = 0

(7) α 0 = 0.

Definition 2.1.6. If x and y ∈ Rn,
x = (x1 . . . xn)

y = (y1 . . . yn).

Then the scalar or dot product of x and y is given by

x, y =
n

i=1

xiyi.

Remark 2.1.1. (i) Alternate notation for the scalar product: x, y = x ·y.
(ii) The dot product is defined only for vectors of the same length.

Example 2.1.1. Let x = (1, 0, 3,−1) and y = (0, 2,−1, 2) then x, y =
1(0) + 0(2) + 3(−1)− 1(2) = −5.
Definition 2.1.7. If A is m×n and B is n×p. Let ri(A) denote the vector
with entries given by the ith row of A, and let cj(B) denote the vector with
entries given by the jth row of B. The product C = AB is the m×p matrix
defined by

cij = ri(A), cj(B)

where ri(A) is the vector in Rn consisting of the i
th row of A and similarly

cj(B) is the vector formed from the jth column of B. Other notation for
C = AB

cij =
n

k=1

aikbkj 1 ≤ i ≤ m
1 ≤ j ≤ p.

Example 2.1.2. Let

A =
1 0 1
3 2 1

and B =

 2 1
3 0
−1 1

 .
Then

AB =
1 2
11 4

.
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Properties of matrix multiplication

(1) If AB exists, does it happen that BA exists and AB = BA? The
answer is usually no. First AB and BA exist if and only if A ∈
Mm,n(F ) and B ∈ Mn,m(F ). Even if this is so the sizes of AB and
BA are different (AB is m × m and BA is n × n) unless m = n.
However even if m = n we may have AB = BA. See the examples
below. They may be different sizes and if they are the same size (i.e.
A and B are square) the entries may be different

A = [1, 2] B =
−1
1

AB = [1]

BA =
−1 −2
1 2

A =
1 2
3 4

B =
−1 1
0 1

AB =
−1 3
−3 7

BA =
2 2
3 4

(2) If A is square we define

A1 = A, A2 = AA, A3 = A2A = AAA

An = An−1A = A · · ·A (n factors).

(3) I = diag(1, . . . , 1). If A ∈Mm,n(F ) then

AIn = A and

ImA = A.

Theorem 2.1.3 (Matrix Multiplication Rules). Assume A,B, and C
are matrices for which all products below make sense. Then

(1) A(BC) = (AB)C

(2) A(B ±C) = AB ±AC and (A±B)C = AC ±BC
(3) AI = A and IA = A

(4) c(AB) = (cA)B

(5) A0 = 0 and 0B = 0
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(6) For A square

ArAs = AsAr for all integers r, s ≥ 1.

Fact: If AC and BC are equal, it does not follow that A = B. See Exercise
60.

Remark 2.1.2. We use an alternate notation for matrix entries. For any
matrix B denote the (i, j)-entry by (B)ij .

Definition 2.1.8. Let A ∈Mm,n(F ).

(i) Define the transpose of A, denoted by AT , to be the n × m matrix
with entries

(AT )ij = aji.

(ii) Define the adjoint of A, denoted by A∗, to be the n×m matrix with
entries

(A∗)ij = āji complex conjugate

Example 2.1.3.

A =
1 2 3
5 4 1

AT =

1 5
2 4
3 1


In words. . . “The rows of A become the columns of AT , taken in the same
order.” The following results are easy to prove.

Theorem 2.1.4 (Laws of transposes). (1) (AT )T = A and (A∗)∗ = A

(2) (A±B)T = AT ±BT (and for ∗)
(3) (cA)T = cAT (cA)∗ = c̄A∗

(4) (AB)T = BTAT

(5) If A is symmetric

A = AT
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(6) If A is Hermitian

A = A∗.

More facts about symmetry.

Proof. (1) We know (AT )ij = aji. So ((A
T )T )ij = aij . Thus (A

T )T = A.

(2) (A±B)T = aji ± bji. So (A±B)T = AT ±BT .

Proposition 2.1.1. (1) A is symmetric if and only if AT is symmetric.

(1)∗ A is Hermitian if and only if A∗ is Hermitian.

(2) If A is symmetric, then A2 is also symmetric.

(3) If A is symmetric, then An is also symmetric for all n.

Definition 2.1.9. A matrix is called skew-symmetric if

AT = −A.
Example 2.1.4. The matrix

A =

 0 1 2
−1 0 −3
−2 3 0


is skew-symmetric.

Theorem 2.1.5. (1) If A is skew symmetric, then A is a square matrix
and aii = 0, i = 1, . . . , n.

(2) For any matrix A ∈Mn(F )

A−AT

is skew-symmetric while A+AT is symmetric.

(3) Every matrix A ∈ Mn(F ) can be uniquely written as the sum of a
skew-symmetric and symmetric matrix.

Proof. (1) If A ∈ Mm,n(F ), then A
T ∈ Mn,m(F ). So, if A

T = −A we
must have m = n. Also

aii = −aii
for i = 1, . . . , n. So aii = 0 for all i.
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(2) Since (A − AT )T = AT − A = −(A − AT ), it follows that A − AT is
skew-symmetric.

(3) Let A = B + C be a second such decomposition. Subtraction gives

1

2
(A+AT )−B = C − 1

2
(A−AT ).

The left matrix is symmetric while the right matrix is skew-symmetric.
Hence both are the zero matrix.

A =
1

2
(A+AT ) +

1

2
(A−AT ).

Examples. A = 0 −1
1 0 is skew-symmetric. Let

B =
1 2
−1 4

BT =
1 −1
2 4

B −BT = 0 3
−3 0

B +BT =
2 1
1 8

.

Then

B =
1

2
(B −BT ) + 1

2
(B +BT ).

An important observation about matrix multiplication is related to ideas
from vector spaces. Indeed, two very important vector spaces are associated
with matrices.

Definition 2.1.10. Let A ∈Mm,n(C).
(i)Denote by

cj(A) := j
th column of A

cj(A) ∈ Cm. We call the subspace of Cm spanned by the columns of A the
column space of A. With c1 (A) , . . . , cn (A) denoting the columns of A
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the column space is S (c1 (A) , . . . , cn (A)) .
(ii) Similarly, we call the subspace of Cn spanned by the rows of A the row
space of A. With r1 (A) , . . . , rm (A) denoting the rows of A the row space
is therefore S (r1 (A) , . . . , rm (A)) .

Let x ∈ Cn, which we view as the n × 1 matrix x = [x1 . . . xn]
T . The

product Ax is defined and

Ax =
n

j=1

xjcj(A).

That is to say, Ax ∈ S(c1(A), . . . , cn(A)) = column space of A.
Definition 2.1.11. Let A ∈Mn(F ). The matrix A is said to be invertible
if there is a matrix B ∈Mn(F ) such that

AB = BA = I.

In this case B is called the inverse of A, and the notation for the inverse is
A−1.

Examples.

(i) Let

A =
1 3
−1 2

Then

A−1 =
1

5

2 −3
1 1

.

(ii) For n = 3 we have

A =

 1 2 −1
−1 3 −1
−2 3 −1

 A−1 =

 0 1 −1
−1 3 −2
−3 7 −5


A square matrix need not have an inverse, as will be discussed in the
next section. As examples, the two matrices below do not have inverses

A =
1 −2
−1 2

B =

1 0 1
0 2 1
1 2 2





42 CHAPTER 2. MATRICES AND LINEAR ALGEBRA

2.2 Linear Systems

The solutions of linear systems is likely the single largest application of ma-
trix theory. Indeed, most reasonable problems of the sciences and economics
that have the need to solve problems of several variable almost without ex-
ception are reduced to component parts where one of them is the solution
of a linear system. Of course the entire solution process may have the linear
system solver as a relatively small component, but an essential one. Even
the solution of nonlinear problems, especially, employ linear systems to great
and crucial advantage.

To be precise, we suppose that the coefficients aij , 1 ≤ i ≤ m and 1 ≤
j ≤ n and the data bj , 1 ≤ j ≤ m are known. We define the linear system
for the n unknowns x1, . . . , xn to be

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2 (∗)

am1x1 + am2x2 + · · ·+ amnxn = bm
The solution set is defined to be the subset of Rn of vectors (x1, . . . , xn) that
satisfy each of the m equations of the system. The question of how to solve
a linear system includes a vast literature of theoretical and computation
methods. Certain systems form the model of what to do. In the systems
below we note that the first one has three highly coupled (interrelated)
variables.

3x1 − 2x2 + 4x3 = 7

x1 − 6x2 − 2x3 = 0

−x1 + 3x2 + 6x3 = −2
The second system is more tractable because there appears even to the
untrained eye a clear and direct method of solution.

3x1 − 2x2 − x3 = 7

x2 − 2x3 = 1

2x3 = −2
Indeed, we can see right off that x3 = −1. Substituting this value into the
second equation we obtain x2 = 1− 2 = −1. Substituting both x2 and x3
into the first equation, we obtain 2x1−2 (−1)− (−1) = 7, gives x1 = 2. The
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solution set is the vector (2,−1,−1) . The virtue of the second system is
that the unknowns can be determined one-by-one, back substituting those
already found into the next equation until all unknowns are determined. So
if we can convert the given system of the first kind to one of the second kind,
we can determine the solution.

This procedure for solving linear systems is therefore the applications of
operations to effect the gradual elimination of unknowns from the equations
until a new system results that can be solved by direct means. The oper-
ations allowed in this process must have precisely one important property:
They must not change the solution set by either adding to it or subtracting
from it. There are exactly three such operations needed to reduce any set
of linear equations so that it can be solved directly.

(E1) Interchange two equations.

(E2) Multiply any equation by a nonzero constant.

(E3) Add a multiple of one equation to another.

This can be summarized in the following theorem

Theorem 2.2.1. Given the linear system (*). The set of equation opera-
tions E1, E2, and E3 on the equations of (*) does not alter the solution set
of the system (*).

We leave this result to the exercises. Our main intent is to convert these
operations into corresponding operations for matrices. Before we do this
we clarify which linear systems can have a soltution. First, the system can
be converted to matrix form by setting A equal to the m × n matrix of
coefficients, b equal to the m × 1 vector of data, and x equal to the n × 1
vector of unknowns. Then the system (*) can be written as

Ax = b

In this way we see that with ci (A) denoting the i
th column of A, the system

is expressible as

x1c1 (A) + · · ·+ xncn (A) = b

From this equation it is clear that the system has a solution if and only if
the vector b is in S (c1 (A) , · · · , cn (A)). This is summarized in the following
theorem.
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Theorem 2.2.2. A necessary and sufficient condition that Ax = b has a
solution is that b ∈ S(c1(A) . . . cn(A)).

In the general matrix product C = AB, we note that the column space of
C ⊂ column space of A. In the following definition we regard the matrix A
as a function acting upon vectors in one vector space with range in another
vector space. This is entirely similar to the domain-range idea of function
theory.

Definition 2.2.1. The range of A = {Ax | x ∈ Rn ( orCn )}.
It follows directly from our discussion above that the range of A equals

S(c1(A), . . . , cn(A)).
Row operations: To solve Ax = b we use a process called Gaussian
elimination, which is based on row operations.

Type 1: Interchange two rows. (Notation: Ri ←→ Rj)
Type 2: Multiply a row by a nonzero constant. (Notation: cRi → Ri)
Type 3: Add a multiple of one row to another row. (Notation: cRi+Rj →
Rj)

Gaussian elimination is the process of reducing a matrix to its RREF using
these row operations. Each of these operations is the respective analogue of
the equation operations described above, and each can be realized by left
matrix multiplication. We have the following.
Type 1

E1 =



1
...

...

1
...

...
. . . . . . 0 . . . . . . . . . 1 . . . . . . . . .

... 1
...

...
. . .

...
... 1

...
. . . . . . 1 . . . . . . . . . 0 . . . . . . . . .

...
... 1

...
...

. . .
...

... 1



row i

row j

column
i

column
j
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Notation: Ri ↔ Rj

Type 2

E2 =



1
...

. . .
...

1
...

. . . . . . . . . c . . . . . . . . .
... 1
...

. . .
... 1


row i

column i

Notation: cRi

Type 3

E3 =



1
...

1
...
...
...
. . .

. . . . . . c . . . . . . . . . . . .
... 1
... 1


row j

column
i

Notation: cRi +Rj , the abbreviated form of cRi +Rj → Rj

Example 2.2.1. The operations

 2 1 0
0 2 1
−1 0 2

 R1 ←→ R2
→

 0 2 1
2 1 0
−1 0 2

 4R3
→

 0 2 1
2 1 0
−4 0 8
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can also be realized as

R1 ←→ R2 :

 0 1 0
1 0 0
0 0 1

 2 1 0
0 2 1
−1 0 2

 =
 0 2 1

2 1 0
−1 0 2


4R3 :

 1 0 0
0 1 0
0 0 4

  0 2 1
2 1 0
−1 0 2

 =
 0 2 1

2 1 0
−4 0 8


The operations 2 1 0

0 2 1
−1 0 2

 −3R1 +R2→
2R1 +R3

 2 1 0
−6 −1 1
3 2 2


can be realized by the left matrix multiplications 1 0 0

0 1 0
2 0 1

 1 0 0
−3 1 0
0 0 1

 2 1 0
0 2 1
−1 0 2

 =
 2 1 0
−6 −1 1
3 2 2


Note there are two matrix multiplications them, one for each Type 3 ele-
mentary operation.

Row-reduced echelon form. To each A ∈ Mm,n(E) there is a canonical
form also inMm,n(E) which may be obtained by row operations. Called the
RREF, it has the following properties.

(a) Each nonzero row has a 1 as the first nonzero entry (:= leading one).

(b) All column entries above and below a leading one are zero.

(c) All zero rows are at the bottom.

(d) The leading one of one row is to the left of leading ones of all lower
rows.

Example 2.2.2.

B =


1 2 0 0 −1
0 0 1 0 3
0 0 0 1 0
0 0 0 0 0

 is in RREF.
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Theorem 2.2.3. Let A ∈Mm,n(F ). Then the RREF is necessarily unique.

We defer the proof of this result. Let A ∈ Mm,n(F ). Recall that the
row space of A is the subspace of Rn (or Cn) spanned by the rows of A. In
symbols the row space is

S(r1(A), . . . , rm(A)).

Proposition 2.2.1. For A ∈Mm,n(F ) the rows of its RREF span the rows
space of A.

Proof. First, we know the nonzero rows of the RREF are linearly indepen-
dent. And all row operations are linear combinations of the rows. Therefore
the row space generated from the RREF is contained in the row space of
A. If the containment is proper. That is there is a row of A that is lin-
early independent from the row space of the RREF, this is a contradiction
because every row of A can be obtained by the inverse row operations from
the RREF.

Proposition 2.2.2. If A ∈ Mm,n(F ) and a row operation is applied to A,
then linearly dependent columns of A remain linearly dependent and linearly
independent columns of A remain linearly independent.

Proposition 2.2.3. The number of linearly independent columns of A ∈
Mm,n(F ) is the same as the number of leading ones in the RREF of A.

Proof. Let S = {i1 . . . ik} be the columns of the RREF of A having a lead-
ing one. These columns of the RREF are linearly independent Thus these
columns were originally linearly independent. If another column is linearly
independent, this column of the RREF is linearly dependent on the columns
with a leading one. This is a contradiction to the above proposition.

Proof of Theorem 2.2.3. By the way the RREF is constructed, left-to-right,
and top-to-bottom, it should be apparent that if the right most row of the
RREF is removed, there results the RREF of the m× (n−1) matrix formed
from A by deleting the nth column. Similarly, if the bottom row of the
RREF is removed there results a new matrix in RREF form, though not
simply related to the original matrix A.

To prove that the RREF is unique, we proceed by a double induction,
first on the number of columns. We take it as given that for an m×1 matrix
the RREF is unique. It is either the zero m × 1 matrix, which would be
the case if A was zero or the matrix with a 1 in the first row and zeros in
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the other rows. Assume therefore that the RREF is unique if the number
of columns is less than n. Assume there are two RREF forms, B1 and
B2 for A. Now the RREF of A is therefore unique through the (n − 1)st
columns. The only difference between the RREF’s B1 and B2 must occur
in the nth column. Now proceed by induction on the number of nonzero
rows. Assume that A = 0. If A has just one row, the RREF of A is simply
the scalar multiple of A that makes the first nonzero column entry a one.
Thus it is unique. If A = 0, the RREF is also zero. Assume now that
the RREF is unique for matrices with less than m rows. By the comments
above that the only difference between the RREF’s B1 and B2 can occur at
the (m,n)-entry. That is (B1)m,n = (B2)m,n. They are therefore not leading
ones. (Why?) There is a leading one in the mth row, however, because it
is a non zero row. Because the row spaces of B1 and B2 are identical, this
results in a contradiction, and therefore the (m,n)-entries must be equal.
Finally, B1 = B2. This completes the induction. (Alternatively, the two
systems pertaining to the RREF’s must have the same solution set to the
system Ax = 0. With (B1)m,n = (B2)m,n, it is easy to see that the solution
sets to B1x = 0 and B2x = 0 must differ.) ¤

Definition 2.2.2. Let A ∈Mm,n and b ∈ Rm (or Cn). Define

[A|b] =
a11 . . . a1n b1
a21 . . . a2n b2
am1 . . . amn bm


[A|b] is called the augmented matrix of A by b. [A|b] ∈ Mm,n+1(F ). The
augmented matrix is a useful notation for finding the solution of systems
using row operations.

Identical to other definitions for solutions of equations, the equivalence
of two systems is defined via the idea of equality of the solution set.

Definition 2.2.3. Two linear systems Ax = b andBx = c are called equiv-
alent if one can be converted to the other by elementary equation opera-
tions.

It is easy to see that this implies the following

Theorem 2.2.4. Two linear systems Ax = b and Bx = c are equivalent if
and only if both [A|b] and [B|c] have the same row reduced echelon form.
We leave the prove to the reader. (See Exercise 23.) Note that the solution
set need not be a single vector; it can be null or infinite.
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2.3 Rank

Definition 2.3.1. The rank of any matrix A, denote by r(A), is the di-
mension of its column space.

Proposition 2.3.1. (i) The rank of A equals the number of nonzero rows
of the RREF of A, i.e. the number of leading ones.
(ii) r(A) = r(AT ).

Proof. (i) Follows from previous results.
(ii) The number of linearly independent rows equals the number of lin-
early independent columns. The number of linearly independent rows is
the number of linearly independent columns of AT–by definition. Hence
r(A) = r(AT ).

Proposition 2.3.2. Let A ∈ Mm,n(C) and b ∈ Cm. Then Ax = b has a
solution if and only if r(A) = r([A|b]), where [A|b] is the augmented matrix.
Remark 2.3.1. Solutions may exist and may not. However, even if a so-
lution exists, it may not be unique. Indeed if it is not unique, there is an
infinity of solutions.

Definition 2.3.2. When Ax = b has a solution we say the system is con-
sistent.

Naturally, in practical applications we want our systems to be consistent.
When they are not, this can be an indicator that something is wrong with
the underlying physical model. In mathematics, we also want consistent
systems; they are usually far more interesting and offer richer environments
for study.

In addition to the column and row spaces, another space of great impor-
tance is the so-called null space, the set of vectors x ∈ Rn for which Ax = 0.
In contrast, when solving the simple single variable linear equation ax = b
with a = 0 we know there is always a unique solution x = b/a. In solving
even the simplest higher dimensional systems, the picture is not as clear.

Definition 2.3.3. Let A ∈Mm,n(F ). The null space of A is defined to be

Null(A) = {x ∈ Rn | Ax = 0}.
It is a simple consequence of the linearity of matrix multiplication that

Null(A) is a linear subspace of Rn. That is to say, Null(A) is closed under
vector addition and scalar multiplication. In fact, A(x + y) = Ax + Ay =
0 + 0 = 0, if x, y ∈ Null(A). Also, A(αx) = αAx = 0, if x ∈ Null(A). We
state this formally as
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Theorem 2.3.1. Let A ∈ Mm,n(F ). Then Null(A) is a subspace of Rn
while the range of A is in Rm.

Having such solutions gives valuable information about the solution set
of the linear system Ax = b. For, if we have found a solution, x, and have
any vector z ∈ Null(A), then x+ z is a solution of the same linear system.
Indeed, what is easy to see is that if u and v are both solutions to Ax = b,
then A(u − v) = Au− Av = 0, or what is the same x − y ∈ Null(A). This
means that to find all solutions to Ax = b, we need only find a single solution
and the null space. We summarize this as the following theorem.

Theorem 2.3.2. Let A ∈ Mm,n(F ) with null space Null(A). Let x be any
nonzero solution to Ax = b. Then the set x+Null(A) is the entire solution
set to Ax = b.

Example 2.3.1. Find the null space of A =
1 3
−3 −9 .

Solution. Solve Ax = 0. The RREF for A is
1 3
0 0

. Solving x1+3x2 = 0,

take x2 = t, a “free” parameter and solve for x1 to get x1 = −3t. Thus
every solution to Ax = 0 can be written in the form

x =
−3t
t

= t
−3
1

t ∈ R

Expressed this way we see that Null(A) = t
−3
1

| t ∈ R , a subspace

of R2 of dimension 1.

Theorem 2.3.3 (Fundamental theorem on rank). A ∈Mm,n(F ). The
following are equivalent

(a) r(A) = k.

(b) There exist exactly k linearly independent columns of A.

(c) There exist exactly k linearly independent rows of A.

(d) The dimension of the column space of A is k (i.e. dim(Range A) = k).

(e) There exists a set S of exactly k vectors in Rm for which Ax = b has
a solution for each b ∈ S(S).

(f) The null space of A has dimension n− k.
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Proof. The equivalence of (a), (b), (c) and (d) follow from previous con-
siderations. To establish (e), let S = {c 1 , c 2 , . . . , c k

} denote the linearly
independent column vectors of A. Let T = {e 1 , e 2 , . . . , e k

} ⊂ Rn be the
standard vectors. Then Ae

j
= c

j
. If b ∈ S(S), then b = a1c 1 + a2c 2 +

· · ·+ akc k
. A solution to Ax = b is given by x = a1e 1 + a2e 2 + · · ·+ ake k

.
Conversely, if (e) holds, then the set S must be linearly independent for
otherwise S could be reduced to k − 1 or fewer vectors. Similarly if A has
k+1 linearly independent columns then set S can be expanded. Therefore,
the column space of A must have exactly k vectors.

To prove (f) we assume that S = {v1, . . . , vk} is a basis for the column
space of A. Let T = {w1, . . . , wk} ⊂ Rn for which Awi = vi, i = 1, . . . , k.
By our extension theorem, we select n − k vectors wk+1, . . . , wn such that
U = {w1, . . . , wk, wk+1, . . . , wn} is a basis of Rn. We must have that
Awk+1 ∈ S(S). Hence there are scalars b1, . . . , bk such that

Awk+1 = A(b1w1 + · · ·+ bkwk)

and thus wk+1 = wk+1 − (b1w1 + · · · + bkwk) is in the null space of A.
Repeat this process for each wk+j , j = 1, . . . , n − k. We generate a total
of n − k vectors {wk+1, . . . , wn} in this manner. This set must be linearly
independent. (Why?) Therefore, the dimension of the null space must be
at least n − k. Now we consider a new basis which consists of the original
vectors and the n− k vectors {wk+1, wk+2, . . . , wn} for which Aw = 0. We
assert that the dimension of the null space is exactly n− k. For if z ∈ Rn is
a vector for which Az = 0, then z can be uniquely written as a component
z1 from S(T ) and a component z2 from S({wk+1, . . . , wn}). But Az1 = 0
and Az2 = 0. Therefore Az = 0 is impossible unless the component z1 = 0.

Conversely, if (f) holds we take a basis for the null space T = {u1, u2, . . . , un−k}
and extend the basis

T = T ∪ {un−k+1, . . . , un}

to Rn. Next argue similarly to above that

Aun−k+1, Aun−k+2, . . . , Aun

must be linearly independent, for otherwise there is yet another linearly
independent vector that can be added to its basis, a contradiction. Therefore
the column space must have dimension at least, and hence equal to k.

The following corollary assembles many consequences of this theorem.
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Corollary 2.3.1. (1) r(A) ≤ min(m,n).
(2) r(AB) ≤ min(r(A), r(B)).
(3) r(A+B) ≤ r(A) + r(B).
(4) r(A) = r(AT ) = r(A∗) = r(Ā).

(5) If A ∈Mm(F ) and B ∈Mm,n(F ), and if A is invertible, then

r(AB) = r(B).

Similarly, if C ∈Mn(F ) is invertible and B ∈Mm,n(F )

r(BC) = r(B).

(6) r(A) = r(ATA) = r(A∗A).

(7) Let A ∈Mm,n(F ), with r(A) = k. Then A = XBY where X ∈Mm,k,
Y ∈Mk,n and B ∈Mk is invertible.

(8) In particular, every rank 1 matrix has the form A = xyT , where x ∈
Rm and y ∈ Rn. Here

xyT =

x1y1 x1y2 . . . x1yn
...

...
...

xmy1 xmy2 . . . xmyn

 .
Proof. (1) The rank of any matrix is the number of linearly independent

rows, which is the same as the number of linearly independent columns.
The maximum this value can be is therefore the maximum of the
minimum of the dimensions of the matrix, or r (A) ≤ min (m,n) .

(2) The product AB can be viewed in two ways. The first is as a set
of linear combinations of the rows of B, and the other is as a set of
linear combinations of the columns of A. In either case the number
of linear independent rows (or columns as the case may be) In other
words, the rank of the product AB cannot be greater than the number
of linearly independent columns of A nor greater than the number of
linearly independent rows of B. Another way to express this is as
r (AB) ≤ min(r (A) , r (B))
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(3) Now let S = {v1, . . . vr(A)} and T = {w1, . . . , wr(B)} be basis of the
column spaces of A and B respectively. Then, the dimension of the
union S∪T = {v1, . . . vr(A), w1, . . . , wr(B)} cannot exceed r (A)+r (B) .
Also, every vector in the column space of A+B is clearly in the span
of S ∪ T. The result follows.

(4) The rank ofA is the number of linearly independent rows (and columns)
of A, which in turn is the number of linearly independent columns of
AT , which in turn is the rank of AT . That is, r (A) = r AT . Similar
proofs hold for A∗ and Ā.

(5) Now suppose that A ∈ Mm (F ) is invertible and B ∈ Mm,n. As
we have emphasized many times the rows of the product AB can be
viewed as a set of linear combinations of the rows of B. Since A has
rank m any set of linearly independent rows of B remains linearly
independent. To see why, let ri (AB) denote the i

th row of the product
AB. Then it is easy to see that

ri (AB) =
m

j=1

aijrj (B)

Suppose we can determine constants c1, . . . , cm not all zero so that

0 =
m

j=1

ciri (AB) =
m

i=1

ci

m

j=1

aijrj (B)

=
m

j=1

rj (B)
m

i=1

ciaij

This linear combination of the rows of B has coefficient given by AT c,
where c = [c1, . . . , ck]

T . Because the rank of A (and AT ) is m, we
can solve this system for any vector d ∈ Rm. Suppose that the row
vectors rjl (B) , = 1, . . . , r(B), are linearly independent. Arrange
that the components of d to be zero for indices not included in the set
jl, = 1, . . . , r(B) and not all zero otherwise. Then the conclusion

0 = m
j=1 rj (B)

m
i=1 ciaij =

r(B)
l=1 rjl (B) djl is impossible. Indeed,

the same basis of the row space of B will be a basis of the row space
of AB. This proves the result.

(6) We postpone the proof of this result until we discuss orthogonality.
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(7) Place A in RREF, say ARREF . Since r (A) = k we know the top k
rows of ARREF are linearly independent and the remaining rows are
zero. Define Y to be the k× n matrix consisting of these top k rows.
Define B = Ik. Now the rows of A are linear combinations of these
rows. So, define the m × k matrix X to have rows as follows: The
first row of consists of the coefficients so that x1jrj(Y ) = r1 (A) .
In general, the ith row of X is selected so that

xijrj(Y ) = ri (A)

(8) This is an application of (7) noting in this special case that X is an
m× 1 matrix that can be interpretted as a vector x ∈ Rm. Similarly,
Y is an 1 × n matrix that can be interpretted as a vector y ∈ Rn.
Thus, with I = [1], we have

A = xyT

Example 2.3.2. Here is the decomposition of the form given in Lemma
2.3.1 (7). The 3× 4 matrix A has rank 2.

A =


1 2 −1
0 0 2
−1 −2 3
2 4 0

 =


1 −1
0 2
−1 3
2 0

 1 0
0 1

1 2 0
0 0 1

= XBY

The matrix Y is the RREF of A.

Example 2.3.3. Let x = [x1, x2, . . . , xm]
T ∈ Rm and y = [y1, y2, . . . yn]T ∈

Rn. Then the rank one m× n matrix xyT has the form

xyT =


x1y1 x1y2 · · · x1yn
x2y1 x2y2 x2yn
...

. . .
...

xmy1 xmy2 · · · xmyn


In particular, with x = [1, 3, 5]T , and y = [−2, 7]T , the rank one 3×2 matrix
xyT is given by

xyT =

 13
5

 [−2, 7] =
 −2 7
−6 21
−10 35
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Invertible Matrices

A subclass matrices A ∈ Mn(F ) that have only the zero kernel is very
important in applications and theoretical developments.

Definition 2.3.4. A ∈ Mn is called nonsingular if Ax = 0 implies that
x = 0.

In many texts such matrices are introduced though an equivalent alter-
nate definition involving rank.

Definition 2.3.5. A ∈Mn is nonsingular if r(A) = n.

We also say that nonsingular matrices have full rank. That nonsingular
matrices are invertible and conversely together with many other equivalences
is the content of the next theorem.

Theorem 2.3.4. [Fundamental theorem on inverses] Let A ∈Mn(F ). Then
the following statements are equivalent.

(a) A is nonsingular.

(b) A is invertible.

(c) r(A) = n.

(d) The rows and columns of A are linearly independent.

(e) dim(Range(A)) = n.

(f) dim(Null(A)) = 0.

(g) Ax = b is consistent for all b ∈ Rn (or Cn).
(h) Ax = b has a unique solution for every x ∈ Rn (or Cn).
(i) Ax = 0 has only the zero solution.

(j)* 0 is not an eigenvalue of A.

(k)* detA = 0.

* The statements about eigenvalues and the determinant (detA) of a ma-
trix will be clarified later after they have been properly defined. They are
included now for completeness.
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Definition 2.3.6. Two linear systems Ax = b andBx = c are called equiv-
alent if one can be converted to the other by elementary equation opera-
tions. Equivalently, the systems are equivalent if [A | b] can be converted to
[B | c] by elementary row operations.

Alternatively, the systems are equivalent if they have the same solution
set which means of course that both can be reduced to the same RREF.

Theorem 2.3.5. If A ∈ Mn(F ) and B ∈ Mn(F ) with AB = I, then B is
unique.

Proof. If AB = I then for every e1 . . . en there is a solution to the system
Abi = ei for all 1 = 1, 2, . . . , n. Thus the set {bi}ni=1 is linearly independent
(because the set {ei} is) and moreover a basis. Similarly if AC = I then
A(C − B) = 0, and there are ci ∈ Rn (or Cn), i = 1, . . . , n such that
Aci = ei. Suppose for example that c1− b1 = 0. Since the {bi}ni=1 is a basis
it follows that c1 − b1 = Σαjbj , where not all αj are zero. Therefore,

A(c1 − b1) = ΣαjAbj = Σαjej = 0.
and this is a contradiction.

Theorem 2.3.6. Let A ∈Mn(F ). If B is a right inverse, AB = I, then B
is a left inverse.

Proof. Define C = BA − I + B, and assume C = B or what is the same
thing that B is not a left inverse. Then

AC = ABA−A+AB = (AB)(A)−A+AB
= A−A+AB = I

This implies that C is another right inverse of A, contradicting Theorem
2.3.5.

2.4 Orthogonality

Let V be a vector space over C. We define an inner product ·, · on V × V
to be a function from V to C that satisfies the following properties:

1. av,w = a v,w and v, aw = a v,w (a is the complex conjugate
of a)

2. v, w = w, v
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3. u+ v, w = u,w + v, w (linearity)

4. u, v + w = u, v + u,w

5. v, v ≥ 0 with v, v = 0 if and only if v = 0.

For inner products over real vector spaces, we neglect the complex con-
jugate operation. In addition, we want our inner products to define a norm
as follows:

6. For any v ∈ V , v 2 = v, v

We assume thoughout the text that all vector spaces with inner products
have norms defined exactly in this way. With the norm and vector v can
be normalized by dilating it to have length 1, say vn = v

1
v . The simplest

type of inner product on Cn is given by

v, w =
n

i=1

xiȳi

We call this the standard inner product.
Using any inner product, we can define an angle between vectors.

Definition 2.4.1. The angle θxy between vectors x and y in Rn is defined
by

cos θxy =
x, y

x y

=
x, y

( x, x )1/2( y, y )1/2
.

This comes from the well known result in R2

x · y = x y cos θ

which can be proved using the law of cosines. With angle comes the notion
of orthogonality.

Definition 2.4.2. Two vectors u and v are said to be orthogonal if the
angle between them if π

2 or what is the same thing u, v = 0. In this case
we commonly write x⊥y. We extend this notation to sets U writing x⊥U
to mean that x⊥u for every u ∈ U . Similarly two sets U and V are called
orthogonal if u⊥v for every u ∈ U and v ∈ V .
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Remark 2.4.1. It is important to note that the notion of orthogonality
depends completely on the inner product. For example, theweighted inner

product defined by v, w =
n

i=1
wi xiȳi where the wi > 0 gives very different

orthogonal vectors from the standard inner product.

Example 2.4.1. In Rn or Cn the standard unit vectors are orthogonal with
respect to the standard inner product.

Example 2.4.2. In the R3 the vectors u = (1, 2,−1) and v = (1, 1, 3) are
orthogonal because

x, y = 1 (1) + 2 (2)− 1 (3) = 0

Note that in R3 the complex conjugate is not written. The set of vectors
(x1, x2, x3) ∈ R3 orthogonal to u = (1, 2,−1) satisfies the equation x1 +
2x2 − x3 = 0 is recognizable as the plane with normal vector u.
Definition 2.4.3. We define the projection Puv of one vector v in the di-
rection of an other vector u to be

Puv =
u, v

u 2 u

As you can see, we have merely written an expression for the more in-
tuitive version of the projection in question given by v cos θuv

u
u . In the

figure below, we show the fundamental diagram for the projection of one
vector in the direction of another.

�

u

v

P vu

If the vectors u and v are orthogonal, it is easy to see that Puv = 0 .
(Why?)

Example 2.4.3. Find the projection of the vector v = (1, 2, 1) on the vector
u = (−2, 1, 3)
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Solution. We have

Puv =
u, v

u 2 u =
(1, 2, 1) , (−2, 1, 3)

(−2, 1, 3) 2 (−2, 1, 3)

=
1 (−2) + 2 (1) + 1 (3)

14
(−2, 1, 3)

=
5

14
(−2, 1, 3)

We are now ready to find orthogonal sets of vectors and orthogonal bases.
First we make an important definition.

Definition 2.4.4. Let V be a vector space with an inner product. A set
of vectors S = {x1, . . . , xn} in V is said to be orthogonal if xi, xj = 0 for
i = j. It is called orthonormal if also xi, xi = 1. If, in addition, S is a
basis it is called an orthogonal basis or orthonomal basis.

Note: Sometimes the conditions for orthonormality are written as

xi, xj = δij

where δij is the “Dirac” delta: δij = 0, i = j, δii = 1.

Theorem 2.4.1. Suppose U is a subspace of the (inner product) vector
space V and that U has the basis S = {x1 . . . xk}, then U has an orthogonal
basis.

Proof. Define y1 =
x1
|x | . Thus y1 is the “normalized” x1. Now define the

new orthonormal basis recursively by

yj+1 = xj+1 −
j

i=1

yi, xj+1 yi

yj+1 =
yj+1
yj+1

for j = 1, 2, . . . , k − 1. Then
(1) yj+1 is orthogonal to y1, . . . , yj

(2) yj+1 = 0.

In the language above we have yi, yj = δij .
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Basically, what the proof accomplishes is to take the differences of the
vector from the projections to the others. Referring to the figure above we
compute v − Puv as noted in the figure below. The process of orthogonal-
ization described above is called the Gram—Schmidt process.

�

u

v

v

P v

P v

u

u
-

Representation of vectors

One of the great advantages of orthonormal bases is that they make the
representation of vectors particularly easy. It is as simple as computing an
inner product. Let V be a vector space with inner product ·, · and with
subspace U having basis S = {u1, u2, . . . , uk}. Then for every u ∈ U we
know there are constants a1, a2, . . . , ak such that

x = a1u1 + a2u2 + · · ·+ akuk.
Taking the inner product of both sides with uj and applying the orthogo-
nality relations

x, uj = a1u1 + a2u2 + · · ·+ akuk., uj

=
k

j=1

ai ui., uj = aj

Thus aj = x, uj , j = 1, 2, . . . , k, and

x =
k

j=1

u., uj uj

Example 2.4.4. One basis of R2 is given by the orthonormal vectors S =

{u1, u2}, where u1 = 1√
2
, 1√

2

T
and u2 =

1√
2
,− 1√

2

T
. The representa-

tion of x = [3, 2]T is given by

x =
2

j=1

u., uj uj =
5

2

√
2

1√
2
,
1√
2

T

+
1

2

√
2

1√
2
,− 1√

2

T
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Orthogonal subspaces

Definition 2.4.5. For any set of vectors S we define

S⊥ = {v ∈ V | v⊥S}

That is, S⊥ is the set of vectors orthogonal to S. Often, S⊥ is called the
orthogonal complement or orthocomplement of S.

For example the orthocomplement of any vector v = [v1, v2, v3]
T ∈ R3 is the

(unique) plane passing through the origin that is orthogonal to v. It is easy
to see that the equation of the plane is x1v1 + x2v2 + x3v3 = 0.

For any set of vectors S the orthocomplement S⊥ has the remarkable
property of being a subspace of V , and therefore it is must have an orthog-
onal basis.

Proposition 2.4.1. Suppose that V is a vector space with an inner product,
and S ⊂ V . Then S⊥ is a subspace of V .

Proof. If y1, . . . , ym ∈ S⊥ then Σaiyi ∈ S⊥ for every set of coefficients
a1, . . . , am in R (or C).

Corollary 2.4.1. Suppose that V is a vector space with an inner product,
and S ⊂ V .

(i) If S is a basis of V , S⊥ = {0}.

(ii) If U = S(S), then U⊥ = S⊥.

The proofs of these facts are elementary consequences of the proposition.
An important decomposition result is based on orthogonality of subspaces.
For example, suppose that V is a finite dimensional inner product space and
that U is a subspace of V . Let U⊥ be the orthocomplement of U, and let
S = {u1, u2, . . . , uk} be an orthonormal basis of U . Let x ∈ V . Define
x1 =

k
j=1 x, uj uj , and x2 = x − x1. Then it follows that x1 ∈ U and

x2 ∈ U⊥. Moreover, x = x1 + x2. We summarize this in the following.

Proposition 2.4.2. Let V is a vector space with inner product ·, · and
with subspace U . Then every vector x ∈ V can be written as a sum of two
orthogonal vectors x = x1 + x2, where x1 ∈ U and x2 ∈ U⊥.
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Geometrically what this results asserts is that for a given subspace of
an inner product space, every vector has an orthogonal decomposition as
two unique sum of a vector from the subspace and its orthocomplement.
We write the vector components as the respective projections of the given
vector to the orthogonal subspaces

x1 = PU x

x2 = PU ⊥ x

Such decompositions are important in the analysis of vector spaces and
matrices. In the case of vector spaces, of course, the representation of
vectors is of great value. In the case of matrices, this type of decomposition
serves to allow reductions of the matrices while preserving the information
they carry.

2.4.1 An important equality for matrix multiplication and
the inner product

Let A ∈ Mmn(C). Then we know that both A∗A and AA∗ (Alternatively,
ATA and AAT exist) exist, and we can surely inquire about the rank of these
matrices. The main result of this section is on the rank of ATA, namely
that r (A) = r(A∗A) = r(AA∗). The proof is quite simple but requires an
important equality. Let A ∈Mmn(C) and v ∈ Cn and w ∈ Cm. Then

Av,w =
m

i=1

(Av)i , wi

=
m

i=1

n

j=1

aijvj w̄i

=
n

j=1

vj

m

i=1

aijw̄i

=
n

j=1

vj

m

i=1

āijwi

=
n

j=1

vj (A∗w)j

= v,A∗w
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As a consequence we have A∗Av,w = Av,Aw if both v, w ∈ Cn. This
important equality allows the adjoint or transpose matrices to be used on
either side of the inner product, as needed. Indeed we shall use this below.

Proposition 2.4.3. Let A ∈Mmn(C) have rank r (A) . Then

r (A) = r(A∗A) = r(AA∗)

Proof. Assume that r (A) = k. Then there are k standard vectors ej1 , . . . , ejk
such that for each l = 1, 2, . . . k, the vectors Aejl is one of the linearly
independent columns of A. Moreover, it also follows that for every set of
constants a1, . . . , ak the vector A alelj = 0. Now A∗A alelj = 0
follows because

A∗A alelj , alelj = A alelj , A alelj

= A alelj
2
= 0

This in turn establishes that A∗A cannot be zero on a linear space of di-
mension k except for the zero element of course, and since the rank of A∗A
cannot be larger than k the result is proved.

Remark 2.4.2. This establishes (6) of the Corollary 2.3.1 above. Also, it
is easy to see that the result is also true for real matrices.

2.4.2 The Legendre Polynomials

When a vector space has an inner product, it is possible to construct an
orthogonal basis from any given basis. We do this now for the polynomial
space Pn (−1, 1) and a particular basis.

Consider the space the polynomials of degree n defined on the interval
[−1, 1] over the reals. Recall that this is a vector space and has as a basis
the monomials 1, x, x2, . . . , xn . We can define an assortment of inner
products on this space, but the most common inner product is given by

p, q =
1

−1
p (x) q (x) dx

Verifying the inner product properties is fairly straight forward and we leave
it as an exercise. This inner product also defines a norm

p 2 =
1

−1
|p (x)|2 dx
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This norm satisfies the triangle inequality requires an integral version of the
Cauchy-Schwartz inequality.

Now that we have an inner product and norm, we could proceed to find
an othogonal basis of Pn (−1, 1) by applying the Gram-Schmidt procedure
to the basis 1, x, x2, . . . , xn . This procedure can be clumsy and tedious.
It is easier to build an orthogonal basis from scratch. Following tradition
we will use capital letters P0, P1, . . . to denote our orthogonal polynomials.
Toward this end take P0 = 1. Note we are numbering from 0 onwards so
that the polynomial degree will agree with the index. Now let P1 = ax+ b.
For orthogonality, we need

1

−1
P0 (x)P1 (x) dx =

1

−1
1 · (ax+ b) dx = 2b = 0

Thus b = 0 and a can be arbitrary. We take a = 1. This gives y1 = x. Now
we assume the model for the next orthogonal function to be y2 = ax

2+bx+c.
This time there are two orthogonality conditions to satisfy.

1

−1
P0 (x)P2 (x) dx =

1

−1
1 · ax2 + bx+ c dx =

2

3
a+ 2c = 0

1

−1
P1 (x)P2 (x) dx =

1

−1
x · ax2 + bx+ c dx =

2

3
b = 0

We conclude that b = 0. From the equation 2
3a+2c = 0, we can assign one

of the variables and solve for the other one. Following tradition we take
c = −12 and solve for a to get a = 3

2 .

The next polynomial will be modeled as P3 (x) = ax3 + bx2 + cx + d.
Three orthogonality relations need to be satisfied.

1

−1
P0 (x)P3 (x) dx =

1

−1
1 · ax3 + bx2 + cx+ d dx =

2

3
b+ 2d = 0

1

−1
P1 (x)P3 (x) dx =

1

−1
x · ax3 + bx2 + cx+ d dx =

2

5
a+

2

3
c = 0

1

−1
P2 (x)P3 (x) dx =

1

−1
1

2
(3x− 1) ax3 + bx2 + cx+ d dx

=
3

5
a− 1

3
b+ c− d = 0

It is easy to see that b = d = 0 (why?) and from 2
5a +

2
3c = 0, we select
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c = −32 and a = 5
2 . Our table of orthogonal polynomials so far is

k Pk (x)

0 1

1 x

2 1
2 (3x− 1)

3 1
2 5x3 − 3x

Continue in this fashion, generating polynomials of increasing order each
orthogonal to all of the lower order ones.

P0(x) = 1

P1(x) = x

P2(x) = 3/2x2 − 1/2
P3, x) = 5/2x3 − 3/2x
P4(x) =

35

8
x4 − 15

4
x2 + 3/8

P5(x) =
63

8
x5 − 35

4
x3 +

15

8
x

P6(x) =
231

16
x6 − 315

16
x4 +

105

16
x2 − 5

16

P7(x) =
429

16
x7 − 693

16
x5 +

315

16
x3 − 35

16
x

P8(x) =
6435

128
x8 − 3003

32
x6 +

3465

64
x4 − 315

32
x2 +

35

128

P9(x) =
12155

128
x9 − 6435

32
x7 +

9009

64
x5 − 1155

32
x3 +

315

128
x

P10(x) =
46189

256
x10 − 109395

256
x8 +

45045

128
x6 − 15015

128
x4 +

3465

256
x2 − 63

256

2.4.3 Orthogonal matrices

Besides sets of vectors being orthogonal, there is also a definition of orthog-
onal matrices. The two notions are closely linked.

Definition 2.4.6. We say a matrix A ∈ Mn(C) is orthogonal if A∗A = I.
The same definition applies to matrices A ∈ Mn(R) with A

∗ replaced by
AT .
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For example, the rotation matrices (Exercise ??) Bθ =
cos θ − sin θ
sin θ cos θ

are all orthogonal.
A simple consequence of this definition is that the rows and the columns

of A are orthonormal. We see for example that when A is orthogonal then
(A∗)2 = (A−1)2 = A−1A−1 = (A2)−1. Such a definition applies, as well to
higher powers. For instance, if A is orthogonal then Am is orthogonal for
every positive integer m.

One way to generate orthogonal matrices in Cn (or Rn) is to begin with
an orthonormal basis and arrange it into an n×nmatrix either as its columns
or rows.

Theorem 2.4.2. (i) Let {xi}, i = 1, . . . , n be an orthonormal basis of Cn
or (Rn). Then the matrices

U =

 x1 · · · xn
↓ · · · ↓
· ·

 and V =

 x1 −→ ·
...

...
xn −→ ·


formed by arranging the vectors xi as its respective columns or rows are
orthogonal.

(ii) Conversely, U is an orthogonal matrix, the sets of its rows and
columns are each orthonormal, and moreover each forms a basis of Cn or
(Rn).

The proofs are entirely trivial. We shall consider these types of results
in more detail later in Chapter 4. In the meantime there are a few more
interesting results that are direct consequences of the definition and facts
about the transpose (adjoint).

Theorem 2.4.3. Let A,B ∈Mn (C) (or Mn (R) ) be orthogonal matrices.
Then
(a) A is invertible and A−1 = A∗.
(b) For each integer k = 0,±1,±2, . . . , both Ak and −Ak are orthogonal.
(c) AB is orthogonal.

2.5 Determinants

This section is about determinants that can be regarded as a measure of
singularity of a matrix. More generally, in many applied situations that
deal with complex objects, a single number is sought that will in some way
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classify an aspect of those objects. The determinant is such a measure for
singularity of the matrix. The determinant is difficult to calculate and of
not much practical use. However, it has considerable theoretical value and
certainly has a place of historical interest.

Definition 2.5.1. Let A ∈ Mn(F ). Define the determinant of A to be
the value in F

detA =
σ

n

i=1

aiσ(i) · sgn σ

where σ is a permutation of the integers {1, 2, . . . , n} and
(1)

σ
denotes the sum over all permutations

(2) sgn σ = sign of σ = ±1
A transposition is the exchange of two elements of an ordered list with
all others staying the same. With respect to permutations, a transposition
of one permutation is another permutation formed by the exchange of two
values. For example a transposition of {1, 4, 3, 2} is {1, 3, 4, 2}. The sign of
a given permutation σ is

(a) +1, if the number of transpositions required to bring σ to {1, 2, . . . , n}
is even.

(b) −1, if the number of transpositions required to bring σ to {1, 2, . . . , n}
is odd.

Alternatively, and what is the same thing, we may count the number m of
transpositions required to bring σ to {1, 2, . . . , n} and to compute the sign
is (−1)m.
Example 2.5.1.

σ1 = {2, 1, 3} 1↔2−−→ {1, 2, 3} odd

σ2 = {2, 3, 1} 3↔1−−→ {2, 1, 3} 1↔2−−→ {1, 2, 3} even

sgn σ1 = −1 sgn σ2 = +1

Proposition 2.5.1. Let A ∈Mn.
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(i) If two rows of A are interchanged to obtain B, then

detB = −detA.

(ii) Given A ∈Mn(F ). If any row is multiplied by a scalar c, the resulting
matrix B has determinant

detB = cdetA.

(iii) If any two rows of A ∈Mn(F ) are equal,

detA = 0.

Proof. (i) Suppose rows i1 and i2 are interchanged. Now for the given
permutations σ apply the transposition i1 ↔ i2 to get σ1. Then

n

i=1

ai1σ(i) =
n

i=1

bi2σ1(i)

because

ai1σ(i1) = bi2σ1(i2)

as

bi2j = ai1j and σ1(i2) = σ2(i1)

and similarly ai2σ(i2) = bi1σ1(i1). All other terms are equal. In the
computation of the full determinant with signs of the permutations,
we see that the change is caused only by the fact sgn(σ1) = −sgn(σ).
Thus,

detB = −detA.

(ii) Is trivial.

(iii) If two rows are equal then by part (i)

detA = −detA

and this implies detA = 0.
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Corollary 2.5.1. Let A ∈Mn. If A has two rows equal up to a multiplica-
tive constant, it has has determinant zero.

What happens to the determinant when two matrices are added. The
result is too complicated to write down is not very important. However,
when a single vector is added to a row or a column of a matrix, then the
result can be simply stated.

Proposition 2.5.2. Suppose A ∈ Mn(F ). Suppose B is obtained from A
by adding a vector v to a given row (resp. column) and C is obtained from
A by replacing the given row (resp. column) by the vector v. Then

detB = detA+ detC.

Proof. Assume the jth row is altered. Using the definition of the determi-
nant,

detA =
σ

sgn (σ)
i

biσ(i) =
σ

sgn (σ)


i=j

biσ(i)

 bjσ(j)
=

σ

sgn (σ)


i=j

aiσ(i)

 (a+ v)jσ(j)
=

σ

sgn (σ)


i=j

aiσ(i)

ajσ(j) +
σ

sgn (σ)


i=j

aiσ(i)

 vjσ(j)
detA+ detC

For column replacement the proof is similar, particularly using the alternate
representation of the determinant given in Exercise 15.

Corollary 2.5.2. Suppose A ∈ Mn(F ) and B is obtained by multiplying a
given row (resp. column) of A by a scalar and adding it to another row
(resp. column), then

detB = detA.

Proof. First note that in applying Proposition 2.5.2 C has two rows equal
up to a multiplicative constant. Thus detC = 0.

Computing determinants is usually difficult and many techniques have
been devised to compute them out. As is evident from counting, computing
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the determinant of an n×n matrix using the definition above would require
the expression of all n! permutations of the integers {1, 2, . . . , n} and the
determination of their signs together with all the concommitant products
and summation. This method is prohibitively costly. Using elementary
row operations and Gaussian elimination, the evaluation of the determinant
becomes more manageable. First we need the result below.

Theorem 2.5.1. For the elementary matrices the following results hold.

(a) for Type 1 (row interchange) E1

detE1 = −1

(b) for Type 2 (multiply a row by a constant c) E2

detE2 = c

(c) for Type 3 (add a multiple of one row to another row) E3

detE3 = 1.

Note that (c) is a consequence of Corollary 2.5.2. Proof of parts (a) and (b)
are left as exercises. Thus for any matrix A ∈Mn(F ) we have

det(E1A) = −detA = detE1 detA

det(E2A) = cdetA = detE2 detA

det(E3A) = detA = detE3 detA.

Suppose F1 . . . Fk is a sequence of row operations to reduce A to its RREF.
Then

FkFk−1 . . . F1A = B.

Now we see that

detB = det(FkFk−1 . . . F1A)
= det(Fk) det(Fk−1 . . . F1A)

=
...

= det(Fk) det(Fk−1) . . .det(F1) detA.

For B in RREF and B ∈Mn(F ), we have that B is upper triangular. The
next result establishes Theorem 2.3.4(k) about the determinant of singular
and non singular matrices. Moreover, the determinant of triangular matrices
is computed simply as the product of its diagonal elements.
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Proposition 2.5.3. Let A ∈Mn. Then

(i) If r(A) < n, then detA = 0.

(ii) If A is triangular then

detA = aii

(iii) If r(A) = n, then detA = 0.

Proof. (i) If r(A) < n, then its RREF has a row of zeros, and detA = 0 by
Theorem 2.5.1. (ii) If A is triangular the only product without possible zero
entries is aii. Hence detA = aii. (iii) If If r(A) = n, then its RREF has
no nonzero rows. Since it is square and has a leading one in each column,
it follows that the RREF is the identity matrix. Therefore detA = 0.

Now let A,B ∈ Mn. If A is singular the RREF must have a zero row.
It follows that detA = 0. If A is singular it follows that AB is singular.
Therefore

0 = detAB = detAdetB.

The same reasoning applies if B is singular. If A and B are not singular
both A and B can be row reduced to the identity. Let F1 . . . Fk1 be the row
operations that reduce A to I, and G1 . . . GkB be the row operations that
reduce B to I. Then

detA = [det(F1) . . .det(FkA)]
−1

detB = [det(G1) . . .det(GkB)]
−1.

Also

I = (GkB . . . G1)(FkB . . . F1)AB

and we have

det I = (detA)−1(detB)−1 detAB.

This proves the

Theorem 2.5.2. If A,B ∈Mn(F ), detAB = detAdetB.
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2.5.1 Minors and Determinants

The method of row reduction is one of the simplest methods to compute
the determinant of a matrix. Indeed, it is not necessary to use Type 2 el-
ementary transformation. This results in the computing the determinant
as the product of the diagonal elements of the resulting triangular matrix
possibly multiplied by a minus sign. An alternate approach to computing
determinants using minors is both interesting and useful. However, unless
the matrix has some special form, it does not provide a computational al-
ternative to row reduction.

Definition 2.5.2. Let A ∈Mn (C) . For any row i and column j define the
(ij)-minor of A by

Mij = detA
ith row removed

jth column removed

The notation

A
ith row removed

jth column removed

denotes the (n− 1)× (n− 1) matrix formed from A by removing the ith row
and jth column. With minors an alternative formulation of the determinant
can be given. This method, while not of great value computationally, has
some theoretical importance. For example, the inverse of a matrix can be
expressed using minors. We begin by consideration the determinant.

Theorem 2.5.3. Let A ∈ Mn (C) . (i) Fix any row, say row k. The de-
terminant of A is given by

detA =
n

j=1

akj (−1)k+jMkj

(ii) Fix any column, say column m. The determinant of A is given by

detA =
n

j=1

ajm (−1)m+jMjm

Proof. (i) Suppose that k = 1. Consider the quantity

a11M11
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We observe that this is equivalent to all the products of the form

sgn (σ) a11 · a2σ(2) · · · · · anσ(n)
where only permutations that fix the integer (i.e. position) 1 are taken.
Thus σ (1) = 1. Since this position is fixed the signs taken in the determi-
nantM11 for permutations of n−1 integers are respectively the same as the
signs for the new permutation of n integers.

Now consider all permutations that fix the integer 2 in the sense that
σ (1) = 2. The quantity a12 (−1)1+2M12 consists of all the products of the
form

sgn (σ) a12 · a2σ(1)a3σ(3) · · · · · anσ(n)
We need here the extra sign change because if the part of the permutation
σ of the integers {1, 3, 4, . . . , n} is of one sign, which is the sign used in
the computation of detMij , then the permutation of σ of the integers
{1, 2, 3, 4, . . . , n} is of the other sign, and that sign is sgn (σ).

When we proceed to the kth component, we consider permutations that
fix the integer k. That is, σ (1) = k. In this case the quantity a1k (−1)1+kM1k

consists of all products of the form

sgn (σ) a1ka2σ(1) · · · · ak−1σ(k−1)ak+1σ(k+1) · · · · · anσ(n)
Continuing in this way we exhaust all possible products a1σ(1) · a2σ(2) · · · · ·
anσ(n) over all possible permutations of the integers {1, 2, . . . , n}. This
proves the assertion. The proof for expanding from any row is similar, with
only a possible change of sign needed, which is a prescribed.

(ii) The proof is similar.

Example 2.5.2. Find the determinant of

A =

 3 2 −1
0 1 3
1 2 −1


expanding across the first row and then expanding down the second column.

Solution. Expanding across the first row gives

detA = a11M11 − a12M12 + a13M12

= 3det
1 3
2 −1 − 2 det 0 3

1 −1 − 1 det 0 1
1 2

= 3 (−7)− 2 (−3)− (−1)
= −14
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Expanding across the second column gives

detA = −2 det 0 3
1 −1 + 1det

3 −1
1 −1 − 2 det 3 −1

0 3

= −2 (−3) + (−2)− 2 (9) = −14
The inverse of the matrix can be formulated in terms of minors, which

is formulated below.

Definition 2.5.3. Let A ∈ Mn (C) (or Mn (R)). Define the adjugate (or
adjoint) matrix Â by

Âij = (−1)i+jMji

where Mji is the ji minor.

The adjugate has traditionally been called the “adjoint”, but that terminol-
ogy is somewhat ambiguous in light of the previous definition as complex
conjugate transpose. Note that it is defined for all square matrices; when
restricted to invertible matrices the inverse appears.

Theorem 2.5.4. Let A ∈ Mn (C) (or Mn (R)) be invertible. Then A
−1 =

1
detAÂ

Proof. A quick examination of the ij-entry of the product AÂ yields the
following sum

n

j=1

aijÂjk =
1

det (A)

n

j=1

aij (−1)k+jMkj

There are two possibilities. (1) If i = k, then the summation above is the
summation to form the determinant as described in Theorem 2.5.3. (2) If
i = k, the summation is the computation of the determinant of the matrix
A with the kth row replaced by the ith row. Thus the determinant of a
matrix with two identical rows is represented above and this must be zero.

We conclude that AÂ
ij
= δij , the usual Kronecker ‘delta,’ and the result

is proved.

Example 2.5.1. Find the adjugate and inverse of

A =
2 4
2 1



2.5. DETERMINANTS 75

It is easy to see that

Â =
1 −4
−2 2

Also detA = −6. Therefore, the inverse

A−1 = −1
6

1 −4
−2 2

Remark 2.5.1. The notation for cofactors of a square matrix A is often
used

âij = (−1)i+jMji

Note the reversed order of the subscripts ij and then ji above.

Cramer’s Rule

We know now that the solution to the system Ax = b is given by x = A−1b.

Moreover, the inverse A−1 is given by A−1 =
Â

detA
, where Â is the adjugate

matrix. The the ith component of the solution vector is therefore

xi =
1

detA

n

j=1

âijbj

=
1

detA

n

j=1

(−1)i+jMjibj

=
detAi
detA

where we define the matrix Ai to be the modification to A by replacing its
ith column by the vector b. In this way we obtain a very compact formula
for the solution of a linear system. Called Cramer’s rule we state this
conclusion as

Theorem 2.5.1. (Cramer’s Rule.) Let A ∈ Mn (C) be invertible and b ∈
Cn. For each i = 1, , n, define the matrix Ai to be the modification of A
by replacing its ith column by the vector b. Then the solution to the linear

system Ax = b is given by components xi =
detAi
detA

, i = 1, , n.
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Example 2.5.2. Given the matrix A =
2 4
2 1

, and the vector b =

2
−1 . Solve the system Ax = b by Cramer’s rule.

We have

A1 =
2 4
−1 1

and A2 =
2 2
2 −1

and detA1 = 6, detA2 = −6, detA = −6. Therefore

x1 = −1 and x2 = 1

A curious formula

The useful formula using cofactors given below will have some consequence
when we study positive definite operators in Chapter ??.

Proposition 2.5.1. Consider the matrix

B =


0 x1 x2 · · · xn
x1 a11 a12 · · · a1n
x2 a21 a22 · · · a2n
...

...
...

. . .
...

xn an1 an2 ann


Then

detB = − âijxixj

where âij is the ij-cofactor of A.

Proof. Expand by minors along the top row to get

detB = (−1)j xjM1j (B)

Now expand the matrix of M1j (B) down the first column. This gives

M1j (B) = (−1)i−1 xiMij (A)
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Combining we obtain

detB = (−1)j xjM1j (B)

= (−1)j xj (−1)i−1 xiMij (A)

= (−1)i+j−1 xjxiMij (A)

= − âijxjxi

The reader may note that in the last line of the equation above, we should
have used âij . However, the formulation given is correct, as well. (Why?)

2.6 Partitioned Matrices

It is convenient to study partitioned or “blocked” matrices, or more graph-
ically said, matrices whose entries are themselves matrices. For example,
with I2 denoting the 2 × 2 identity matrix we can create the 4 × 4 matrix
written in partitioned form and expanded form.

A =
aI2 cI2
cI2 dI2

=


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d


Partitioning matrices allows our attention to focus on certain structural
properties. In many applications partititioned matrices appear in a natural
way, with the particular blocks having some system context. Many similar
subclasses and processes apply to partitioned matrices. In specific situations
they can be added, multiplied, and inverted, just like regular matrices. It is
even possible to perform “blocked” version of Gaussian elimination. In the
few results here, we touch on some of these possibilities.

Definition 2.6.1. For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, let Aij be an mi×nj
matrices where . Then the matrix

A =


A11 A12 · · · A1n
A21 A2n · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn
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is a partitioned matrix of order ( m)i × ( nj) .

The usual operations of addition and multiplication of partitioned ma-
trices can be performed provided each of the operations makes sense. For
addition of two partitioned matrices A and B it is necessary to have the
same numbers of blocks of the respective same sizes. Then

A+B =


A11 A12 · · · A1n
A21 A2n · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

+

B11 B12 · · · B1n
B21 B2n · · · B2n
...

...
. . .

...
Bm1 Bm2 · · · Bmn



=


A11 +B11 A12 +B12 · · · A1n +B1n
A21 +B21 A2n +B2n · · · A2n +B2n

...
...

. . .
...

Am1 +Bm1 Am2 +Bm2 · · · Amn +Bmn


For multiplication, the situation is a bit more complicated. For definiteness,
suppose that B is a partitioned matrix with block sizes si × tj , where 1 ≤
i ≤ p and 1 ≤ j ≤ q The usual operations to construct C = AB,

n

j=1

AijBjk

then make sense provided p = n and nj = sj , 1 ≤ j ≤ n.
A special category of partitioned matrices are the so-called quasi-triangular

matrices, wherein Aij = 0 if i > j for the “lower” triangular version. The
special subclass of quasi-triangular matrices wherein Aij = 0 if i = j are
called quasi-diagonal. In the case of the multiplication of partitioned
matrices (C = AB) with the left multiplicand A a quasi-diagonal matrix,
we have Cik = AiiBik. Thus the multiplication is similar in form to the usual
multiplication of matrices where the left multiplicand is a diagonal matrix.
In the case of the multiplication of partitioned matrices (C = AB) with the
right multiplicand B a quasi-diagonal matrix, we have Cik = AikBkk. For
quasi-triangular matrices with square diagonal blocks, there is an interesting
result about the determinant.

Theorem 2.6.1. Let A be a quasi-triangular matrix, where the diagonal
blocks Aii are square. Then

detA =
i

detAii
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Proof. Apply row operations on each vertical block without row interchanges
between blocks, without any Type 2 operations. The resulting matrix in
each diagonal block position (i, i) is triangular. Be sure to multiply one
of the diagonal entries by ±1, reflecting the number of row interchanges
within a block. The resulting matrix can still be regarded as partitioned,
though the diagonal blocks are now actually upper triangular. Now apply
Proposition 2.5.3, noting that the product of each of the diagonal entries
pertaining to the ith block is in fact detAii.

A simple consequence of this result, proved alá Gaussian elimination, is
contained in the following corollary.

Corollary 2.6.1. Consider the partitioned matrix

A =
A11 A12
A21 A22

with square diagonal blocks and with A11 invertible. Then the rank of A is
the same as the rank of A11 if and only if A22 = A21A

−1
11 A12.

Proof. Multiplication of A by the elementary partitioned matrix

E =
I 0

−A21A−111 I

yields

EA =
I 0

−A21A−111 I
A11 A12
A21 A22

=
A11 A12
0 A22 −A21A−111 A12

Since E has full rank, it follows that rank(EA) = rankA. Since EA is
quasi-triangular, it follows that the rank of A is the same as the rank of A11
if and only if A22 −A21A−111 A12 = 0.

2.7 Linear Transformations

Definition 2.7.1. A mapping T from Rn to Rm is called a linear trans-
formation if

T (x+ y) = Tx+ Ty ∀x, y ∈ Rn
T (ax) = aTx ∀a ∈ F.
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Note: We normally write Tx instead of T (x).

Example 2.7.1. T : Rn → Rm. Let a ∈ Rm and y ∈ Rn. Then for each
x ∈ Rn, Tx = x, y a is a linear transformation. Let S = {v1 . . . vn} be
a basis of Rn, and define the m × n matrix with columns given by the
coordinates of Tv1, Tv2, . . . , Tvn. Then this matrix

A =
Tv1 Tv2 Tvn

↓ ↓ ··· ↓
is the matrix representation of T with respect to the basis S. Thus, if
x = Σaivi, whence [x]S = (a1 . . . an), we have

[Tx]S = A[x]S

There is a duality between all linear transformations from Rn to Rm
and the set Mm,n(F ).

Note that Mm,n(F ) is itself a vector space over F . Hence L(Fn, Fm),
the set of linear transformations from Fn to Fm is likewise. As such it has
subspaces.

Example 2.7.2. (1) Let x̄ ∈ Fn. Definite J = {T ∈ L | T x̄ = 0}. Then
J is a subspace of L(Fn, Fm).

(2) Let U = {T ∈ L(Rn, Rn) | Tx ≥ 0 if x ≥ 0}, where {x ≥ 0} means
the positive orthant of Rn. U is not a linear subspace of L(Rn, Rn),
though it is a convex set.

(3) Define T : Pn → Pn by Tp =
d

dx
p. T is a linear transformation.

Example 2.7.3. Express the linear transformation D : P3 → P3 given by
Dp = d

dxp(x) as a matrix with respect to the basis. S = {1, x, x2, x3}. We
have D1 = 0 = 0 + 0x+ 0x2 + 0x3. Also

[D1]S = [0, 0, 0, 0]
T

similarly

[Dx]S = [1, 0, 0, 0]
T

[Dx2]S = [0, 2, 0, 0]
T

[Dx3]S = [0, 0, 3, 0]
T .
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Hence

[D]S =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .
In this context the differentiation operator is rather simple.

Example 2.7.4. Consider the linear transformation T defined by Tq =
3x d

dxq + x
2q for q ∈ P2. Find the matrix representation of T.

Solution. First off we notice that this transformation has range in
P4. Let’s use the standard bases for this problem. We then determine
the coordinates of T for vectors in the P2 basis {1, x, x2}in the P4 basis
{1, x, x2, x3, x4}. Compute

T (1) = x2

T (x) = 3x+ x3

T x2 = 6x2 + x4

The coordinates of the input vectors we know are [1, 0, 0]T , [0, 1, 0]T , and
[0, 0, 1]T . For the output vectors the coordinates are [0, 0, 1, 0, 0]T , [0, 3, 0, 1, 0]T ,
and [0, 0, 6, 0, 1]T . So, with respect to these two bases, the matrix of the
transformation is

A =


0 0 0
0 3 0
1 0 6
0 1 0
0 0 1


Observe that the dimensionality corresponds with the dimentionality of the
respective spaces.

Example 2.7.5. Let V = R2, with S0 = {v1, v2} = {[ 10 ] , [ 11 ]}, S1 =
{w1, w2} = [ 12 ] ,

−2
1 , and T = I the identity. The vectors above are

expressed in the standard E = {e1, e2}, Tvj = Ivj = vj . To find [vj ]S1 we
solve

vj = ajw1 + βjw2
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v1 :
1 −2
2 1

α1
β1

=
1
0
−→ α1

β1
=

1
5
−25

v2 :
1 −2
2 1

α2
β2

=
1
1
−→ α2

β2
=

3
5
−15

solve linear
systems

Therefore

S1 [I]S0 =
1
5

3
5

−25 −15
←

change of
basis
matrix

If

[x]S0 =
−1
2

[x]S1 = S1 [I]S0
−1
2

=
1

5

1 3
−2 −1

−1
2

=
1

5

5
0
=

1
0
.

Note the necessity of using the standard basis to express the vectors in both
bases S0 and S1.

2.8 Change of Basis

Let V be a vector space with bases S0 = {v1 . . . vn} and S1 = {w1 . . . wn},
and suppose T : V → V is a linear transformation. We want to find the
representation of T as a matrix that takes a vector x given in terms of its S0
coordinates and produces the vector Tx given in terms of its S1 coordinates.

We know that x→ [x]S0 is well defined. The action of T is known if the

n vector [x]S0 =
c1
...
cn

and the vectors Tv1, T v2, . . . , T vn are known, for if

x = Σcjvj , then Tx = ΣcjTvj , by linearity.

To determine [Tx]S1 we need to convert the Tvj , j = 1, . . . , n to coor-
dinates in the other S1 basis, This is done as follows. Find

[Tvj ]S1 =


t1j
t2j
...
tnj

 j = 1, 2, . . . , n.
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Then if x ∈ V
[Tx]S1 = [ΣcjTvj ]S1 = Σcj [Tvj ]S1

=


j

tijcj


=

t11 . . . t1n

tn1 tnn


c1...
cn

 .
This n× n array [tij ] depends on T, S0 and S1 but not on x. We define the
S0 → S1 basis representation of T to be [tij ], and we write this as

S1 [T ]S0 =

t11 . . . t1n
...

. . .
...

tn1 . . . tnn

 .
In the special case that T is the identity operator the matrix S1 [I]S0 converts
the coordinates of a vector in the basis S0 to coordinates in the basis S1. It
is easy to see that S0 [I]S1 must be the inverse of S1 [I]S0 and thus

S0 [I]S1 · S1 [I]S0 = I.
We can also establish the equality

S1 [T ]S1 = S1 [I]S0S0 [T ]S0S0 [I]S1 .

In this way we see that the matrix representation of T depends on the bases
involved. If X is any invertible matrix in Mn(F ) we can write

B = X−1AX.

The interpretation in this context is clear

X : change of coordinate from one basis to another S0 → S1

X−1 : change of coordinate S1 → S0

A : matrix of the linear transformation in the basis S0

B : matrix of the same linear transformation in the basis S1.

With this in mind it seems prudent to study linear transformations in the
basis that makes their matrix representation as simple as possible.
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Example 2.8.1. Let A =
1 3
−1 1

be the matrix representation of a lin-

ear transformation given with respect to the standard basis S0 = {e1, e2} =
{(1, 0) , (0, 1)} Find the matrix representation of this transformation with
resepect to the basis S1 = {v1, v2} = {(2, 1) , (1, 1)}.
Solution. According to the analysis above we need to determine S0 [I]S1 and

S1 [I]S0 . Of course S1 [I]S0 = S0 [I]
−1
S1
. Since the coordinates of the vectors

in S1 are expressed in terms of the basis vectors S0 we obtain directly

S0 [I]S1 =
2 1
1 1

Its inverse is given by

S0 [I]
−1
S1
=

1 −1
−1 2

Assembling these matrices we have the final matrix converted to the new
basis.

S1 [A]S1 = S1 [I]S0 A S0 [I]S1

=
1 −1
−1 2

1 3
−1 1

2 1
1 1

=
6 4
−7 −4

Example 2.8.2. Consider the same problem as above except that the ma-
trix A is given in the basis S1. Find matrix representation of this transfor-
mation with resepect to the basis S0.

Solution. To solve this problem we need to determine S0 [A]S0 = S0 [I]S1 A S1 [I]S0 .
As we already have these matrices, we determine that

S0 [A]S0 = S0 [I]S1 A S1 [I]S0 .

=
2 1
1 1

1 3
−1 1

1 −1
−1 2

=
−6 13
−4 8
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2.9 Appendix A – Solving linear systems

The key to solving linear systems is to reduce the augmented system to
RREF and solve the resulting equations. While this may be so, there is an
intermediate step that occurs about half way through the computation of
the RREF where the reduced matrix achieves an upper triangular form. At
this point the solution can be determined directly by back substitution. To
clarify the rules on back substitution, suppose that we have the triangular
form 

a11 a12 · · · a1n
0 a22 · · · a2n
...

. . .
...

0 · · · 0 ann

b1
b2
...
bn


Assuming that the diagonal part consists of all nonzero terms, we can solve
this system by back substitution. First solve for xn =

bn
ann
. Now inductively

solve for the remaining solution coordinates using the formula

xn−j =
1

bn−j,n−j

j−1

k=0

an−j,n−kxn−k , j = 1, 2, . . . , n− 1

This inconvenient looking formula can be replaced by

xj =
1

bjj

 n

k = j+1

ajkxk

 , j = n− 1, n− 2, . . . , 1

where the index runs from j = n − 1 up to j = 1. The upshot is that the
row reduction process can be halted when a triangular-like form has been
attained. The applies as well to nonsingular and non square systems, where
the the process is stopped when all the leading ones have been identified,
entries below them have been zeroed out, and all the zero rows are present.
The principle reason for using back substitution is to reduce the number
of computations required, an important consideration in numerical linear
algebra. In the example below we solve a 3× 3 nonsingular system.
Example 2.9.1. Solve Ax = b where

A =

 1 2 0
2 2 −1
−1 3 2

 b =

 3
6
−2
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Solution. Find the RREF of [A | b]. Then solve Ax = b. 1 2 0
2 2 −1
−1 3 2

3
6
−2

 −2R1 +R2
→

R1 +R3

 1 2 0
0 −2 −1
0 5 2

3
0
1


−12R2
→

 1 2 0
0 1 1

2
0 5 2

3
0
1


−5R2 +R3
→

 1 2 0
0 1 1

2
0 0 −12

3
0
1

 (∗)

−12R3 +R2
→

 1 2 0
0 1 0
0 0 1

3
1
−2


−2R3
→

 1 2 0
0 1 1

2
0 0 1

3
0
−2


−2R2 +R1
→

 1 0 0
0 1 0
0 0 1

1
1
−2



Hence solving we obtain x3 = −2, x2 = 1, and x1 = 1. This is fine,
but there is a faster way to solve this system. Stop the reduction when
the system attains a triangular form at (∗) . From this point solve to obtain
x3 = −2. Now back substitute x3 = 2 into the second row (equation) to
solve for x2. Thus x2 = −12 (−2) = 1. Finally, back substitute x3 = 2 and
x2 = 1 into the first row (equation) to solve for x1. Thus x1 = 3−2 (1) = 1.
Sometimes the form (∗) is called the row reduced form.
Example 2.9.2. Given the augmented system for Ax = b is in RREF.

1 2 0 0 0 0
0 0 1 2 0 −1
0 0 0 0 1 3
0 0 0 0 0 0

4
1
1
0
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Find the solution.

Solution. The leading ones occur in columns 1, 3, and 5. The values in
columns 2, 4, and 6 can be taken as free parameters. So, take x2 = r, x4 = s,
and x6 = t. Now solving for the other varables we have

x1 = 4− 2r
x3 = 1− 2s+ t
x5 = 1− 3t

The solution set is comprised of the vector

x = [4− 2r, r, 1− 2s+ t, s, 1− t, t]T
= [4, 0, 1, 0, 1, 0]T + r [−2, 1, 0, 0, 0, 0]T + s [0, 0,−2, 1, 0, 0]T + t [0, 0, 1, 0− 3, 1]T

for all r, s, and t. We can rewrite this as the set

S =




4
0
1
0
1
0

+ r

−2
1
0
0
0
0

+ s


0
0
−2
1
0
0

+ t


0
0
1
0
−3
1

 r, s, t ∈ R or C


This representation shows better the connection between the free constants
and the component vectors that make up the solution. Note this expression
also reveals the solution of the homogeneous solution Ax = 0 as the set

r [−2, 1, 0, 0, 0, 0]T + s [0, 0,−2, 1, 0, 0]T + t [0, 0, 1, 0− 3, 1]T r, s, t ∈ R or C

Indeed, this is a full subspace.

Example 2.9.3. The RREF can be used to determine the inverse, as well.
Given the matrix A ∈ Mn, the inverse is given by the matrix X for
which AX = I. In turn with x1, . . . , xn representing the columns of
X and e1, . . . , en representing the standard vectors we see that Axj =
ej , j = 1, 2, . . . , n. To solve for these vectors, form the augmented matrix
[A | ej ] , j = 1, 2, . . . , n and row reduce as above. A massive short cut to
this process is to augment all the standard vectors at one and row reduce the
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resulting n× 2n matrix [A | I]. If A is invertible, its RREF is the identity.
Therefore,

[A | I]
row
→

operations
[I | X]

and, of course, A−1 = X. Thus, for

A =

 −2 1 0
1 1 2
3 −2 −1


we row reduce [A | I] as follows

[A | I] =

 −2 1 0
1 1 2
3 −2 −1

1 0 0
0 1 0
0 0 1


row
→

operations

 1 0 0
0 1 0
0 0 1

3 1 2
7 2 4
−5 −1 −3


2.10 Exercises

1. Consider the differential operator T = 2x
d

dx
(·)−4 acting on the vector

space of cubic polynomials, P3. Show that T is a linear transformation
and find a matrix representation of it. Assume the basis is given by
{1, x, x2, x3}.

2. (i) Find matrices A and B, each with positive rank, for which r(A +
B) = r(A) + r(B). (ii) Find matrices A and B, each with positive
rank, for which r(A+B) = 0. (iii) Give a method to find two nonzero
matrices A and B for which the sum has any preassigned rank. Of
course, the matrix sizes may depend on this value.

3. Find square matrices A and B for which r(A) = r(B) = 2 and for
which r(AB) = 0.

4. Suppose that A is an m×n matrix and that x is a solution of Ax = b
over the prescribed field. Show that every solution of Ax = b have the
form x+ x0, where x0 is a solution of Ax0 = 0.
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5. Find a matrix A ∈Mn of rank n−1 for which r(Ak) = n−k for k ≤ n.
Is it possible to begin this process with a matrix A ∈ Mn of rank n
and for which r(Ak) = n− k + 1 for k ≤ n ?

6. Show that Ax = b has a solution if and only if yT b = 0 if and only if
yTA = 0 for some column vector.

7. In R2 the linear transformation that rotates any vector by θ radians
counter clockwise T has matrix representation with respect to the
standard basis given by

A =
cos θ − sin θ
sin θ cos θ

What is the matrix representation with respect to the standard basis
of the transformation that rotates any vector by θ radians clockwise?
What is the relation between the matrices?

8. Show that if B,C ∈ Mn(F ), where B is symmetric and C is skew-
symmetric, then B = C implies that B = C = 0.

9. Prove the general formula for the inverse of the 2 × 2 matrix A =
a b
c d

is A−1 =
1

detA

d −b
−c a

.

10. Prove Theorem 2.5.1(a).

11. Prove Theorem 2.5.1(b).

12. Prove that every permutation σmust have an inverse σ−1 ( i.e. σ−1(σ(j)) =
j), and the signs of σ−1 and σ are the same.

13. Show that the sign of every transposition is −1.

14. Prove that detA = σ (−1)sgn(σ)
i
aσ(i) i

15. Prove Proposition 2.5.2 using minors.

16. Suppose that the n× n matrix A is singular. Show that each column
of the adjugate matrix Â is a solution of Ax = 0. (McDuffee, Chapter
3, Theorem 29.)
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17. Suppose that A is an (n−1)×n matrix, and consider the homogeneous
system Ax = 0 for x ∈ Rn. Define hi to be the determinant of the
(n−1)×(n−1) matrix formed by removing the ith column of A. Show
that the vector h = (h1, . . . , hn)

T is a solution to Ax = 0. (McDuffee,
Chapter 3, Corollary 29.)

18. Show that A = 1 −1
−1 1 has no inverse by trying to solve AB = I That

is, assume the form

B =
a b
c d

multiply the matrices (A and B) together, and then solve for the un-
knowns a, b, c, and d. (This is not a very efficient way to determine
inverses of matrices. Try the same thing for any 3× 3 matrix.)

19. Prove that the elementary equation operations do not change the so-
lution set of a linear system.

20. Find the inverses of E1, E2, and E3.

21. Find the matrix representation of linear transformation T that rotates
any vector by θ radians counter clockwise (ccw) with respect to the
basis S = {(2, 1) , (1, 1)}.

22. Consider R3. Suppose that we have angles {θi}3i=1 and pairs of co-
ordinate vectors {(e1, e2) , (e1, e3) , (e2, e3)}. Let T be the linear trans-
formation that successively rotates a vector in the respective planes
{(ei1 , ei2)}ki=1 through the respective angles {θi}ki=1. Find the matrix
representation of T with respect to the standard basis. Prove that it
is invertible.

23. Prove Theorem 2.2.4.

24. Prove or disprove the equivalence of the linear systems.

2x− 3y = −1
x+ 4y = 5

−x+ 4y = 3
x+ 2y = 3

25. Find basis for the orthocomplement of the subspace of R3 spanned by
the vectors {[2, 1, 1]T , [1, 1, 2]T }.

26. Find basis for the orthocomplement of the subspace of R3 spanned by
the vector [1, 1, 1]T .
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27. Consider planar rotations in Rn with respect to the standard bases

elements. Prove that there must be
n (n− 1)

2
of them – discounting

the particular angle. Display the general representation of any of
them. Prove or disprove that any two of them are commutative. That
is for two angles {θi}2i=1 and pairs of coordinate vectors {(ei1 , ei2)}ki=1
the respective counter clockwise rotations are commutative.

28. Suppose that A ∈Mmk, B ∈Mkn and both have rank k. Show that
the rank of AB is k.

29. Suppose that A ∈ Mmk has rank k. Prove that ARREF =
Ik
0

where Ik is the identity matrix of size k and 0 is the m − k × k zero
matrix.

30. Suppose that B ∈ Mkn has rank k. Prove that BRREF = Ik 0
where Ik is the identity matrix of size k and 0 is thek ×n − k zero
matrix.

31. Determine and prove a version of Corollary 2.6.1 for 3 × 3 blocked
matrices, where we assume the diagonal blocks A11 is invertible and
wish to conclude the result that the rank of A is the equal to the rank
of A11.

32. Suppose that we have angles {θi}ki=1 and pairs of coordinate vectors
{(ei1 , ei2)}ki=1. Let T be the linear transformation that successively
rotates a vector in the respective planes {(ei1 , ei2)}ki=1 through the
respective angles {θi}ki=1. Prove that the matrix representation of the
linear transformation with respect to any basis must be invertible.

33. The super-diagonal of a matrix is the set of elements ai,i+1. The subdi-
agonal of a matrix is the set of elements ai−1,i. A tri-banded matrix is
one for which the entries are zero above the super-diagonal and below
the subdiagonal. Suppose that for an n× n tri-banded matrix T , we
have ai−1,i = a, aii = 0, and ai,i+1 = c. Prove the following facts:

(a) If n is odd detA = 0.

(b) If n = 2m is even detT = (−1)m amcm.
34. For the banded matrix of the previous example, prove the following

for the powers T p of T .
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(a) If p is odd, prove that (T p)ij = 0 if i+ j is even.

(b) If p is even, prove that (T p)ij = 0 if i+ j is odd.

35. Consider the vector space P2 (1, 2) with inner product defined by p, q =
2
1 p (x) q (x) dx. Find an orthogonal basis of P2 (1, 2) . (Hint. Begin
with the standard basis {1, x, x2}. Apply the Gram-Schmidt procedure.)

36. For what values of a and b is the matrix below singular

A =

 a 2 1
2 1 b
1 a −2


37. The Vandermonde matrix, defined for a sequence of numbers {x1, . . . xn},

is given by the n× n matrix

Vn =


1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12

...
...

...
. . .

...
1 xn x2n · · · xn−1n


Prove that the determinant is given by

detVn =
n

i>j=1

(xi − xj)

38. In the case the x-values are the integers {1, . . . , n}, prove that detVn
is divisible by

n

i=1
(i− 1)!. (These numbers are called superfactorials.)

39. Prove that for the weighted functional defined in Remark 2.4.1, it is
necessary and sufficient that the weights be strictly positive for it to
be an inner product.

40. For what values of a and b is the matrix below singular

A =


b 0 a 0
0 0 b a
0 a 0 b
b a 0 0
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41. Find an orthogonal basis for R2 from the vectors {(1, 2), (2, 1)}.
42. Find an orthogonal basis of the subspace ofR3 spanned by {(1, 0, 1), (0, 1,−1)}
43. Suppose that V is a vector space with an inner product, and S ⊂ V .

Show that if S is a basis of V , S⊥ = {0}.
44. Suppose that V is a vector space with an inner product, and S ⊂ V .

Show that if U = S(S), then U⊥ = S⊥.

45. Let A ∈ Mmn(F ). Show it may not be true that r (A) = r(ATA) =
r(AAT ) unless F = R, in which case it is true.

46. If A ∈Mn(C) is orthogonal, show that the rows and columns of A are
orthogonal.

47. If A is orthogonal then Am is orthogonal for every positive integer m.
(This is a part of Theorem 2.4.3(b).)

48. Consider the polynomial space Pn [−1, 1] with the inner product p, q =
1
−1 p (t) q (t) dt. Show that every polynomial p ∈ Pn for which p (1) =
p (−1) = 0 is orthogonal to its derivative.

49. Consider the polynomial space Pn [−1, 1] with the inner product p, q =
1
−1 p (t) q (t) dt. Show that the subspace of polynomials in even pow-
ers (e.g. p (t) = t2− 5t6) is orthogonal to the subspace of polynomials
in odd powers.

50. Let A =
1 3
−1 1

be the matrix representation of a linear trans-

formation given with respect to the standard basis S0 = {e1, e2} =
{(1, 0) , (0, 1)} Find the matrix representation of this transformation
with resepect to the basis S1 = {v1, v2} = {(2,−3) , (1,−2)}.

51. Show that the sign of every transposition from the set {1, 2, . . . , n} is
−1.

52. What are the signs of the permutations {7, 6, 5, 4, 3, 2, 1} and
{7,1, 6, 4, 3, 5, 2} of the integers {1, 2, 3, 4, 5, 6, 7}?

53. Prove that the sign of the permutation {m, m−1, . . . , 2, 1} is (−1)m.
54. Suppose A,B ∈Mn(F ). If A is singular, use a row space argument to

show that detAB = 0.
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55. Show that if A ∈Mm,n and B ∈Mm,n and both r(A) = r(B) = m. If
r(AB) = m− k, what can be said about n?

56. Prove that

det

x1 x2 x3 x4
−x2 x1 −x4 x3
−x3 x4 x1 −x2
−x4 −x3 −x2 x1

= x21 + x
2
2 + x

2
3 + x

2
4
2

57. Prove that there is no invertible 3 × 3 matrix that has all the same
cofactors. What similar statement can be made for n× n matrices?

58. Show by example that there are matricesA andB for which limn→∞An

and limn→∞Bn both exist, but for which limn→∞ (AB)n does not ex-
ist.

59. Let A ∈ M2(C). Show that there is no matrix solution B ∈ M2(C)
to AB − BA = I. What can you say about the same problem with
A, B ∈Mn(C)?

60. Show by example that if AC = BC then it does not follow that A = B.
However, show that if C is inveritble the conclusion A = B is valid.


