

# **Study** Material Downloaded from Vedantu

About **Vedantu** 

Vedantu is India's largest **LIVE online teaching platform** with best teachers from across the country.

Vedantu offers Live Interactive Classes for **JEE**, **NEET**, KVPY, NTSE, Olympiads, **CBSE**, **ICSE**, IGCSE, IB & State Boards for Students Studying in **6-12th Grades** and Droppers.

# RE Webinars by Expert Teachers

FREE LIVE ONLINE

### Awesome Master Teachers



Anand Prakash B.Tech, IIT Roorkee Co-Founder, Vedantu



**Pulkit Jain** B.Tech, IIT Roorkee Co-Founder, Vedantu



**Vamsi Krishna** B.Tech, IIT Bombay Co-Founder, Vedantu



My mentor is approachable and **guides me** in my future aspirations as well.

Student **- Ayushi** 



My son loves the sessions and **I can** already see the change. Parent - Sreelatha









**95%** Students of Regular Tuitions on Vedantu scored above **90%** in exams!

# Vedantii FREE MASTER CLASS SERIES

- For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Free 60 Minutes Live Interactive classes everyday
- Cearn from the Master Teachers India's best

# Register for **FREE**

Limited Seats!



# **Download** Vedantu's App & Get



# **DOWNLOAD THE APP**



## **INVERSE TRIGONOMETRIC FUNCTIONS**

# **BASIC CONCEPTS**

#### INVERSE CIRCULAR FUNCTIONS

| Function                                           | Domain                                           | Range                                                            |
|----------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|
| 1. $y = \sin^{-1} x \operatorname{iff} x = \sin y$ | $-1 \leq x \leq 1$ ,                             | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$                      |
| 2. $y = \cos^{-1} x \text{ iff } x = \cos y$       | $-1 \leq x \leq 1$                               | [0, <b>π</b> ]                                                   |
| 3. $y = \tan^{-1} x \text{ iff } x = \tan y$       | $-\infty < X < \infty$                           | $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$                      |
| 4. $y = \cot^1 x \text{ iff } x = \cot y$          | $-\infty < x < \infty$                           | [0, π]                                                           |
| 5. $y = \csc^{-1} x \text{ iff } x = \csc y$       | $\left(-\infty,-1 ight]\cup\left[1,\infty ight]$ | $\left[-\frac{\pi}{2}.0\right)\cup\left(0,\frac{\pi}{2}\right]$  |
| 6. $y = \sec^{-1} x \text{ iff } x = \sec y$       | $\left(-\infty,-1 ight]\cup\left[1,\infty ight]$ | $\left[0.\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},\pi\right]$ |

 $x = \sin \theta$ 

... (ii)

 $\Rightarrow$ 



(i) Sin<sup>-1</sup>x & tan<sup>-1</sup>x are increasing functions in their domain.

(ii)  $\cos^{-1} x \& \cot^{-1} x$  are decreasing functions in over domain.

#### PROPERTY – I

 $x = \cos\left(\frac{\pi}{2} - \theta\right)$  $\Rightarrow$  $\sin^{-1}x + \cos^{1}x = \pi/2$ , for all  $x \in [-1, 1]$ (i) **Sol.** Let,  $\sin^{-1}x = \theta$ ...(i)  $\Rightarrow \cos^{-1} x = \frac{\pi}{2} - \theta$  $[:: x \in [-1, 1]]$ then,  $\theta \in [-\pi/2, \pi/2]$  $-\pi/2 \le \theta \le \pi/2$  $\Rightarrow$  $\{:: x \in [-1, 1] \text{ and } (\pi/2 - \theta) \in [0, \pi])$  $-\pi/2 \leq -\theta \leq \pi/2$  $\Rightarrow$  $\theta + \cos^{-1} x = \pi/2$  $\Rightarrow$  $0 \le \frac{\pi}{2} - \theta \le \pi$ from (i) and (ii), we get  $\Rightarrow$  $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$  $\frac{\pi}{2} - \theta \in [0, \pi]$  $\Rightarrow$ Now,  $\sin^{-1} x = \theta$ 



NCERT Solutions for Class 6 to 12 (Math & Science) Revision Notes for Class 6 to 12 (Math & Science) **RD Sharma Solutions for Class 6 to 12 Mathematics** RS Aggarwal Solutions for Class 6, 7 & 10 Mathematics Important Questions for Class 6 to 12 (Math & Science) CBSE Sample Papers for Class 9, 10 & 12 (Math & Science) Important Formula for Class 6 to 12 Math **CBSE Syllabus for Class 6 to 12** Lakhmir Singh Solutions for Class 9 & 10 **Previous Year Question Paper CBSE Class 12 Previous Year Question Paper CBSE Class 10 Previous Year Question Paper** JEE Main & Advanced Question Paper **NEET Previous Year Question Paper** 

> Vedantu Innovations Pvt. Ltd. Score high with a personal teacher, Learn LIVE Online! www.vedantu.com

(ii)  $\tan^{-1} x + \cot^{-1} x = \pi/2$ , for all  $x \in \mathbb{R}$  $\theta + \csc^{-1} x = \pi/2$  ... (ii)  $\Rightarrow$ **Sol.** Let,  $\tan^{-1} x = \theta$ ...(i) from (i) and (ii); we get  $\sec^{-1} x + \csc^{-1} x = \pi/2$ then,  $\theta \in (-\pi/2, \pi/2)$  { $\because x \in \mathbb{R}$ ) PROPERTY – II  $\implies -\frac{\pi}{2} < \theta < \frac{\pi}{2}$  $\implies -\frac{\pi}{2} < -\theta < \frac{\pi}{2}$ **Sol.** Let,  $\operatorname{cosec}^{-1} x = \theta$  $\Rightarrow 0 < \frac{\pi}{2} - \theta < \pi$ then,  $x = \csc \theta$  $\Rightarrow \frac{1}{x} = \sin \theta$  $\Rightarrow \left(\frac{\pi}{2} - \theta\right) \in (0, \pi)$ Now,  $\tan^{-1} x = \theta$  $\{\because \mathbf{x} \in (-\infty, -1] \cup [1, \infty) \Rightarrow \frac{1}{\mathbf{x}} \in [-1, 1] \{0\}$  $x = tan \theta$  $\Rightarrow$  $x = \cot(\pi/2 - \theta)$  $\operatorname{cosec}^{-1} x = \theta \Longrightarrow \theta \in [-\pi/2, \pi/2] - \{0\}$  $\Rightarrow$  $\Rightarrow \quad \cot^{-1} x = \frac{\pi}{2} - \theta \qquad \{ \because \pi/2 - \theta \in (0, \pi) \}$  $\Rightarrow \theta = \sin^{-1}\left(\frac{1}{x}\right)$  ... (ii) from (i) and (ii); we get  $\theta + \cot^{-1} x = \frac{\pi}{2}$  ... (ii)  $\Rightarrow$  $\sin^{-1}\left(\frac{1}{x}\right) = \cos ec^{-1}x$ from (i) and (ii), we get  $\tan^{-1} x + \cot^{-1} x = \pi/2$ (ii)  $\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1} x$ , for all  $x \in (-\infty, 1] \cup [1, \infty)$ (iii)  $\sec^{-1} + \csc^{-1} x = \frac{\pi}{2}$ , for all  $x \in (-\infty, -1] \cup [1, \infty)$ **Sol.** Let,  $\sec^{-1} x = \theta$ **Sol.** Let,  $\sec^{-1} x = \theta$  ... (i) then,  $x \in (-\infty, 1] \cup [1, \infty)$  and  $\theta \in [0, \pi] - \{\pi/2\}$ then,  $\theta \in [0, \pi] - {\pi/2}$   $\{ \because x \in (-\infty, -1] \cup [1, \infty) \}$ Now, sec<sup>-1</sup>  $x = \theta$  $\Rightarrow 0 \le \theta \le \pi, \theta \ne \pi/2$  $x = sec \theta$  $\Rightarrow$  $\Rightarrow -\pi \leq -\theta \leq 0, \ \theta \neq \pi/2$  $\Rightarrow \frac{1}{x} = \cos \theta$  $\Rightarrow -\frac{\pi}{2} \le \frac{\pi}{2} - \theta \le \frac{\pi}{2}, \frac{\pi}{2} - \theta \ne 0$  $\Rightarrow \theta = \cos^{-1}\left(\frac{1}{x}\right)$  ... (ii)  $\Rightarrow \left(\frac{\pi}{2} - \theta\right) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \frac{\pi}{2} - \theta \neq 0$ Now,  $\sec^{-1} x = \theta$  $\begin{cases} \because \mathbf{x} = (-\infty, -1] \cup [1, \infty) \\ \Rightarrow \frac{1}{\mathbf{x}} \in [-1, 1] - \{0\} \text{ and } \theta \in [0, \pi] \end{cases}$  $\Rightarrow$  $x = \sec \theta$  $x = \operatorname{cosec}(\pi/2 - \theta)$  $\Rightarrow$  $\operatorname{cosec}^{-1} x = \pi/2 - \theta$  $\Rightarrow$ from (i) & (ii), we get  $\left\{ \because \left(\frac{\pi}{2} - \theta\right) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \frac{\pi}{2} - \theta \neq 0 \right\}$  $\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}(x)$ 

**INVERSE TRIGONOMETRIC FUNCTION** (i)  $\sin^{-1}\left(\frac{1}{x}\right) = \operatorname{cosec}^{-1} x$ , for all  $x \in (-\infty, 1] \cup [1, \infty)$ 

...(i)

...(i)

#### INVERSE TRIGONOMETRIC FUNCTIONS





#### **PROPERTY – IV**

- (i)  $\sin(\sin^{-1}x) = x$ , for all  $x \in [-1, 1]$
- (ii)  $\cos(\cos^{-1} x) = x$ , for all  $x \in [-1, 1]$
- (iii)  $\tan(\tan^{-1}x) = x$ , for all  $x \in R$
- (iv)  $\operatorname{cosec}(\operatorname{cosec}^{-1}x) = x$ , for all  $x \in (-\infty, -1] \cup [1, \infty)$
- (v) sec (sec<sup>-1</sup>x) = x, for all  $x \in (-\infty, -1] \cup [1, \infty)$
- (vi)  $\cot(\cot^{-1}x) = x$ , for all  $x \in R$
- Sol. We know that, if  $f : A \to B$  is a bijection, then  $f^{-1} : B \to A$ exists such that for  $f^{-1}(y) = f(f^{-1}(y)) = y$  for all  $y \in B$ .

Clearly, all these results are direct consequences of this property.

Aliter : Let  $\theta \in [-\pi/2, \pi/2]$  and  $x \in [-1, 1]$  such that  $\sin \theta = x$ .

then,  $\theta = \sin^{-1}x$ 

 $\therefore \quad \mathbf{x} = \sin \theta = \sin (\sin^{-1} \mathbf{x})$ 

Hence,  $\sin(\sin^{-1}x) = x$  for all  $x \in [-1, 1]$ 

Similarly, we can prove other results.

Remark : It should be noted that,

 $\sin^{-1}(\sin \theta) \neq \theta$ , if  $\notin [-\pi/2, \pi/2]$ . Infact, we have

$$\sin^{-1}(\sin \theta) = \begin{cases} -\pi - \theta, & \text{if } \theta \in [-3\pi/2, -\pi/2] \\ \theta, & \text{if } \theta \in [-\pi/2, \pi/2] \\ \pi - \theta, & \text{if } \theta \in [\pi/2, 3\pi/2] \\ -2\pi + \theta, & \text{if } \theta \in [3\pi/2, 5\pi/2] \end{cases} \text{ and so on.}$$

Similarly,

$$\cos^{-1}(\cos\theta) = \begin{cases} -\theta, & \text{if } \theta \in [-\pi, 0] \\ \theta, & \text{if } \theta \in [0, \pi] \\ 2\pi - \theta, & \text{if } \theta \in [\pi, 2\pi] \\ -2\pi + \theta, & \text{if } \theta \in [2\pi, 3\pi] \end{cases} \text{ and so on.}$$

$$\tan^{-1}(\tan \theta) = \begin{cases} -\pi - \theta, & \text{if } \theta \in [-3\pi/2, -\pi/2] \\ \theta, & \text{if } \theta \in [-\pi/2, \pi/2] \\ \theta - \pi, & \text{if } \theta \in [\pi/2, 3\pi/2] \\ \theta - 2\pi, & \text{if } \theta \in [3\pi/2, 5\pi/2] \\ \text{and so on.} \end{cases}$$

#### PROPERTY – V

- (i) Sketch the graph for  $y = \sin^{-1}(\sin x)$
- **Sol.** As,  $y = \sin^{-1}(\sin x)$  is periodic with period  $2\pi$ .
- $\therefore \quad \text{to draw this graph we should draw the graph for one interval} \\ of length <math>2\pi$  and repeat for entire values of x.

As we know,

or

$$\sin^{-1}(\sin x) = \begin{cases} x; & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ (\pi - x); & -\frac{\pi}{2} \le \pi - x < \frac{\pi}{2} \\ (x - x); & -\frac{\pi}{2} \le \pi - x < \frac{\pi}{2} \\ x; & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \end{cases}$$

which is defined for the interval of length 2 
$$\pi$$
, plotted as

 $\pi-x, \quad \frac{\pi}{2} \le x \le \frac{3\pi}{2},$ 



Thus, the graph for  $y = \sin^{-1}(\sin x)$ , is a straight line up and a straight line down with slopes 1 and -1 respectively lying

between  $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ .



Students are adviced to learn the definition of  $\sin^{-1}(\sin x)$  as,

$$\mathbf{y} = \sin^{-1}(\sin x) = \begin{cases} x + 2\pi & ; \quad -\frac{5\pi}{2} \le x \le -\frac{3\pi}{2} \\ -\pi - x & ; \quad -\frac{3\pi}{2} \le x \le -\frac{\pi}{2} \\ x & ; \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \pi - x & ; \quad \frac{\pi}{2} \le x \le \frac{3\pi}{2} \\ x - 2\pi & ; \quad \frac{3\pi}{2} \le x \le \frac{5\pi}{2} & \dots \text{ and so on} \end{cases}$$



#### **INVERSE TRIGONOMETRIC FUNCTIONS**

- (ii) Sketch the graph for  $y = \cos^{-1}(\cos x)$ .
- **Sol.** As,  $y = \cos^{-1}(\cos x)$  is periodic with period  $2\pi$ .
- $\therefore \quad \text{to draw this graph we should draw the graph for one interval} \\ \text{of length } 2\pi \text{ and repear for entire values of } x \text{ of length } 2\pi.$

As we know;

$$\cos^{-1}(\cos x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & 0 \le 2\pi - x \le \pi, \end{cases}$$

or

$$cos^{-1}(\cos x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & \pi \le x \le 2\pi, \end{cases}$$

Thus, it has been defined for  $0 < x < 2\pi$  that has length  $2\pi$ . So, its graph could be plotted as;



Thus, the curve  $y = \cos^{-1}(\cos x)$ .

(iii) Sketch the graph for  $y = \tan^{-1}(\tan x)$ .

**Sol.** As  $y = \tan^{-1}(\tan x)$  is periodic with period  $\pi$ .

:. to draw this graph we should draw the graph for one interval of length  $\pi$  and repeat for entire values of x.

As we know;  $\tan^{-1}(\tan x) = \left\{ x; -\frac{\pi}{2} < x < \frac{\pi}{2} \right\}$ 

Thus, it has been defined for  $-\frac{\pi}{2} < x < \frac{\pi}{2}$  that has length  $\pi$ .

So, its graph could be plotted as;



Thus, the curve for  $y = \tan^{-1}(\tan x)$ , where y is not defined

for 
$$x \in (2n+1)\frac{\pi}{2}$$
.

#### FORMULAS

(i) 
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}, xy < 1$$

(ii) 
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}, xy > -1$$

iii) 
$$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}, |x| < 1$$

(iv) 
$$2 \tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2}, |x| \le 1$$

(v) 
$$2 \tan^{-1} x = \cos^{-1} \frac{1-x^2}{1+x^2}, x \ge 0$$

(vi) 
$$\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2})$$

(vii) 
$$\sin^{-1}x - \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} - y\sqrt{1-x^2})$$

(viii) 
$$\cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy - \sqrt{1 - x^2}\sqrt{1 - y^2})$$

(ix) 
$$\cos^{-1}x - \cos^{-1}y = \cos^{-1}(xy + \sqrt{1 - x^2}\sqrt{1 - y^2})$$

(x) If 
$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}z$$

$$\frac{x + y + z - xyz}{1 - xy - yz - zx} \bigg] \text{ if, } x > 0, y > 0, z > 0 \&$$

xy + yz + zx < 1  
Note:  
(i) If 
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$$
 then  $x + y + z = xyz$   
 $\pi$ 

(ii) If 
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$$
 then  $xy + yz + zx = 1$ 

**REMEMBER THAT:** 

(i) 
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2} \implies x = y = z = 1$$

(ii) 
$$\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi x = y = z = -1$$

(iii) 
$$\tan^{-1} 1 + \tan^{-1} 2 + 2 \tan^{-1} 3 =$$

$$\tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{2}$$



# **Thank** YOU for downloading the PDF

FREE LIVE ONLINE

# **MASTER CLASSES** FREE Webinars by Expert Teachers



# Vedantii FREE MASTER CLASS SERIES

- ⊘ For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Series Free 60 Minutes Live Interactive classes everyday
- ⊘ Learn from the Master Teachers India's best

Register for **FREE** 

Limited Seats!