Study Material
 Downloaded from Vedantu

FREE LIVE ONLINE

About Vedantu

Vedantu is India's largest LIVE online teaching platform with best teachers from across the country.

Vedantu offers Live Interactive Classes for JEE, NEET, KVPY, NTSE, Olympiads, CBSE, ICSE, IGCSE, IB \& State Boards for Students Studying in 6-12th Grades and Droppers.

Awesome Master Teachers

Anand Prakash
B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain
B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna
B.Tech, IIT Bombay

Co-Founder, Vedantu

My mentor is approachable and guides me in my future aspirations as well.
Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

Hours of LIVE Learning

9,49,900+
Happy Students

95\% Students of Regular Tuitions on Vedantu scored above $\mathbf{9 0 \%}$ in exams!

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

Vedanta

Download Vedantu's App \& Get

(3)
All Study Material with Solution

LIVE
Doubt Solving
自
FREE Tests and Reports

INVERSE TRIGONOMETRIC FUNCTIONS

BASIC CONCEPTS

INVERSE CIRCULAR FUNCTIONS

Function	Domain	Range	
1.	$y=\sin ^{-1} x$ iff $x=\sin y$	$-1 \leq x \leq 1$,	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
2.	$y=\cos ^{-1} x$ iff $x=\cos y$	$-1 \leq x \leq 1$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
3.	$y=\tan ^{-1} x$ iff $x=\tan y$	$-\infty<x<\infty$	$[0, \pi]$
4.	$y=\cot ^{-1} x$ iff $x=\cot y$	$(-\infty,-1] \cup[1, \infty]$	$\left[-\frac{\pi}{2} .0\right) \cup\left(0, \frac{\pi}{2}\right]$
5.	$y=\operatorname{cosec}^{-1} x$ iff $x=\operatorname{cosec} y$	$(-\infty,-1] \cup[1, \infty]$	$\left[0 . \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$
6.	$y=\sec ^{-1} x$ iff $x=\sec y$		

(i) $\operatorname{Sin}^{-1} \mathrm{x} \& \tan ^{-1} \mathrm{x}$ are increasing functions in their domain.
(ii) $\operatorname{Cos}^{-1} \mathrm{x} \& \cot ^{-1} \mathrm{x}$ are decreasing functions in over domain.

PROPERTY - I

(i) $\quad \sin ^{-1} \mathrm{x}+\cos ^{1} \mathrm{x}=\pi / 2$, for all $\mathrm{x} \in[-1,1]$

Sol. Let, $\sin ^{-1} x=\theta$
.. (i)
then, $\theta \in[-\pi / 2, \pi / 2]$
$[\because \mathrm{x} \in[-1,1]]$
$\Rightarrow \quad-\pi / 2 \leq \theta \leq \pi / 2$
$\Rightarrow-\pi / 2 \leq-\theta \leq \pi / 2$
$\Rightarrow \quad 0 \leq \frac{\pi}{2}-\theta \leq \pi$
$\Rightarrow \quad \frac{\pi}{2}-\theta \in[0, \pi]$
Now, $\sin ^{-1} \mathrm{x}=\theta$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{x}=\sin \theta \\
\Rightarrow & \mathrm{x}=\cos \left(\frac{\pi}{2}-\theta\right) \\
\Rightarrow & \cos ^{-1} \mathrm{x}=\frac{\pi}{2}-\theta \\
& \{\because \mathrm{x} \in[-1,1] \text { and }(\pi / 2-\theta) \in[0, \pi]) \\
\Rightarrow \quad & \theta+\cos ^{-1} \mathrm{x}=\pi / 2 \quad \ldots(\text { ii }) \\
& \text { from (i) and (ii), we get } \\
& \sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{x}=\frac{\pi}{2}
\end{array}
$$

Vedantu

 Study Materials

 Study Materials}

NCERT Solutions for Class 6 to 12 (Math \& Science)
Revision Notes for Class 6 to 12 (Math \& Science)
RD Sharma Solutions for Class 6 to 12 Mathematics
RS Aggarwal Solutions for Class 6, 7 \& 10 Mathematics
Important Questions for Class 6 to 12 (Math \& Science)
CBSE Sample Papers for Class 9, 10 \& 12 (Math \&
Science)
Important Formula for Class 6 to 12 Math
CBSE Syllabus for Class 6 to 12
Lakhmir Singh Solutions for Class 9 \& 10
Previous Year Question Paper
CBSE Class 12 Previous Year Question Paper
CBSE Class 10 Previous Year Question Paper
JEE Main \& Advanced Question Paper
NEET Previous Year Question Paper
(ii) $\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}=\pi / 2$, for all $\mathrm{x} \in \mathrm{R}$

Sol. Let, $\tan ^{-1} x=\theta$
then, $\theta \in(-\pi / 2, \pi / 2)$
$\{\because x \in R)$
$\Rightarrow \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$\Rightarrow \quad-\frac{\pi}{2}<-\theta<\frac{\pi}{2}$
$\Rightarrow \quad 0<\frac{\pi}{2}-\theta<\pi$
$\Rightarrow \quad\left(\frac{\pi}{2}-\theta\right) \in(0, \pi)$
Now, $\tan ^{-1} \mathrm{x}=\theta$
$\Rightarrow \quad \mathrm{x}=\tan \theta$
$\Rightarrow \quad \mathrm{x}=\cot (\pi / 2-\theta)$
$\Rightarrow \quad \cot ^{-1} \mathrm{x}=\frac{\pi}{2}-\theta$
$\{\because \pi / 2-\theta \in(0, \pi)\}$
$\Rightarrow \quad \theta+\cot ^{-1} \mathrm{x}=\frac{\pi}{2}$
from (i) and (ii), we get
$\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}=\pi / 2$
(iii) $\sec ^{-1}+\operatorname{cosec}^{-1} x=\frac{\pi}{2}$, for all $\mathrm{x} \in(-\infty,-1] \cup[1, \infty)$

Sol. Let, $\sec ^{-1} \mathrm{x}=\theta$
then, $\theta \in[0, \pi]-\{\pi / 2\}$
$\{\because \mathrm{x} \in(-\infty,-1] \cup[1, \infty)\}$
$\Rightarrow \quad 0 \leq \theta \leq \pi, \theta \neq \pi / 2$
$\Rightarrow \quad-\pi \leq-\theta \leq 0, \theta \neq \pi / 2$
$\Rightarrow \quad-\frac{\pi}{2} \leq \frac{\pi}{2}-\theta \leq \frac{\pi}{2}, \frac{\pi}{2}-\theta \neq 0$
$\Rightarrow \quad\left(\frac{\pi}{2}-\theta\right) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \frac{\pi}{2}-\theta \neq 0$
Now, $\sec ^{-1} x=\theta$
$\Rightarrow \quad \mathrm{x}=\sec \theta$
$\Rightarrow \quad \mathrm{x}=\operatorname{cosec}(\pi / 2-\theta)$
$\Rightarrow \quad \operatorname{cosec}^{-1} \mathrm{x}=\pi / 2-\theta$

$$
\left\{\because\left(\frac{\pi}{2}-\theta\right) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \frac{\pi}{2}-\theta \neq 0\right\}
$$

$\Rightarrow \quad \theta+\operatorname{cosec}^{-1} \mathrm{x}=\pi / 2$
from (i) and (ii); we get
$\sec ^{-1} x+\operatorname{cosec}^{-1} x=\pi / 2$

PROPERTY - II

(i) $\sin ^{-1}\left(\frac{1}{x}\right)=\operatorname{cosec}^{-1} x$, for all $x \in(-\infty, 1] \cup[1, \infty)$

Sol. Let, $\operatorname{cosec}^{-1} \mathrm{x}=\theta$
then, $x=\operatorname{cosec} \theta$
$\Rightarrow \quad \frac{1}{\mathrm{x}}=\sin \theta$
$\left\{\because \mathrm{x} \in(-\infty,-1] \cup[1, \infty) \Rightarrow \frac{1}{\mathrm{x}} \in[-1,1]\{0\}\right.$
$\operatorname{cosec}^{-1} \mathrm{x}=\theta \Rightarrow \theta \in[-\pi / 2, \pi / 2]-\{0\}$
$\Rightarrow \quad \theta=\sin ^{-1}\left(\frac{1}{x}\right)$
from (i) and (ii); we get
$\sin ^{-1}\left(\frac{1}{x}\right)=\operatorname{cosec}^{-1} x$
(ii) $\cos ^{-1}\left(\frac{1}{x}\right)=\sec ^{-1} x$, for all $x \in(-\infty, 1] \cup[1, \infty)$

Sol. Let, $\sec ^{-1} \mathrm{x}=\theta$
then, $x \in(-\infty, 1] \cup[1, \infty)$ and $\theta \in[0, \pi]-\{\pi / 2\}$
Now, $\sec ^{-1} \mathrm{x}=\theta$
$\Rightarrow \quad \mathrm{x}=\sec \theta$
$\Rightarrow \quad \frac{1}{\mathrm{x}}=\cos \theta$
$\Rightarrow \quad \theta=\cos ^{-1}\left(\frac{1}{\mathrm{x}}\right)$
$\left\{\begin{array}{c}\because \mathrm{x}=(-\infty,-1] \cup[1, \infty) \\ \Rightarrow \frac{1}{\mathrm{x}} \in[-1,1]-\{0\} \text { and } \theta \in[0, \pi]\end{array}\right.$
from(i) \& (ii), we get
$\cos ^{-1}\left(\frac{1}{x}\right)=\sec ^{-1}(x)$
(iii) $\tan ^{-1}\left(\frac{1}{\mathrm{x}}\right)=\left\{\begin{array}{cc}\cot ^{-1} \mathrm{x}, & \text { for } \mathrm{x}>0 \\ -\pi+\cot ^{-1} \mathrm{x}, & \text { for } \mathrm{x}<0\end{array}\right.$

Sol. Let $\cot ^{-1} x=\theta$. Then $x \in R, x \neq 0$ and $\theta \in[0, \pi]$
Now two cases arises :
Case I: When x >0
In this case, $\theta \in(0, \pi / 2)$
$\therefore \quad \cot ^{-1} \mathrm{x}=\theta$
$\Rightarrow \quad \mathrm{x}=\cot \theta$
$\Rightarrow \quad \frac{1}{x}=\tan \theta$
$\theta=\tan ^{-1}\left(\frac{1}{\mathrm{x}}\right)$
from (i) and (ii), we get
$\{\because \theta \in(0, \pi / 2)\}$
$\tan ^{-1}\left(\frac{1}{x}\right)=\cot ^{-1} x$, for all $x>0$.
Case II : When $\mathrm{x}<0$
In this case $\theta \in(\pi / 2, \pi) \quad\{\because \mathrm{x}=\cot \theta<0)$
Now, $\frac{\pi}{2}<\theta<\pi$
$\Rightarrow \quad-\frac{\pi}{2}<\theta-\pi<0$
$\Rightarrow \quad \theta-\pi \in(-\pi / 2,0)$
$\therefore \quad \cot ^{-1} \mathrm{x}=\theta$
$\Rightarrow \mathrm{x}=\cot \theta$
$\Rightarrow \quad \frac{1}{x}=\tan \theta$
$\Rightarrow \quad \frac{1}{x}=-\tan (\pi-\theta)$
$\Rightarrow \quad \frac{1}{\mathrm{x}}=\tan (\theta-\pi) \quad\{\because \tan (\pi-\theta)=-\tan \theta\}$
$\Rightarrow \quad \theta-\pi=\tan ^{-1}\left(\frac{1}{x}\right) \quad\{\because \theta-\pi \in(-\pi / 2,0)\}$
$\Rightarrow \quad \tan ^{-1}\left(\frac{1}{\mathrm{x}}\right)=-\pi+\theta$
from (i) and (iii), we get

$$
\tan ^{-1}\left(\frac{1}{x}\right)=-\pi+\cot ^{-1} x \text {, if } x<0
$$

Hence,

$$
\tan ^{-1}\left(\frac{1}{x}\right)=\left\{\begin{array}{cc}
\cot ^{-1} x, & \text { for } x>0 \\
-\pi+\cot ^{-1} x, & \text { for } x<0
\end{array}\right.
$$

PROPERTY - III

(i) $\cos ^{-1}(-\mathrm{x})=\pi-\cos ^{-1}(\mathrm{x})$, for all $\mathrm{x} \in[-1,1]$
(ii) $\sec ^{-1},(-\mathrm{x})=\pi-\sec ^{-1} \mathrm{x}$, for all $\mathrm{x} \in(-\infty,-1] \cup[1, \infty)$
(iii) $\cot ^{-1}(-x)=\pi-\cot ^{-1} x$, for all $x \in R$
(iv) $\sin ^{-1}(-\mathrm{x})=-\sin ^{-1}(\mathrm{x})$, for all $\mathrm{x} \in[-1,1]$
(v) $\tan ^{-1}(-x)=-\tan ^{-1} x$, for all $x \in R$
(vi) $\operatorname{cosec}^{-1}(-\mathrm{x})=-\operatorname{cosec}^{-1} \mathrm{x}$, for all $\mathrm{x} \in(-\infty,-1] \cup[1, \infty)$

Sol. (ii) Clearly, $-\mathrm{x} \in[-1,1]$ for all $\mathrm{x} \in[-1,1]$
let $\cos ^{-1}(-\mathrm{x})=\theta$
then, $-\mathrm{x}=\cos \theta$
$\Rightarrow \quad \mathrm{x}=-\cos \theta$
$\Rightarrow \quad \mathrm{x}=\cos (\pi-\theta)$
$\{\because \mathrm{x} \in[-1,1]$ and $\pi-\theta \in[0, \pi]$ for all $\theta \in[0, \pi]$
$\cos ^{-1} \mathrm{x}=\pi-\theta$
$\Rightarrow \quad \theta=\pi-\cos ^{-1} \mathrm{x}$
from (i) and (ii), we get
$\cos ^{-1}(-x)=\pi-\cos ^{-1} x$
Similarly, we can prove other results.
(i) Clearly, $-\mathrm{x} \in[-1,1]$ for all $\mathrm{x} \in[-1,1]$
let $\sin ^{-1}(-x)=\theta$
then, $-x=\sin \theta$

$$
\begin{array}{ll}
\Rightarrow & x=-\sin \theta \tag{i}\\
\Rightarrow & x=\sin (-\theta) \\
\Rightarrow & -\theta=\sin ^{-1} x
\end{array}
$$

$\{\because x \in[-1,1]$ and $-\theta \in[-\pi / 2, \pi / 2]$ for all $\theta \in[-\pi / 2, \pi / 2]$
$\Rightarrow \quad \theta=-\sin ^{-1} \mathrm{x}$
from (i) and (ii), we get
$\sin ^{-1}(-x)=-\sin ^{-1}(x)$

PROPERTY - IV

(i) $\sin \left(\sin ^{-1} \mathrm{x}\right)=\mathrm{x}$, for all $\mathrm{x} \in[-1,1]$
(ii) $\cos \left(\cos ^{-1} \mathrm{x}\right)=\mathrm{x}$, for all $\mathrm{x} \in[-1,1]$
(iii) $\tan \left(\tan ^{-1} \mathrm{x}\right)=\mathrm{x}$, for all $\mathrm{x} \in \mathrm{R}$
(iv) $\operatorname{cosec}\left(\operatorname{cosec}^{-1} \mathrm{x}\right)=\mathrm{x}$, for all $\mathrm{x} \in(-\infty,-1] \cup[1, \infty)$
(v) $\sec \left(\sec ^{-1} x\right)=x$, for all $x \in(-\infty,-1] \cup[1, \infty)$
(vi) $\cot \left(\cot ^{-1} x\right)=x$, for all $x \in R$

Sol. We know that, if $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a bijection, then $\mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}$ exists such that fof ${ }^{-1}(y)=f\left(f^{-1}(y)\right)=y$ for all $y \in B$.

Clearly, all these results are direct consequences of this property.

Aliter : Let $\theta \in[-\pi / 2, \pi / 2]$ and $\mathrm{x} \in[-1,1]$ such that $\sin \theta=$ x.
then, $\theta=\sin ^{-1} \mathrm{x}$
$\therefore \quad \mathrm{x}=\sin \theta=\sin \left(\sin ^{-1} \mathrm{x}\right)$
Hence, $\sin \left(\sin ^{-1} \mathrm{x}\right)=\mathrm{x}$ for all $\mathrm{x} \in[-1,1]$
Similarly, we can prove other results.
Remark : It should be noted that,
$\sin ^{-1}(\sin \theta) \neq \theta$, if $\notin[-\pi / 2, \pi / 2]$. Infact, we have
$\sin ^{-1}(\sin \theta)=\left\{\begin{array}{cc}-\pi-\theta, & \text { if } \theta \in[-3 \pi / 2,-\pi / 2] \\ \theta, & \text { if } \theta \in[-\pi / 2, \pi / 2] \\ \pi-\theta, & \text { if } \theta \in[\pi / 2,3 \pi / 2] \\ -2 \pi+\theta, & \text { if } \theta \in[3 \pi / 2,5 \pi / 2]\end{array}\right.$ and so on.

Similarly,

$$
\begin{aligned}
& \cos ^{-1}(\cos \theta)=\left\{\begin{array}{cc}
-\theta, & \text { if } \theta \in[-\pi, 0] \\
\theta, & \text { if } \theta \in[0, \pi] \\
2 \pi-\theta, & \text { if } \theta \in[\pi, 2 \pi] \\
-2 \pi+\theta, & \text { if } \theta \in[2 \pi, 3 \pi]
\end{array}\right. \text { and so on. }
\end{aligned}
$$

PROPERTY - V

(i) Sketch the graph for $\mathrm{y}=\sin ^{-1}(\sin \mathrm{x})$

Sol. As, $\mathrm{y}=\sin ^{-1}(\sin \mathrm{x})$ is periodic with period 2π.
$\therefore \quad$ to draw this graph we should draw the graph for one interval of length 2π and repeat for entire values of x .
As we know,

or $\quad \sin ^{-1}(\sin x)=\left\{\begin{array}{cc}x, & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ \pi-x, & \frac{\pi}{2} \leq x \leq \frac{3 \pi}{2},\end{array}\right.$
which is defined for the interval of length 2π, plotted as ;

Thus, the graph for $\mathrm{y}=\sin ^{-1}(\sin \mathrm{x})$, is a straight line up and a straight line down with slopes 1 and -1 respectively lying between $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Noto

Students are adviced to learn the definition of $\sin ^{-1}(\sin x)$ as,

$$
y=\sin ^{-1}(\sin x)=\left\{\begin{array}{ccc}
x+2 \pi & ;-\frac{5 \pi}{2} \leq x \leq-\frac{3 \pi}{2} \\
-\pi-x & ; & -\frac{3 \pi}{2} \leq x \leq-\frac{\pi}{2} \\
x & ; & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
\pi-x & ; & \frac{\pi}{2} \leq x \leq \frac{3 \pi}{2} \\
x-2 \pi & ; & \frac{3 \pi}{2} \leq x \leq \frac{5 \pi}{2}
\end{array} \quad \ldots\right. \text { and so on }
$$

(ii) Sketch the graph for $\mathrm{y}=\cos ^{-1}(\cos \mathrm{x})$.

Sol. As, $\mathrm{y}=\cos ^{-1}(\cos \mathrm{x})$ is periodic with period 2π.
\therefore to draw this graph we should draw the graph for one interval of length 2π and repear for entire values of x of length 2π.
As we know;
$\cos ^{-1}(\cos x)=\left\{\begin{array}{cc}x ; & 0 \leq x \leq \pi \\ 2 \pi-x ; & 0 \leq 2 \pi-x \leq \pi,\end{array}\right.$
or $\quad \cos ^{-1}(\cos x)=\left\{\begin{array}{cc}x ; & 0 \leq x \leq \pi \\ 2 \pi-x ; & \pi \leq x \leq 2 \pi,\end{array}\right.$
Thus, it has been defined for $0<x<2 \pi$ that has length 2π. So, its graph could be plotted as;

Thus, the curve $y=\cos ^{-1}(\cos x)$.
(iii) Sketch the graph for $\mathrm{y}=\tan ^{-1}(\tan \mathrm{x})$.

Sol. As $\mathrm{y}=\tan ^{-1}(\tan \mathrm{x})$ is periodic with period π.
$\therefore \quad$ to draw this graph we should draw the graph for one interval of length π and repeat for entire values of x.

As we know; $\tan ^{-1}(\tan x)=\left\{x ;-\frac{\pi}{2}<x<\frac{\pi}{2}\right\}$

Thus, it has been defined for $-\frac{\pi}{2}<x<\frac{\pi}{2}$ that has length π.
So, its graph could be plotted as;

Thus, the curve for $\mathrm{y}=\tan ^{-1}(\tan \mathrm{x})$, where y is not defined for $x \in(2 n+1) \frac{\pi}{2}$.

FORMULAS

(i) $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}, x y<1$
(ii) $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}, x y>-1$
(iii) $2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}},|x|<1$
(iv) $2 \tan ^{-1} \mathrm{x}=\sin ^{-1} \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}},|\mathrm{x}| \leq 1$
(v) $2 \tan ^{-1} \mathrm{x}=\cos ^{-1} \frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}, \mathrm{x} \geq 0$
(vi) $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right)$
(vii) $\sin ^{-1} x-\sin ^{-1} y=\sin ^{-1}\left(x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}\right)$
(viii) $\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right)$
(ix) $\cos ^{-1} x-\cos ^{-1} y=\cos ^{-1}\left(x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right)$
(x) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\tan ^{-1}$
$\left[\frac{x+y+z-x y z}{1-x y-y z-z x}\right]$ if, $x>0, y>0, z>0 \&$
$x y+y z+z x<1$

Note:

(i) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$ then $x+y+z=x y z$
(ii) If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$ then $x y+y z+z x=1$

REMEMBERTHAT:

(i) $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2} \Rightarrow \quad x=y=z=1$
(ii) $\cos ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}+\cos ^{-1} \mathrm{z}=3 \pi \mathrm{x}=\mathrm{y}=\mathrm{z}=-1$
(iii) $\tan ^{-1} 1+\tan ^{-1} 2+2 \tan ^{-1} 3=$ $\tan ^{-1} 1+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=\frac{\pi}{2}$

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

© For Grades 6-12th targeting JEE, CBSE, ICSE \& much more
© Free 60 Minutes Live Interactive classes everyday
© Learn from the Master Teachers - India's best

Register for FREE

