SECTION: GENERAL APTITUDE

1. The board arrived \qquad dawn.
(a) on
(b) in
(c) at
(d) under

Ans. (c)
2. The strategies that the company \qquad to sell its products \qquad house-to-house marketing.
(a) used, includes
(b) uses, including
(c) uses, include
(d) use, includes

Ans. (c)
3. It would take one machine 4 hours to complete a production order and another machine 2 hours to complete the same order. If both machines work simultaneously at their respective constant rates, the time taken to complete the same order is \qquad hours.
(a) $3 / 4$
(b) $7 / 3$
(c) $4 / 3$
(d) $2 / 3$

Ans. (c)
Sol. Machine one rate $=\frac{W}{4}$
Machine two rate $=\frac{\mathrm{W}}{2}$
$\Rightarrow\left(\frac{\mathrm{W}}{4}+\frac{\mathrm{W}}{2}\right) \mathrm{t}=\mathrm{W}$

$$
\mathrm{t}=\frac{1}{0.75}=\frac{4}{3} \text { hours }
$$

4. When he did not come home, she \qquad him lying dead on the roadside somewhere.
(a) notice
(b) looked
(c) pictured
(d) concluded

Ans. (c)
5. Five different books (P, Q, R, S, T) are to be arranged on a shelf. The books R and S are to be arranged first and second, respectively from the right side of the shelf. The number of different orders in which P, Q, and T may be arranged is
(a) 12
(b) 6
(c) 2
(d) 120

Ans. (b)

Sol.

6. The bar graph in Panel (a) shows the proportion of male and female illiterates in 2001 and 2011. The proportions of males and females in 2001 and 2011 are given in Panel (b) and (c), respectively. The total population did not change during this period. The percentage increase in the total number of literates from 2001 to 2011 is \qquad -.

Panel (a)

(a) 35.43
(b) 33.43
(c) 34.43
(d) 30.43

Ans. (d)

Sol. Assuming total no. of population is 100 literate in $2001=40 \times \frac{40}{100}+60 \times \frac{50}{100}$

$$
\begin{aligned}
& =16+30 \\
& =46
\end{aligned}
$$

Literate in $2011=50 \times \frac{60}{100}+50 \times \frac{60}{100}$

$$
\begin{aligned}
& =30+30 \\
& =60
\end{aligned}
$$

\% increase in total no. of literates from 2001
to $2011=\frac{60-46}{46} \times 100$

$$
=30.43 \%
$$

7. Five people P, Q, R, S and T gets a promotion and moves to the big office next to the garden. R, who is currently sharing an office with T wants to move to the adjacent office with S , the handsome new intern. Given the floor plan, what is the current locations of Q, R and T ? $(\mathrm{O}=$ Office, $\mathrm{WR}=\mathrm{Washroom})$
(a)
$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{ll}\text { Manager } \\ \mathrm{T}\end{array} \\ & & \begin{array}{l}\text { Teller } \\ 1\end{array} & \begin{array}{l}\text { Teller } \\ 2\end{array} \\ \hline \text { Entry }\end{array}\right]$

(c)

(d)

Ans. (d)
8. "Indian history was written by British historians - extremely well documented and researched, but not always impartial. History had to serve its purpose. Everything was made subservient to the glory of the Union Jack. Latter-day Indian scholars present a contrary picture."

GATE 2019 Detailed Solution 09-02-2019 | MORNING SESSION

From the text above, we can infer that :
Indian history written by British historians
\qquad .
(a) was not well documented and researched and was always biased
(b) was not well documented and researched and was sometimes biased
(c) was well documented and researched but was sometimes biased
(d) was well documented and not researched but was always biased

Ans. (c)
9. Two design consultants, P and Q , started working from 8 AM for a client. The client budgeted a total of USD 3000 for the consultants. P stopped working when the hour hand moved by 210 degrees on the clock. Q stopped working when the hour hand moved by 240 degrees. P took two tea breaks of 15 minutes each during her shift, but took no lunch break. Q took only one lunch break for 20 minutes, but no tea breaks. The market rate for consultants is USD 200 per hour and breaks are not paid. After paying the consultants, the client shall have USD
\qquad remaining in the budget.
(a) 166.67
(b) 300.00
(c) 433.33
(d) 000.00

Ans. (a)
Sol.

$$
\begin{gathered}
\mathrm{P} \\
8 \mathrm{AM} \\
210^{\circ} \rightarrow \underline{7 \mathrm{hour}} \\
-2 \times \frac{1}{4}=-0.5 \text { hour } \\
\text { working hours }=6.5 \mathrm{hr}
\end{gathered}
$$

Payment done $=\left(\frac{13}{2}+\frac{23}{3}\right) \times 200$
USD $=2833.33$ USD
Budget $=3000$ USD
Remaining Budget $=3000-2833.33$

$$
=166.67 \mathrm{USD}
$$

10. Four people are standing are in a line facing you. They are Rahul, Mathew, Semma and Lohit. One is engineer, one is a doctor, one is teacher and another a dancer. You are told that :
11. Mathew is not standing next to Seema.
12. There are two people standing between Lohit and the engineer.
13. Rahul is not a doctor.
14. The teacher and the dancer are standing next to each other.
15. Seema is turning to her right to speak to the doctor standing next to her.
(a) Seema
(b) Lohit
(c) Mathew
(d) Rahul

Ans. (c)
Sol.

Person	Profession
Rohit	Doctor
Seema	Dancer
Rahul	Teacher
Mathew	Engineer

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION

SECTION

ELECTRONICS \& COMMUNICATION

1. In the circuit shown, the clock frequency, i.e., the frequency of the Clk signal, is 12 kHz . The frequency of the signal at Q_{2} is
\qquad kHz .

Ans. (4)
Sol.

$$
\begin{aligned}
& \mathrm{D}_{1}=\overline{\mathrm{Q}_{1}} \cdot \overline{\mathrm{Q}_{2}} \\
& \mathrm{D}_{2}=\mathrm{Q}_{1}
\end{aligned}
$$

There are only three states.
So, output frequency will be $\frac{12}{3}=4 \mathrm{KHz}$
2. Which one of the following functions is analytic over the entire complex plane?
(a) $\frac{1}{1-z}$
(b) $e^{1 / z}$
(c) $\cos (\mathrm{z})$
(d) $\ln (\mathrm{z})$

Ans. c

Sol. (i) $\frac{1}{1-\mathrm{z}}$, not analytic at $\mathrm{z}=1$
(ii) $e^{1 / z}$
$\mathrm{e}^{1 / \mathrm{z}}=\left(\frac{1}{\mathrm{z}}\right)+\frac{1}{2!}\left(\frac{1}{\mathrm{z}}\right)^{2}+\frac{1}{3!}\left(\frac{1}{\mathrm{z}}\right)^{3}+\ldots$
not analytic at $\mathrm{z}=0$
(iii) $\cos (z)$
$\cos (z)=1-z^{2}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\frac{z^{8}}{8!}$
analytic for every value of z, so analytic for entire z-plane
(iv) $\ln (\mathrm{z})$
at $z=0, \ln (z)$ is not analytical.
3. A linear Hamming code is used to map 4-bit messages to 7 -bit codewords. The encoder mapping is linear. If the message 0001 is mapped to the codeword 0000111, and the message 0011 is mapped to the codeword 1100110 , then the message 0010 is mapped to
(a) 1100001
(b) 1111111
(c) 1111000
(d) 0010011

Ans. (a)
Sol. Linear code is an error correcting code for which any linear combination of code word is also a code word.

	Message	Code word
	0001	0000111
\oplus	0011	1100110
Ex OR	0010	1100001

Combination of two message and code words according to linearity property.
4. Let $\mathrm{H}(\mathrm{z})$ be the z -transform of a real-valued discrete-time signal $h[n]$. If $P(z)=H(z) H\left(\frac{1}{z}\right)$
has a zero at $\mathrm{z}=\frac{1}{2}+\frac{1}{2} \mathrm{j}$, and $\mathrm{P}(\mathrm{z})$ has a total of four zeros, which one of the following plots represents all the zeros correctly?

GATE 2019 Detailed Solution 09-02-2019 | MORNING SESSION

Ans. d

Sol.

$$
\mathrm{P}(\mathrm{z})=\mathrm{H}(\mathrm{z}) \mathrm{H}\left(\frac{1}{\mathrm{z}}\right)
$$

$$
P\left(\frac{1}{z}\right)=H\left(\frac{1}{z}\right) H(z)
$$

hence $\mathrm{P}(\mathrm{z})=\mathrm{P}\left(\frac{1}{\mathrm{z}}\right)$
if a zero of $\mathrm{P}(\mathrm{z})$ at $\mathrm{z}=\mathrm{z}_{0}$ than other zero must be at $\mathrm{z}=\frac{1}{\mathrm{z}_{0}}$
Given $\mathrm{z}_{1}=\frac{1}{2}+\frac{1}{2} \mathrm{j}$ and other must be $\mathrm{z}_{2}=$ $\frac{1}{2}-\frac{1}{2} \mathrm{j}$ two other zeroes.

$$
\begin{aligned}
\mathrm{z}_{3} & =\frac{1}{\mathrm{z}_{1}} \\
& =\frac{1}{\frac{1}{2}+\frac{1}{2} \mathrm{j}} \\
& =\frac{2}{1+\mathrm{j}} \times\left(\frac{1-\mathrm{j}}{1-\mathrm{j}}\right) \\
& =\frac{2(1-\mathrm{j})}{2} \\
& =1-\mathrm{j}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Z}_{4} & =\frac{1}{\mathrm{Z}_{2}}=\frac{1}{\frac{1}{2}-\frac{1}{2} \mathrm{j}} \\
& =\frac{2}{1-\mathrm{j}} \times \frac{(1+\mathrm{j})}{1-\mathrm{j}}
\end{aligned}
$$

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION

$$
\begin{aligned}
& =\frac{2}{2}(1+\mathrm{j}) \\
& =1+\mathrm{j}
\end{aligned}
$$

5. The families of curves represented by the solution of the equation

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=-\left(\frac{\mathrm{x}}{\mathrm{y}}\right)^{\mathrm{n}}
$$

For $\mathrm{n}=-1$ and $\mathrm{n}=+1$, respectively, are
(a) Hyperbola and Parabolas
(b) Circles and Hyperbolas
(c) Parabolas and Circles
(d) Hyperbolas and Circles

Ans. d
Sol. $\quad \frac{d y}{d x}=-\left(\frac{x}{y}\right)^{n}$
for $\mathrm{n}=-1$

$$
\frac{d y}{d x}=-\left(\frac{x}{y}\right)^{-1}
$$

$$
\int \frac{d y}{y}=-\int \frac{d x}{x}
$$

$$
\ln \mathrm{y}=-\ln (\mathrm{x})+\ln \mathrm{k}
$$

$\ln (y)+\ln (x)=\ln (k)$

$$
\ln (x y)=\ln (k)
$$

taking log inverse

$$
\mathrm{xy}=\mathrm{k} \text { Rectangular hyperbola }
$$

for $\mathrm{n}=1$

$$
\begin{aligned}
\frac{d y}{d x} & =-\left(\frac{x}{y}\right) \\
\int y \cdot d y & =-\int x d x \\
\frac{y^{2}}{2} & =-\frac{x^{2}}{2}+c \\
x^{2}+y^{2}=c & \text { circle. }
\end{aligned}
$$

for $\quad \mathrm{n}=-1$; Hyperbolas
for $\quad n=+1$; circles
6. In the circuit shown, what are the values of F for $\mathrm{EN}=0$ and $\mathrm{EN}=1$, respectively.

(a) Hi-Z and $\overline{\mathrm{D}}$
(b) 0 and 1
(c) 0 and D
(d) Hi-Z and D

Ans. (d)
Sol.

$$
\begin{aligned}
A & =\overline{\mathrm{E}_{\mathrm{N}} \cdot \mathrm{D}} \\
\mathrm{~B} & =\overline{\overline{\mathrm{E}_{\mathrm{N}}}+\mathrm{D}} \\
\mathrm{~B} & =\mathrm{E}_{\mathrm{N}} \cdot \overline{\mathrm{D}}
\end{aligned}
$$

when $\mathrm{E}_{\mathrm{N}}=0, \mathrm{~A}=1, \mathrm{~B}=0$
Hence PMOS and NMOS both OFF so circuit in high impedance.
when $\mathrm{E}_{\mathrm{N}}=1$
$\mathrm{A}=\overline{\mathrm{D}}, \mathrm{B}=\overline{\mathrm{D}}$
Hence output F = D
7. Which one of the following options describes correctly the equilibrium band diagram at T

GATE 2019 Detailed Solution 09-02-2019 | MORNING SESSION

Ans. (a)
Sol. Fermi level for n \& p type semiconductor are given by

$$
\begin{aligned}
\mathrm{E}_{\mathrm{F}(\mathrm{n})} & =\mathrm{E}_{\mathrm{c}}-\mathrm{kT} \ell \mathrm{n}\left(\frac{\mathrm{~N}_{\mathrm{c}}}{\mathrm{n}}\right) \\
\mathrm{E}_{\mathrm{F}(\mathrm{p})} & =\mathrm{E}_{\mathrm{v}}-\mathrm{kT} \ln \left(\frac{\mathrm{~N}_{\mathrm{v}}}{\mathrm{p}}\right) \quad \ldots(\mathrm{i}) \\
\mathrm{E}_{\mathrm{F}} & - \text { Fermi level } \\
\mathrm{E}_{\mathrm{C}} & - \text { Conduction band energy } \\
\mathrm{E}_{\mathrm{V}} & - \text { Valence band energy } \\
\mathrm{N}_{\mathrm{C}} & - \text { Density of conduction states } \\
\mathrm{N}_{\mathrm{V}} & - \text { Density of valence states } \\
\mathrm{n} & - \text { electron density } \\
\mathrm{p} & - \text { Hole density }
\end{aligned}
$$

from (i) As n increass $\mathrm{E}_{\mathrm{f}(\mathrm{n})}$ moves closer to E_{c} and from (ii), as p increase $\mathrm{E}_{\mathrm{f}(\mathrm{p})}$ moves closer to E_{v}. So fermi level must get closer to E_{v} for p type and to E_{c} for n type.
8. The figure shows the high-frequency $\mathrm{C}-\mathrm{V}$ curve of a MOS capacitor (at $T=300 \mathrm{~K}$) with $\Phi_{\mathrm{m}}=0 \mathrm{~V}$ and no oxide charges. The flat-band, inversion, and accumulation conditions are represented, respectively, by the points

(a) $\mathrm{Q}, \mathrm{R}, \mathrm{P}$
(b) R, P, Q
(c) $\mathrm{Q}, \mathrm{P}, \mathrm{R}$
(d) P, Q, R

Ans. (a)
Sol. We know that C-V curve is given by

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION

(i) Flat band $\rightarrow \mathrm{Q}$
(ii) $\mathrm{As} \mathrm{V}_{\mathrm{G}}$ increases inversion layer is formed near gate of MOS So

Inversion $\rightarrow R$
(iii) If V_{GS} is (-)ve more holes are accumulated near gate in P-type substrate (n-MOSFET)
So Accumulation $\rightarrow \mathrm{P}$
9. In the circuit shown, V_{s} is a square wave of a period T with maximum and minimum values of 8 V and -10 V , respectively. Assume that the diode is ideal and $R_{1}=R_{2}=50 \Omega$. The average value of V_{L} is \qquad volts (rounded off to 1 decimal place).

Ans. (-3)
Sol.

$R_{1}=R_{2}=50 \Omega$
For (+ve) half cycle diode D is OFF hence circuit is

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{s}} \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
& \mathrm{~V}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{s}}}{2}
\end{aligned}
$$

For (-ve) half cycle diode is ON

$$
\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{S}}
$$

Output $\mathrm{V}_{\mathrm{L}}(\mathrm{t})$

Average value $=\frac{1}{T} \int_{0}^{T} V_{s}(t) d t$

GATE 2019
EC

$$
\begin{aligned}
& =\frac{1}{\mathrm{~T}}\left\{\int_{0}^{\mathrm{T} / 2} 4 \mathrm{dt}+\int_{\mathrm{T} / 2}^{\mathrm{T}}(-10) \mathrm{dt}\right\} \\
& =\frac{1}{\mathrm{~T}}\left\{4 \cdot\left(\frac{\mathrm{~T}}{2}\right)-10 \cdot\left(\frac{\mathrm{~T}}{2}\right)\right\} \\
& =\frac{-6}{2}=-3 \text { volt }
\end{aligned}
$$

10. The value of the contour integral

$$
\frac{1}{2 \pi \mathrm{j}} \oint\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)^{2} \mathrm{dz}
$$

evaluated over the unit circle $|z|=1$ is \qquad -.

Ans. (0)
Sol. The value of the contour integral

$$
\frac{1}{2 \pi \mathrm{j}} \oint\left(\mathrm{Z}+\frac{1}{\mathrm{Z}}\right)^{2} \mathrm{dz},|\mathrm{Z}|=1
$$

$$
I=\frac{1}{2 \pi \mathrm{j}} \oint\left(\mathrm{Z}+\frac{1}{\mathrm{Z}}\right)^{2} \mathrm{dz}
$$

$$
I=\frac{1}{2 \pi j} \oint\left(\frac{Z^{2}+1}{Z}\right)^{2} d z
$$

There are two poles at $\mathrm{Z}=0$, (lying inside the contour)
so,by using $\oint \frac{f(z)}{\left(z-z_{0}\right)^{n}} d z=\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}} f(z)$
$I=\left(\frac{1}{2 \pi \mathrm{j}}\right)\left(\frac{1}{1!}\right) \frac{\mathrm{d}}{\mathrm{dz}}\left(\left(\mathrm{z}^{2}+1\right)^{2}\right)$

$$
\begin{gathered}
I=\left.\frac{1}{2 \pi j}\left(2\left(z^{2}+1\right)(2 z)\right)\right|_{z=0} \\
I=\left.4 z\left(z^{2}+1\right)\right|_{z=0} \\
\quad I=0
\end{gathered}
$$

11. The correct circuit representation of the structure shown in the figure is

n^{+}
(a)

(b)

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION

(d)

Ans. (d)
Sol.
\rightarrow Structure shown is fabrication of $n p n$ transistor
\rightarrow Emitter highly doped (n^{++})
\rightarrow Base lightly doped (p^{+})
\rightarrow Collector (n^{++})
\rightarrow CB junction ($\mathrm{n}^{++}-\mathrm{p}^{+}$junction)
So Answer d
12. If X and Y are random variables such that $\mathrm{E}[2 \mathrm{X}+\mathrm{Y}]=0$ and $\mathrm{E}[\mathrm{X}+2 \mathrm{Y}]=33$, then $\mathrm{E}[\mathrm{X}]$ $+\mathrm{E}[\mathrm{Y}]=$ \qquad -.

Ans. (11)
Sol. $\quad E[2 x+y]=0$
$\mathrm{E}[\mathrm{x}+2 \mathrm{y}]=33$
as we know $\mathrm{E}[\mathrm{AX}]=\mathrm{AE}[\mathrm{x}]$
so $\quad 2 \mathrm{E}[\mathrm{x}]+\mathrm{E}[\mathrm{y}]=0$
$\mathrm{E}[\mathrm{x}]+2 \mathrm{E}[\mathrm{y}]=33]$; multiply whole equation by 2
$2 \mathrm{E}[\mathrm{x}]+4 \mathrm{E}[\mathrm{y}]=66$

Subtracting (2) from (1)

$$
\begin{aligned}
-3 \mathrm{E}[\mathrm{y}] & =-66 \\
\mathrm{E}[\mathrm{y}] & =22
\end{aligned}
$$

and $2 \mathrm{E}[\mathrm{x}]=-22$
hence $\mathrm{E}[\mathrm{x}]=-11$
so $E[x]+E[y]=-11+22=11$
13. Let $\mathrm{Y}(\mathrm{s})$ be the unit-step response of a causal system having a transfer function
$G(s)=\frac{3-s}{(s+1)(s+3)}$

That is, $Y(s)=\frac{G(s)}{s}$. The forced response of the system is
(a) $u(t)-2 e^{-t} u(t)+e^{-3 t} u(t)$
(b) $2 u(t)-2 e^{-t} u(t)+e^{-3 t} u(t)$
(c) $u(t)$
(d) $2 \mathrm{u}(\mathrm{t})$

Ans. \mathbf{c}
Sol. Total response of system

$$
\begin{aligned}
y(s) & =\frac{G(s)}{s}=\frac{3-s}{s(s+1)(s+3)} \\
y(s) & =\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+3} \\
A & =1, B=-2, C=1 \\
y(s) & =\frac{1}{s}-\frac{2}{s+1}+\frac{1}{s+3}
\end{aligned}
$$

Taking I.L.T.

$$
\mathrm{y}(\mathrm{t})=\mathrm{u}(\mathrm{t})-2 \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})+\mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t})
$$

Forced response of the system is $u(t)$.
14. For an LTI system, the Bode plot for its gain is as illustrated in the figure shown. The number of system poles N_{P} and the number of system zeros N_{z} in the frequency range 1 $\mathrm{Hz} \leq \mathrm{f} \leq 10^{7} \mathrm{~Hz}$ is

(a) $\mathrm{N}_{\mathrm{p}}=6, \mathrm{~N}_{\mathrm{z}}=3$
(b) $\mathrm{N}_{\mathrm{p}}=4, \mathrm{~N}_{\mathrm{z}}=2$
(c) $\mathrm{N}_{\mathrm{p}}=7, \mathrm{~N}_{\mathrm{z}}=4$
(d) $\mathrm{N}_{\mathrm{p}}=5, \mathrm{~N}_{\mathrm{z}}=2$

Ans. (a)
Sol. When we add one pole, slope becomes $20 \mathrm{~dB} /$ decade and when we add one zero, slope becomes $+20 \mathrm{~dB} /$ decade
15. Radiation resistance of a small dipole current element of length l at a frequency of 3 GHz is 3 ohms . If the length is changed by 1%, then the percentage change in the radiation resistance, rounded off to two decimal places, is \qquad $\%$.

Ans. (2.01)
Sol.
The radiation resistance of small dipole
$R_{\text {rad } 1}=80 \pi^{2}\left(\frac{\mathrm{dl}}{\lambda}\right)^{2}$
if length is changed by 1% than new length $l_{1}=1.01 l$.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{rad}_{2}}=80 \pi^{2}\left(\frac{1.01 l}{\lambda}\right)^{2} \\
& \mathrm{R}_{\mathrm{rad}_{2}}=80 \pi^{2}\left(\frac{1.021 l}{\lambda}\right)^{2}
\end{aligned}
$$

\%change in radiation resistance

$$
\begin{aligned}
& =\frac{R_{\mathrm{rad}_{2}}-R_{\mathrm{rad}_{1}}}{R_{\mathrm{rad}_{1}}} \times 100 \\
& =\frac{1.0201-1}{1} \times 100
\end{aligned}
$$

GATE 2019 Detailed Solution 09-02-2019 | MORNING SESSION

$$
=2.01 \%
$$

16. In the table shown, List I and List II, respectively, contain terms appearing on the left-hand side and the right-hand side of Maxwell's equations (in their standard form). Match the left-hand side with the corresponding right-hand side.

List I		List II	
$\mathbf{1}$	$\nabla \cdot \mathrm{D}$	P	0
2	$\nabla \times \mathrm{E}$	Q	ρ
3	$\nabla \cdot \mathrm{~B}$	R	$-\frac{\partial \mathrm{B}}{\partial \mathrm{t}}$
4	$\nabla \times \mathrm{H}$	S	$\mathrm{J}+\frac{\partial \mathrm{D}}{\partial \mathrm{t}}$

(a) 1-P, 2-R, 3-Q, 4-S
(b) 1-R, 2-Q, 3-S, 4-P
(c) 1-Q, 2-S, 3-P, 4-R
(d) 1-Q, $2-\mathrm{R}, 3-\mathrm{P}, 4-\mathrm{S}$

Ans. d
Sol.
The maxwell eq ${ }^{\mathrm{n}}$ (in their standard form)

$$
\begin{aligned}
& \nabla \cdot \overrightarrow{\mathrm{D}}=\rho \\
& \nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}} \\
& \nabla \cdot \overrightarrow{\mathrm{~B}}=0 \\
& \nabla \times \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{J}}+\frac{\partial \overrightarrow{\mathrm{D}}}{\partial \mathrm{t}} \\
& \text { hence } \begin{aligned}
& 1 \rightarrow \mathrm{Q} \\
& 2-\mathrm{R} \\
& 3-\mathrm{P} \\
& 4-\mathrm{S}
\end{aligned}
\end{aligned}
$$

17. What is the electric flux $\left(\int \overrightarrow{\mathrm{E}} \cdot\right.$ dâ $)$ through a quarter-cylinder of height H (as shown in the figure) due to an infinitely long line charge along the axis of the cylinder with a charge density of Q ?

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION

(a) $\frac{\mathrm{HQ}}{\varepsilon_{0}}$
(b) $\frac{\mathrm{HQ}}{4 \varepsilon_{0}}$
(c) $\frac{4 \mathrm{H}}{\mathrm{Q} \varepsilon_{0}}$
(d) $\frac{\mathrm{H} \varepsilon_{0}}{4 \mathrm{Q}}$

Ans. b
Sol. For quarter-cylinder

$$
\begin{aligned}
& \int \overrightarrow{\mathrm{D}} \cdot \mathrm{da}=\frac{\mathrm{Q} \cdot \mathrm{H}}{4} \\
& \varepsilon \int \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \hat{a}=\frac{\mathrm{QH}}{4} \\
& \int \overrightarrow{\mathrm{E}} \cdot \mathrm{da}=\frac{\mathrm{QH}}{4 \varepsilon}
\end{aligned}
$$

18. The baseband signal $m(t)$ shown in the figure is phase-modulated to generate the PM signal $\varphi(t)=\cos \left(2 \pi f_{c} t+k m(t)\right)$. The time t on the x -axis in the figure is in milliseconds. If the carrier frequency is $f_{c}=50 \mathrm{kHz}$ and $\mathrm{k}=10 \pi$, then the ratio of the minimum instantaneous frequency (in kHz) to the maximum instantaneous frequency (in kHz) is (rounded off to 2 decimal places).

Ans. (0.75)

Sol. $\quad \phi(\mathrm{t})=\cos \left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}+\mathrm{km}(\mathrm{t})\right)$
$\theta(\mathrm{t})=2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}+\mathrm{km}(\mathrm{t})$
Instantaneous angular frequency

$$
\begin{aligned}
\omega_{i} & =\frac{d \theta(\mathrm{t})}{\mathrm{dt}}=2 \pi \mathrm{f}_{\mathrm{c}}+\mathrm{k} \frac{\mathrm{dm}(\mathrm{t})}{\mathrm{dt}} \\
2 \pi \mathrm{f}_{\mathrm{i}} & =2 \pi \mathrm{f}_{\mathrm{x}}+\mathrm{k} \frac{\mathrm{dm}(\mathrm{t})}{\mathrm{dt}} \\
\mathrm{f}_{\mathrm{i}} & =\mathrm{f}_{\mathrm{c}}+\frac{\mathrm{k}}{2 \pi} \frac{\mathrm{dm}(\mathrm{t})}{\mathrm{dt}} \\
\mathrm{f}_{\mathrm{i}} & =50+\frac{10 \pi}{2 \pi} \frac{\mathrm{dm}(\mathrm{t})}{\mathrm{dt}} \\
\mathrm{f}_{\mathrm{i}} & =50+5 \frac{\mathrm{dm}(\mathrm{t})}{\mathrm{dt}} \\
\mathrm{f}_{\mathrm{i}_{\max }} & =50+\left.5 \frac{\mathrm{dm}(\mathrm{t})}{\mathrm{dt}}\right|_{\max }
\end{aligned}
$$

From figure

$$
\begin{aligned}
\left.\frac{\mathrm{dm}(\mathrm{t})}{\mathrm{dt}}\right|_{\max } & =2 \\
\mathrm{f}_{\mathrm{i}_{\max }} & =50+5 \times 2=60 \mathrm{kHz} \\
\mathrm{f}_{\mathrm{i}_{\min }} & =50+\left.5 \frac{\mathrm{dm}(\mathrm{t})}{\mathrm{dt}}\right|_{\min }
\end{aligned}
$$

From $m(t)$ figure

$$
\begin{aligned}
\left.\frac{\mathrm{dm}(\mathrm{t})}{\mathrm{dt}}\right|_{\min } & =-1 \\
\mathrm{f}_{\mathrm{i}_{\min }} & =50-5 \\
& =45 \mathrm{kHz}
\end{aligned}
$$

GATE 2019

$$
\begin{aligned}
& \frac{1}{5}=\frac{I}{5} \\
& I=1 \mathrm{Amp}
\end{aligned}
$$

20. Consider the signal

$$
f(t)=1+2 \cos (\pi t)+3 \sin \left(\frac{2 \pi}{3} t\right)+4 \cos \left(\frac{\pi}{2} t+\frac{\pi}{4}\right)
$$

where t is in seconds. Its fundamental time period, in seconds, is \qquad .

Ans. 12
Sol.

$$
\begin{array}{r}
f(t)=1+2 \cos (\pi t)+3 \sin \left(\frac{2 \pi}{3} t\right) \\
+4 \cos \left(\frac{\pi}{2} t+\frac{\pi}{4}\right)
\end{array}
$$

Time period of $\cos \pi t$

$$
\begin{aligned}
\omega_{1} & =\pi \\
\frac{2 \pi}{\mathrm{~T}_{1}} & =\pi \Rightarrow \mathrm{T}_{1}=2
\end{aligned}
$$

Time period $\sin \left(\frac{2 \pi}{3} \mathrm{t}\right)$

$$
\begin{aligned}
\omega_{2} & =\frac{2 \pi}{3} \\
\frac{2 \pi}{\mathrm{~T}_{2}} & =\frac{2 \pi}{3} \\
\mathrm{~T}_{2} & =3
\end{aligned}
$$

Time period $\cos \left(\frac{\pi}{2} t+\frac{\pi}{4}\right)$

$$
\begin{aligned}
\omega_{3} & =\frac{\pi}{2} \\
\frac{2 \pi}{\mathrm{~T}_{3}} & =\frac{\pi}{2} \\
\mathrm{~T}_{3} & =4
\end{aligned}
$$

Time period of $\mathrm{f}(\mathrm{t})$

$$
\begin{aligned}
\mathrm{T} & =\mathrm{LCM}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right) \\
& =\mathrm{LCM}(2,3,4) \\
& =12
\end{aligned}
$$

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION
21. In the circuit shown, A and B are the inputs and F is the output. What is the functionality of the circuit?

(a) XNOR
(b) SRAM Cell
(c) XOR
(d) Latch

Ans. (a)
Circuit can be redrawn as:

A	B	R
0	0	1
0	1	0
1	0	0
1	1	1

(XNOR gate)
22. The value of the integral $\int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin x}{x} d x d y$, is equal to \qquad _.

Ans. (2)

Sol.

$$
I=\int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin x}{x} \cdot d x \cdot d y
$$

After changing the limits

$$
\begin{aligned}
& I=\int_{0}^{\pi} \int_{0}^{\pi} \frac{\sin x}{x} \cdot d y \cdot d x \\
& I=\int_{0}^{\pi} \frac{\sin x}{x}(y)_{0}^{x} \cdot d x \\
& I=\int_{0}^{\pi} \frac{\sin x}{x}(x) \cdot d x \\
& I=\int_{0}^{\pi} \sin x \cdot d x \\
& I=(-\cos x)_{0}^{\pi} \\
& I=(1-(-1)) \\
& I=2
\end{aligned}
$$

23. The number of distinct eigenvalues of the matrix
$A=\left[\begin{array}{llll}2 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2\end{array}\right]$
is equal to \qquad .

Ans. (3)
Sol. $\quad A=\left[\begin{array}{llll}2 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2\end{array}\right]$

GATE 2019 Detailed Solution 09-02-2019 | MORNING SESSION

Given ' A ' matrix is a upper triangular matrix so, diagonal elements are its eigen value $\lambda_{1}=2, \lambda_{2}=1, \lambda_{3}=3, \lambda_{4}=2$
so, there are three distinct eigen values of the matrix.
24. Let Z be an exponential random variable with mean 1 . That is, the cumulative distribution function of Z is given by
$F_{z}(x)= \begin{cases}1-e^{-x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}$
Then $\operatorname{Pr}(Z>2 \mid Z>1)$, rounded off to two decimal places, is equal to \qquad _.

Ans. (0.367)
Sol. Cumulative distribution function of 2 is

$$
\begin{aligned}
F_{Z}(x) & = \begin{cases}1-e^{-x} & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases} \\
\operatorname{Pdf} f_{Z}(x) & =\frac{d F_{Z}(x)}{d x} \\
f_{z}(x) & = \begin{cases}e^{-x} & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases} \\
\rho\left(\frac{z>2}{z>1}\right) & =\frac{\rho((z>2) \cap(z>1))}{\rho(z>1)} \\
& =\frac{\rho(z>2)}{\rho(z>1)} \\
\rho(z>2) & =\int_{2}^{\infty} e^{-x} d x=e^{-2} \\
\rho(z>1) & =\int_{1}^{\infty} e^{-x} d x=e^{-1}
\end{aligned}
$$

hence $\rho\left(\frac{z>2}{z>1}\right)=\frac{\rho(z>2)}{\rho(z>1)}=\frac{e^{-2}}{e^{-1}}=e^{-1}=0.367$
25. A standard CMOS inverter is designed with equal rise and fall times $\left(\beta_{n}=\beta_{p}\right)$. If the width of the pMOS transistor in the inverter is increased, what would be the effect on the

LOW noise margin $\left(\mathrm{NM}_{\mathrm{L}}\right)$ and the HIGH noise margin NM_{H} ?
(a) NM_{L} increases and NM_{H} decreases
(b) NM_{L} decreases and NM_{H} increases
(c) No change in the noise margin
(d) Both NM_{L} and NM_{H} increase

Ans. (a)
Sol.

For CMOS inverter with equal rise and fall time we have

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}} \\
& \mathrm{~V}_{\mathrm{OL}}=0
\end{aligned}
$$

So, $\quad \mathrm{NM}_{\mathrm{L}}=\mathrm{V}_{\mathrm{IL}}-0=\mathrm{V}_{\mathrm{IL}}$
$\mathrm{NM}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{IH}}$
where $V_{I L}=\frac{2 V_{\text {out }}+V_{T, p}+\frac{k_{n}}{k_{p}} V_{T, n}-V_{D D}}{\left(1+\frac{k_{n}}{k_{p}}\right)}$
As width pMOS increased k_{p} increases \& V_{IL} increases
So, NM_{L} increases
$\mathrm{V}_{\mathrm{IH}}=\frac{\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{T}, \mathrm{p}}+\frac{\mathrm{k}_{\mathrm{n}}}{\mathrm{k}_{\mathrm{p}}}\left(2 \mathrm{~V}_{\text {out }}+\mathrm{V}_{\mathrm{T}, \mathrm{n}}\right)}{1+\frac{\mathrm{k}_{\mathrm{n}}}{\mathrm{k}_{\mathrm{p}}}}$
V_{IH} increases and hence NM_{H} decreases.

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION
26. Let $\mathrm{h}[\mathrm{n}]$ be a length-7 discrete-time finite impulse response filter, given by
$\mathrm{h}[0]=4, \mathrm{~h}[1]=3, \quad \mathrm{~h}[2]=2, \quad \mathrm{~h}[3]=1$,

$$
\mathrm{h}[-1]=-3 \mathrm{~h}[-2]=-2 \mathrm{~h}[-3]=-1,
$$

and $h[n]$ is zero for $|n| \geq 4$. A length-3 finite impulse response approximation $g[n]$ of $h[n]$ has to be obtained such that
$E(h, g)=\int_{-\pi}^{\pi}\left|H\left(e^{j \omega}\right)-G\left(e^{j \omega}\right)\right|^{2} d \omega$
is minimized, where $H\left(e^{j \omega}\right)$ and $G\left(e^{j \omega}\right)$ are the discrete-time Fourier transforms of h[n] and $g[n]$, respectively. For the filter that minimizes $\mathrm{E}(\mathrm{h}, \mathrm{g})$, the value of $10 \mathrm{~g}[-1]+$ $\mathrm{g}[1]$, rounded off to 2 decimal places, is \qquad _.

Ans. (*)
27. The state transition diagram for the circuit shown is

(a)

(b)

(c)

(d)

Ans. (d)
Sol.

$$
\text { Now, } \begin{aligned}
\mathrm{P} & =\overline{\mathrm{A}} \overline{\mathrm{Q}}+\mathrm{AQ} \\
\mathrm{P} & =\mathrm{A} \odot \mathrm{Q} \\
\mathrm{D} & =\overline{\mathrm{P} \cdot \mathrm{Q}} \\
\mathrm{D} & =\overline{(\mathrm{A} \odot \mathrm{Q}) \cdot \mathrm{Q}}=\overline{\mathrm{A} \odot \mathrm{Q}}+\overline{\mathrm{Q}} \\
\mathrm{D} & =(\mathrm{A} \oplus \mathbf{Q})+\overline{\mathbf{Q}}
\end{aligned}
$$

GATE 2019

Present state (Q)	Input	Next state $\left(\mathrm{Q}^{+}\right)$
0	0	1
0	1	1
1	0	1
1	1	0

28. In the circuits shown, the threshold voltage of each nMOS transistor is 0.6 V . Ignoring the effect of channel length modulation and body bias, the value of Vout1 and Vout2, respectively, in volts are

(a) 2.4 and 1.2
(b) 1.8 and 1.2
(c) 2.4 and 2.4
(d) 1.8 and 2.4

Ans. (d)
Sol. For nMoS at saturation

$$
\mathrm{V}_{\mathrm{D}} \approx \mathrm{~V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{T}}
$$

Figure 1
For $\operatorname{nMOS} 1\left(\mathrm{M}_{1}\right)$

$$
\begin{aligned}
& \mathrm{V}_{1} \approx 3-0.6 \\
& \mathrm{~V}_{1}=2.4
\end{aligned}
$$

For nMOS $2\left(\mathrm{M}_{2}\right)$

$$
\begin{aligned}
\mathrm{V}_{\text {out }_{1}} & =\mathrm{V}_{1}-\mathrm{V}_{7} \\
& =2.4-0.6 \\
\mathrm{~V}_{\text {out }_{1}} & =1.8
\end{aligned}
$$

From figure (1)
For $\mathrm{M}_{1}, \mathrm{~V}_{1}=3-0.6=2.4$
For $\mathrm{M}_{2}, \mathrm{~V}_{2}=3-0.6=2.4$
For $\mathrm{M}_{3}, \mathrm{~V}_{\text {out }_{2}}=3-0.6=2.4$

$$
\begin{aligned}
\text { Hence } \mathrm{V}_{\text {out }_{1}} & =1.8 \mathrm{~V} \\
\mathrm{~V}_{\text {out }_{2}} & =2.4 \mathrm{~V}
\end{aligned}
$$

29. In the circuit shown, $V_{1}=0$ and $V_{2}=V_{d d}$. The other relevant parameters are mentioned in the figure. Ignoring the effect of channel length modulation and the body effect, the value of $I_{\text {out }}$ is \qquad mA (rounded off to 1 decimal place).

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION

Ans. (6)

Sol.

When $V_{1}=0, M_{6}$ is OFF hence $I_{3}=0$ and

$$
\begin{aligned}
\frac{\mathrm{I}_{1}}{1 \mathrm{~mA}} & =\frac{(\mathrm{W} / \mathrm{L})_{2}}{(\mathrm{~W} / \mathrm{L})_{1}} \\
\mathrm{I}_{1} & =\frac{3}{2} \times 1 \mathrm{~mA}=1.5 \mathrm{~mA}
\end{aligned}
$$

When $\quad I_{3}=0$,

$$
\mathrm{I}_{1}=\mathrm{I}_{2}=1.5 \mathrm{~mA}
$$

$$
\begin{aligned}
& \frac{\mathrm{I}_{\text {out }}}{\mathrm{I}_{2}}=\frac{(\mathrm{W} / \mathrm{L})_{5}}{(\mathrm{~W} / \mathrm{L})_{4}}=\frac{40}{10} \\
& \begin{aligned}
\frac{\mathrm{I}_{\text {out }}}{\mathrm{I}_{2}} & =4 \\
\mathrm{I}_{\text {out }} & =4 \times 1.5 \mathrm{~mA} \\
& =6 \mathrm{~mA}
\end{aligned}
\end{aligned}
$$

30. Consider the line integral

$$
\int_{\mathrm{C}}(x d y-y d x)
$$

the integral being taken in a counterclockwise direction over the closed curve C that forms the boundary of the region R shown in the figure below. The region R is the area enclosed by the union of a 2×3 rectangle and a semi-circle of radius 1 . The line integral evaluates to

(a) $12+\pi$
(b) $16+\pi$
(c) $8+\pi$
(d) $6+\frac{\pi}{2}$

Ans. a
Sol. $\quad \int_{c} x d y-y \cdot d x$

$$
\begin{aligned}
& I=\int_{c}-y d x+x \cdot d y \\
& I=\int_{c}(-y \hat{i}+x \hat{j}) \cdot(d x \hat{i}+d y \hat{j})
\end{aligned}
$$

(a) $4.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(b) $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(c) $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(d) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Ans. (a)
Sol.

$$
\begin{aligned}
& \mathrm{K}(\omega)=\left(\frac{1}{\mathrm{C}}\right) \sqrt{\omega^{2}-\omega_{0}^{2}} \\
& \mathrm{~V}_{\mathrm{g}}=2 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~V}_{\mathrm{g}}=\frac{\mathrm{d} \omega}{\mathrm{dK}(\omega)} \\
& \text { or } \quad \frac{\mathrm{dk}(\omega)}{\mathrm{d} \omega}=\frac{1}{\mathrm{~V}_{\mathrm{g}}} \\
& \Rightarrow \quad \frac{1 \times 2 \omega}{2 \mathrm{c} \sqrt{\omega^{2}-\omega_{0}^{2}}}=\frac{1}{\mathrm{~V}_{\mathrm{g}}} \\
& \Rightarrow \quad \frac{\omega}{\left(3 \times 10^{8}\right) \sqrt{\omega^{2}-\omega_{0}^{2}}}=\frac{1}{2 \times 10^{8}} \\
& \Rightarrow \quad \sqrt{\omega^{2}-\omega_{0}^{2}}=\frac{2 \omega}{3} \\
& \because \quad \mathrm{~V}_{\mathrm{p}}=\frac{\omega}{\mathrm{K}(\omega)}=\frac{\omega \mathrm{C}}{\sqrt{\omega^{2}-\omega_{0}^{2}}} \\
& \Rightarrow \quad \frac{\omega \mathrm{C}}{(2 \omega / 3)} \\
&=\frac{\mathrm{V}_{\mathrm{p}}}{}=\frac{3 \mathrm{C}}{2}=\frac{3 \times 10^{8} \times 3}{2} \\
&=5 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

32. Consider a differentiable function $\mathrm{f}(\mathrm{x})$ on the set of real numbers such that $f(-1)=0$ and $\left|f^{\prime}(x)\right| \leq 2$. Given these conditions, which one of the following inequalities is necessarily true for all $\mathrm{x} \in[-2,2]$?
(a) $\mathrm{f}(\mathrm{x}) \leq 2|\mathrm{x}+1|$
(b) $\mathrm{f}(\mathrm{x}) \leq \frac{1}{2}|\mathrm{x}+1|$
(c) $\mathrm{f}(\mathrm{x}) \leq 2|\mathrm{x}|$
(d) $f(x) \leq \frac{1}{2}|x|$

Ans. (a)
Sol. Conditions given
$f(-1)=0$
and $\left|f^{\prime}(x)\right| \leq 2$

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION

Consider option (1)
$f(x)=2|x+1|$

$f(-1)=0$, satisfied
$\left|\mathrm{f}^{\prime}(\mathrm{x})\right| \leq 2$, satisfied
Consider option (2)
$f(x)=\frac{1}{2}|x+1|$

$f(-1)=0$, satisfied
If $\left|\mathrm{f}^{\prime}(\mathrm{x})\right| \leq 2$, not satisifed
Consider option (3)

$f(-1)=0$, not satisfied
$\left|\mathrm{f}^{\prime}(\mathrm{x})\right| \leq 2$, satisfied
consider option (4)
$f(x)=\frac{1}{2}|x|$

$\mathrm{f}(-1)=0$, not satisfied
$\left|\mathrm{f}^{\prime}(\mathrm{x})\right| \leq 2$, not satisfied
33. In the circuit shown, the threshold voltages of the $\operatorname{pMOS}\left(\left|\mathrm{V}_{\mathrm{tp}}\right|\right)$ and $\operatorname{nMOS}\left(\mathrm{V}_{\mathrm{tn}}\right)$ transistors are both equal to 1 V . All the transistors have the same output resistance r_{ds} of $6 \mathrm{M} \Omega$. The other parameters are listed below:
$\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=60 \mu \mathrm{~A} / \mathrm{V}^{2} ;\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{\mathrm{nMOS}}=5$
$\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=30 \mu \mathrm{~A} / \mathrm{V}^{2} ;\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{\mathrm{pMOS}}=10$
μ_{n} and μ_{p} are the carrier mobilities, and C_{ox} is the oxide capacitance per unit area. Ignoring the effect of channel length modulation and body bias, the gain of the circuit is \qquad (rounded off to 1 decimal place).

Ans. (-900)

GATE 2019 Detailed Solution 09-02-2019 | MORNING SESSION

$$
\begin{array}{ll}
\because & \mathrm{I}_{\mathrm{DS}}=\frac{1}{2} \mathrm{~K}_{\mathrm{n}}^{\prime} \frac{\mathrm{W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)^{2} \\
\therefore & \mathrm{~g}_{\mathrm{m} 4}=\sqrt{2 \mathrm{I}_{\mathrm{DS} 4}} \sqrt{\mathrm{~K}_{\mathrm{n}}^{\prime} \mathrm{W} / \mathrm{L}} \\
& \mathrm{I}_{\mathrm{DS} 4}=\mathrm{I}_{2}=150 \mu \mathrm{~A} \\
& \mathrm{~g}_{\mathrm{m} 4}=\sqrt{2 \times 150} \sqrt{60 \times 5} \\
& \mathrm{~g}_{\mathrm{m} 4}=300 \mu \mathrm{~A} / \mathrm{V}
\end{array}
$$

Now for gain [AC analysis] $V_{D D}=0$
MOS-3 is replaced by $\mathrm{r}_{\mathrm{d} 3}=6 \mathrm{M} \Omega$ and MOS4 is replaced by small signal model. [$\because \mathrm{M}_{3}$ act as load]

$\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{in}}}=\frac{-\mathrm{g}_{\mathrm{m}} \mathrm{V}_{\mathrm{gs}} \mathrm{r}_{\mathrm{d} 4} \| \mathrm{r}_{\mathrm{d} 3}}{\mathrm{~V}_{\mathrm{gs}}}=-\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{d} 4} \| \mathrm{r}_{\mathrm{d} 3}$
$=-300 \times 10^{-6} \times\left[6 \times 10^{6} \| 6 \times 10^{6}\right]$
$=-900$
34. Let the state-space representation of an LTI system be $\mathrm{x}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}), \mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+$ $\mathrm{du}(\mathrm{t})$ where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are matrices, d is a scalar, $u(t)$ is the input to the system, and $y(t)$ is its output. Let $B=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\mathrm{T}}$ and $\mathrm{d}=0$. Which one of the following options for A and C will ensure that the transfer function of this LTI system is
$H(s)=\frac{1}{s^{3}+3 s^{2}+3 s+1}$?

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION
(a) $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3\end{array}\right]$ and $C=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$
(b) $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -1\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
(c) $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
(d) $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -1\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{ll}0 & 0\end{array}\right.$

Ans. (c)
Sol. Given transfer function

$$
\begin{align*}
& \frac{\mathrm{Y}(\mathrm{~s})}{\mathrm{U}(\mathrm{~s})}=\mathrm{H}(\mathrm{~s})=\frac{1}{\mathrm{~s}^{3}+3 \mathrm{~s}^{2}+2 \mathrm{~s}+1} \\
& \Rightarrow \frac{\mathrm{Y}(\mathrm{~s})}{\mathrm{X}_{1}(\mathrm{~s})} \cdot \frac{\mathrm{X}_{1}(\mathrm{~s})}{\mathrm{U}(\mathrm{~s})}=1 \times \frac{1}{\mathrm{~s}^{3}+3 \mathrm{~s}^{2}+2 \mathrm{~s}+1} \\
& \therefore \quad \frac{\mathrm{X}_{1}(\mathrm{~s})}{\mathrm{U}(\mathrm{~s})}=\frac{1}{\mathrm{~s}^{3}+3 \mathrm{~s}^{2}+2 \mathrm{~s}+1} \\
& \Rightarrow \mathrm{~s}^{3} \mathrm{X}_{1}(\mathrm{~s})+3 \mathrm{~s}^{2} \mathrm{X}_{1}(\mathrm{~s})+2 \mathrm{~s} \mathrm{X}_{1}(\mathrm{~s})+\mathrm{X}_{1}(\mathrm{~s})=\mathrm{U}(\mathrm{~s}) \\
& \dddot{\mathrm{x}}_{1}+3 \ddot{\mathrm{x}}_{1}+2 \dot{\mathrm{x}}_{1}+\mathrm{x}_{1}=\mathrm{U}(\mathrm{~s}) \\
& \text { let } \quad \dot{\mathrm{x}}_{1}=\mathrm{x}_{2} \tag{i}\\
& \ddot{\mathrm{x}}_{1}=\dot{\mathrm{x}}_{2}=\mathrm{x}_{3} \tag{ii}\\
& \dddot{\mathrm{x}}_{1}=\dot{\mathrm{x}}_{3} \tau \\
& \dot{\mathrm{x}}_{3}=\mathrm{U}(\mathrm{~s})-2 \mathrm{x}_{2}-3 \mathrm{x}_{3}-\mathrm{x}_{1} \tag{iii}
\end{align*}
$$

By using (i), (ii) \& (iii)
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \mathrm{U}(\mathrm{s})$
$\dot{\mathrm{x}}=\mathrm{AX}+\mathrm{BU}$
and $\frac{Y(s)}{X_{1}(s)}=1$
$\mathrm{Y}(\mathrm{s})=\mathrm{X}_{1}(\mathrm{~s})$
$\mathrm{y}=\mathrm{x}_{1}$

$$
[y]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \tag{v}\\
x_{2} \\
x_{3}
\end{array}\right]=C X
$$

from equation (iv) \& (v)

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -2 & -3
\end{array}\right] \\
& C=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

35. A CMOS inverter, designed to have a midpoint voltage V_{1} equal to half of $V_{d d}$, as shown in the figure, has the following parameters :
$\mathrm{V}_{\mathrm{dd}}=3 \mathrm{~V}$
$\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2} ; \mathrm{V}_{\mathrm{tn}}=0.7 \mathrm{~V}$ for nMOS
$\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=40 \mu \mathrm{~A} / \mathrm{V}^{2} ; \mathrm{V}_{\mathrm{tp}}=0.9 \mathrm{~V}$ for pMOS
The ratio of $\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{\mathrm{n}}$ to $\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{\mathrm{p}}$ is equal to \qquad (rounded off to 3 decimal places).

Ans. (0.225)
Sol. At threshold $V_{\text {in }}=V_{\text {out }}=V_{\text {th }}$ Using current equation, we get

$$
\mathrm{V}_{\mathrm{th}}=\frac{\mathrm{V}_{\mathrm{T}, \mathrm{n}}+\sqrt{\frac{\mathrm{K}_{\mathrm{P}}}{\mathrm{~K}_{\mathrm{n}}}}\left(\mathrm{~V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{T}, \mathrm{P}}\right)}{1+\sqrt{\frac{\mathrm{K}_{\mathrm{P}}}{\mathrm{~K}_{\mathrm{n}}}}}
$$

For $\mathrm{V}_{\text {th }}=\frac{\mathrm{V}_{\mathrm{DD}}}{2}$ we get

y

$$
\begin{aligned}
& \left(\frac{\mathrm{K}_{\mathrm{n}}}{\mathrm{~K}_{\mathrm{P}}}\right)=\left(\frac{\frac{\mathrm{V}_{\mathrm{DD}}}{2}+\mathrm{V}_{\mathrm{T}, \mathrm{P}}}{\frac{\mathrm{~V}_{\mathrm{DD}}}{2}-\mathrm{V}_{\mathrm{T}, \mathrm{n}}}\right)^{2} \\
& \frac{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{\mathrm{n}}}{\mu_{\mathrm{P}} \mathrm{C}_{\mathrm{ox}}\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{\mathrm{P}}}=\left(\frac{1.5+(-0.9)}{1.5-0.7}\right)^{2} \\
& \frac{100(\mathrm{~W} / \mathrm{L})_{\mathrm{n}}}{40(\mathrm{~W} / \mathrm{L})_{\mathrm{P}}}=\left(\frac{0.6}{0.8}\right)^{2} \\
& \frac{(\mathrm{~W} / \mathrm{L})_{\mathrm{n}}}{(\mathrm{~W} / \mathrm{L})_{\mathrm{P}}}=\frac{4}{10} \times \frac{36}{64}=0.225
\end{aligned}
$$

36. Consider a six-point decimation-in-time Fast Fourier Transform (FFT) algorithm, for which the signal-flow graph corresponding to $\mathrm{X}[1]$ is shown in the figure. Let $W_{6}=\exp \left(-\frac{j 2 \pi}{6}\right)$. In the figure, what should be the values of the coefficients a_{1}, a_{2}, a_{3} in terms of W_{6} so that $\mathrm{X}[1]$ is obtained correctly?

(a) $\mathrm{a}_{1}=1, \mathrm{a}_{2}=\mathrm{W}_{6}, \mathrm{a}_{3}=\mathrm{W}_{6}{ }^{2}$
(b) $\mathrm{a}_{1}=1, \mathrm{a}_{2}=\mathrm{W}_{6}{ }^{2}, \mathrm{a}_{3}=\mathrm{W}_{6}$
(c) $\mathrm{a}_{1}=-1, \mathrm{a}_{2}=\mathrm{W}_{6}{ }^{2}, \mathrm{a}_{3}=\mathrm{W}_{6}$
(d) $\mathrm{a}_{1}=-1, \mathrm{a}_{2}=\mathrm{W}_{6}, \mathrm{a}_{3}=\mathrm{W}_{6}{ }^{2}$

Ans. a
Sol. Six point DFT of $x(n)$

$$
\mathrm{X}(\mathrm{k})=\sum_{\mathrm{n}=0}^{5} \mathrm{x}(\mathrm{n}) \mathrm{W}_{6}^{\mathrm{kn}}
$$

GATE 2019

$$
\left.\begin{array}{r}
\mathrm{X}(1)=\mathrm{x}(0) \cdot \mathrm{W}_{6}{ }^{0}+\mathrm{x}(1) \mathrm{w}_{6}{ }^{1}+\mathrm{x}(2) \mathrm{W}_{6}{ }^{2}+ \\
\mathrm{x}(3) \mathrm{W}_{6}{ }^{3}+\mathrm{x}(4) \mathrm{W}_{6}{ }^{4}+\mathrm{x}(5) \mathrm{W}_{6}{ }^{5} \\
\mathrm{x}(1)=\mathrm{x}(0) \cdot 1+[\mathrm{x}(1)-\mathrm{x}(4)] \mathrm{W}_{6}{ }^{1}+[\mathrm{x}(2)- \\
\left.\mathrm{x}(5)] \mathrm{W}_{6}{ }^{2}+\mathrm{x}(3)\right] \mathrm{W}_{6}{ }^{3} \\
{\left[\because \mathrm{~W}_{6}^{4}=\mathrm{W}_{6}^{3}-\mathrm{W}_{6}^{1}=-\mathrm{W}_{6}^{1} \text { and } \mathrm{W}_{6}^{5}\right.} \\
=\mathrm{W}_{6}^{2} \cdot \mathrm{~W}_{6}^{3}=-\mathrm{W}_{6}^{2}
\end{array}\right]
$$

from signal-flow graph
$\mathrm{X}(1) \quad=\mathrm{a}_{1}[\mathrm{x}(0)-\mathrm{x}(3)]+[\mathrm{x}(1)-\mathrm{x}(4)] \mathrm{a}_{2}+$ $[x(2)-x(5)] a_{3}$
on comparing

$$
\mathrm{a}_{1}=1, \mathrm{a}_{2}=\mathrm{W}_{6}^{1}, \quad \mathrm{a}_{3}=\mathrm{W}_{6}^{2}
$$

37. A rectangular waveguide of width w and height h has cut-off frequencies for TE_{10} and TE_{11} modes in the ratio $1: 2$. The aspect ratio w / h, rounded off to two decimal place, is

Ans. 1.732
Sol. $\quad f_{c}=\frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}$
Cut-off frequency for TE_{10}
$\mathrm{f}_{\mathrm{c}_{1}}=\frac{\mathrm{c}}{2} \frac{1}{\mathrm{~W}}$
Cut off frequency for TE_{11}
$\mathrm{f}_{\mathrm{c}_{2}}=\frac{\mathrm{c}}{2} \sqrt{\left(\frac{1}{\mathrm{~W}}\right)^{2}+\left(\frac{1}{\mathrm{~h}}\right)^{2}}$
$\frac{\mathrm{f}_{\mathrm{c}_{1}}}{\mathrm{f}_{\mathrm{c}_{2}}}=\frac{\frac{\mathrm{c}}{2} \cdot \frac{1}{\mathrm{~W}}}{\frac{\mathrm{c}}{2} \sqrt{\left(\frac{1}{\mathrm{~W}}\right)^{2}+\left(\frac{1}{\mathrm{~h}}\right)^{2}}}$
$\frac{1}{2}=\frac{\frac{1}{\mathrm{~W}}}{\sqrt{\left(\frac{1}{\mathrm{~W}}\right)^{2}+\left(\frac{1}{\mathrm{~h}}\right)^{2}}} \quad\left[\because \operatorname{Given} \frac{\mathrm{f}_{\mathrm{c}_{1}}}{\mathrm{f}_{\mathrm{c}_{2}}}=\frac{1}{2}\right]$
$\left(\frac{1}{\mathrm{~W}}\right)^{2}+\left(\frac{1}{\mathrm{~h}}\right)^{2}=4\left(\frac{1}{\mathrm{~W}}\right)^{2}$

$$
\begin{aligned}
& \left(\frac{1}{\mathrm{~h}}\right)^{2}=3\left(\frac{1}{\mathrm{~W}}\right)^{2} \\
& \frac{\mathrm{~W}}{\mathrm{~h}}=\sqrt{3}=1.732
\end{aligned}
$$

38. A voice signal $m(t)$ is in the frequency range 5 KHz . The signal is amplitude-modulated to generated an $A M$ signal $f(t)=A(1+$ $\mathrm{m}(\mathrm{t})) \cos 2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}$, where $\mathrm{f}_{\mathrm{c}}=600 \mathrm{kHz}$. The AM signal $f(t)$ is to be digitized and archived. This is done by first sampling $f(t)$ at 1.2 times the Nyquist frequency, and then quantizing each sample using a 256 -level quantizer. Finally, each quantized sample is binary coded using K bits, where K is the minimum number of bits required for the encoding. The rate, in Megabits per second (rounded off to 2 decimal places), of the resulting stream of coded bits is \qquad Mbps.

Ans. (0.5904)
Sol. $\mathrm{m}(\mathrm{t})$ is band limited 5 kHz to 15 kHz Let

After modulation

It is a case of band pass sampling
Nyquist frequency $=\frac{2 f_{H}}{\mathrm{k}}$
where

$$
\mathrm{k}=\left[\frac{\mathrm{f}_{\mathrm{H}}}{\mathrm{BW}}\right]
$$

$$
\mathrm{k}=\left[\frac{615}{30}\right]=[20.5]
$$

Integer part of 20.5 is 20 hence

$$
\mathrm{k}=20
$$

Nyquist frequency $=\frac{2 \times 615}{20}=61.5 \mathrm{kHz}$
Sampling frequency $=1.2 \times$ Nyquist frequency

$$
\begin{aligned}
& =1.2 \times 61.5 \\
& =73.8 \mathrm{kHz}
\end{aligned}
$$

Quantization level $=256$

$$
\begin{aligned}
2^{\mathrm{n}} & =256 \\
\mathrm{n} & =8
\end{aligned}
$$

The rate $=n f_{s}$

$$
\begin{aligned}
& =8 \times 73.8 \\
& =590.4 \mathrm{kbps} \\
& =0.5904 \mathrm{Mbps}
\end{aligned}
$$

39. The quantum efficiency (η) and responsivity (R) at a wavelength λ (in $\mu \mathrm{m}$) in a p-i-n photodetector are related by
(a) $\mathrm{R}=\frac{\eta \times \lambda}{1.24}$
(b) $\mathrm{R}=\frac{1.24}{\eta \times \lambda}$
(c) $R=\frac{\lambda}{\eta \times 1.24}$
(d) $\mathrm{R}=\frac{1.24 \times \lambda}{\eta}$

Ans. (a)
Sol. Responsivity $(R)=\frac{\text { Photon current }}{\text { Optical power }}=\frac{I_{p}}{P_{\text {opt }}}$

$$
R=\frac{e r_{e}}{h v r_{p}}=\frac{e}{h v}(\eta)
$$

where quantum efficiency $(\eta)=\frac{r_{e}}{r_{p}}$
$=\frac{\mathrm{e}^{-}(\mathrm{s}) \text { generation rate }}{\text { incident photon rate }}$
$\mathrm{R}=\frac{\eta \mathrm{e}}{\mathrm{hv}}\left[\because \mathrm{hv}=\frac{1.24(\mathrm{ev})}{\lambda(\mu \mathrm{m})}\right]$

$$
\mathrm{R}=\frac{\eta \lambda}{1.24}
$$

GATE 2019
40. Consider a unity feedback system, as in the figure shown, with an integral compensator $\frac{\mathrm{k}}{\mathrm{s}}$ and open-loop transfer function
$G(s)=\frac{1}{s^{2}+3 s+2}$
where $k>0$. The positive value of K for which there are exactly two poles of the unity feedback system on the $j \omega$ axis is equal to
\qquad (rounded off to two decimal places).

Ans. (6)
Sol.

$$
G(s)=\frac{1}{s^{2}+3 s+2}
$$

Characteristic equation :

$$
1+\mathrm{G}^{\prime}(\mathrm{s}) \mathrm{H}(\mathrm{~s})=0 \quad\left[\mathrm{G}^{\prime}(\mathrm{s})=\frac{\mathrm{k}}{\mathrm{~s}} \mathrm{G}(\mathrm{~s})\right]
$$

$$
1+\frac{\mathrm{k}}{\mathrm{~s}\left(\mathrm{~s}^{2}+3 \mathrm{~s}+2\right)}=0
$$

$$
s^{3}+3 s^{2}+2 s+k=0
$$

Using routh array:

s^{3}	1	2
$\mathrm{~s}^{2}$	3	k
s^{1}	$\frac{6-\mathrm{k}}{3}$	
$\mathrm{~s}^{0}$	k	
$\mathrm{k}>0$		

For two poles on $j \omega$-axis

$$
\begin{aligned}
\frac{6-\mathrm{k}}{3} & =0 \\
\mathrm{k} & =6
\end{aligned}
$$

41. The RC circuit shown below has a variable resistance $R(t)$ given by the following expression:
$R(t)=R_{o}\left(1-\frac{t}{T}\right)$ for $0 \leq t<T$
where $R_{o}=1 \Omega$, and $C=1 F$. We are also given that $T=3 R_{0} C$ and the source voltage is $\mathrm{V}_{\mathrm{s}}=1 \mathrm{~V}$. If the current at time $\mathrm{t}=0$ is 1 A , then the current $I(t)$, in amperes, at time t $=\mathrm{T} / 2$ is \qquad (rounded off to 2 decimal places).

Ans. (0.25)
Sol.
Applying KCL, we get
$C \cdot \frac{d V(t)}{d t}+\frac{V(t)-V_{s}}{R(t)}=0$
$\Rightarrow \frac{\mathrm{dV}(\mathrm{t})}{\mathrm{dt}}+\frac{\mathrm{V}(\mathrm{t})-1}{\left(1-\frac{\mathrm{t}}{3}\right)}=0$
$\Rightarrow \frac{\mathrm{dV}(\mathrm{t})}{\mathrm{V}(\mathrm{t})-1}=-\frac{\mathrm{dt}}{1-\left(\frac{\mathrm{t}}{3}\right)}$
$\Rightarrow \frac{\mathrm{dV}(\mathrm{t})}{\mathrm{V}(\mathrm{t})-1}=\frac{3 \mathrm{dt}}{(\mathrm{t}-3)}$
Integrating on both sides, we get
$\ln [\mathrm{V}(\mathrm{t})-1]=3 \ln [\mathrm{t}-3]+\ln \mathrm{k}$
$\Rightarrow \ln [\mathrm{V}(\mathrm{t})-1]-\ln [\mathrm{t}-3]^{3}=\ln \mathrm{k}$
$\Rightarrow \ln \left[\frac{\mathrm{V}(\mathrm{t})-1}{(\mathrm{t}-3)^{3}}\right]=\ln \mathrm{k}$
$\Rightarrow \mathrm{V}(\mathrm{t})-1=\mathrm{K} \cdot(\mathrm{t}-3)^{3}$
$\Rightarrow \mathrm{V}(\mathrm{t})=1+\mathrm{K} \cdot(\mathrm{t}-3)^{3}$
$\mathrm{i}(\mathrm{t})=\mathrm{C} \cdot \frac{\mathrm{dV}(\mathrm{t})}{\mathrm{dt}}=\frac{\mathrm{dV}(\mathrm{t})}{\mathrm{dt}}=3 \mathrm{~K}(\mathrm{t}-3)^{2}$
$\mathrm{i}(\mathrm{t}=0)=3 \mathrm{~K} \cdot(-3)^{2}=27 \mathrm{~K}=1$
$\Rightarrow \mathrm{K}=\frac{1}{27}$
So, $i(t=1.5)=3 K(1.5-3)^{2}$
$=3 \mathrm{~K} \cdot \frac{9}{4}=3 \times \frac{1}{27} \times \frac{9}{4}$
$=\frac{1}{4} \mathrm{~A}$
42. Two identical copper wires W 1 and W 2 , placed in parallel as shown in the figure, carry currents I and $2 I$, respectively, in opposite directions. If the two wires are separated by a distance of 4 r , then the magnitude field \vec{B} between the wires at a distance r from W1 is

W2

W2
(a) $\frac{\mu_{0} \mathrm{I}}{6 \pi r}$
(b) $\frac{\mu_{0}^{2} \mathrm{I}^{2}}{2 \pi \mathrm{r}^{2}}$
(c) $\frac{6 \mu_{0} \mathrm{I}}{5 \pi \mathrm{r}}$
(d) $\frac{5 \mu_{0} \mathrm{I}}{6 \pi r}$

Ans. d
Sol.

When current in W_{1} and W_{2} in opposite direction hence at r distance from W_{1} is in same direction hence

$$
\mathrm{B}=\mathrm{B}_{1}+\mathrm{B}_{2}
$$

magnetic field due to W_{1}

$$
\mathrm{B}_{1}=\frac{\mu_{0}}{2 \pi} \frac{\mathrm{I}}{\mathrm{r}}
$$

Magnetic field due to W_{2}

$$
\mathrm{B}_{2}=\frac{\mu}{2 \pi} \frac{2 \mathrm{I}}{3 \mathrm{r}}
$$

Total magnetic field

$$
\begin{aligned}
B & =B_{1}+B_{2} \\
& =\frac{\mu}{2 \pi} \frac{I}{r}+\frac{\mu}{2 \pi} \frac{2 I}{3 r} \\
& =\frac{\mu_{0}}{2 \pi} \frac{I}{r}\left[1+\frac{2}{3}\right] \\
B & =\frac{5 \mu_{0} \mathrm{I}}{6 \pi r}
\end{aligned}
$$

43. A Germanium sample of dimensions $1 \mathrm{~cm} \times$ 1 cm is illuminated with a $20 \mathrm{~mW}, 600 \mathrm{~nm}$ laser light source as shown in the figure. The illuminated sample surface has a 100 nm of lossless Silicon dioxide layer that reflects one-fourth of the incident light. From the remaining light, one-third of the power is reflected from the Silicon dioxideGermanium interface, one-third is absorbed in the Germanium layer, and one-third is transmitted through the other side of the sample. If the absorption coefficient of Germanium at 600 nm is $3 \times 10^{4} \mathrm{~cm}^{-1}$ and the bandgap is 0.66 eV , the thickness of the

GATE 2019

Germanium layer, rounded off to 3 decimal places is, \qquad $\mu \mathrm{m}$.

Ans. (0.231)
Sol.
Power incident $p_{i}=20 \mathrm{~mW}$
Power reflected from $\mathrm{SiO}_{2}=\frac{p_{i}}{4}$
Power reflected from $\mathrm{SiO}_{2}-$ Ge interface

$$
\begin{equation*}
=\frac{1}{3}\left(\mathrm{p}_{\mathrm{i}}-\frac{\mathrm{p}_{\mathrm{i}}}{4}\right)=\frac{\mathrm{p}_{\mathrm{i}}}{4} \tag{ii}
\end{equation*}
$$

Power absorbed in $\mathrm{Ge}=\frac{1}{3}\left(\mathrm{p}_{\mathrm{i}}-\frac{\mathrm{p}_{\mathrm{i}}}{4}\right)=\frac{\mathrm{p}_{\mathrm{i}}}{4}$
Power transmitted through sample $=\frac{1}{3}\left(p_{i}-\frac{p_{i}}{4}\right)$

$$
\begin{equation*}
=\frac{\mathrm{p}_{\mathrm{i}}}{4} \tag{iv}
\end{equation*}
$$

Power entered in Ge sample $=($ iii $)+($ iv $)=\frac{2 p_{i}}{4}$
Power transmitted through thickness $(\mathrm{t})=\frac{\mathrm{p}_{\mathrm{i}}}{4}$

$$
\begin{gathered}
\mathrm{p}_{\mathrm{t}}=\mathrm{p}_{0} \mathrm{e}^{-\alpha \mathrm{t}} \\
\frac{\mathrm{p}_{\mathrm{i}}}{4}=\frac{2 \mathrm{p}_{\mathrm{i}}}{4} \mathrm{e}^{-\alpha \mathrm{t}} \Rightarrow \alpha \mathrm{t}=\ln 2 \\
\mathrm{t}=\frac{\ln 2}{2}=\frac{\ln 2}{3 \times 10^{4}}(\mathrm{~cm})=0.231 \times 10^{-4} \mathrm{~cm} \\
\mathrm{t}=0.231 \times 10^{-6} \mathrm{~m} \quad \mathrm{t}=0.231 \mu \mathrm{~m}
\end{gathered}
$$

44. In an ideal pn junction with an ideality factor of 1 at $T=300 \mathrm{~K}$, the magnitude of the reverse-bias voltage required to reach 75% of its reverse saturation current, rounded off
to 2 decimal places, is \qquad mV .
$\left[\mathrm{k}=1.38 \times 10^{-23} \mathrm{JK}^{-1}, \mathrm{~h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right.$, $\left.\mathrm{q}=1.602 \times 10^{-19} \mathrm{C}\right]$

Ans. ($\mathbf{3 5 . 8 2 1} \mathbf{~ m V}$)

Sol. For ideal diode

$$
\begin{aligned}
V_{t} & =\frac{K T}{q}=\frac{1.38 \times 10^{-23} \times 300}{1.602 \times 10^{-19}} \\
& =0.02584 \mathrm{volt}
\end{aligned}
$$

For diode

$$
\begin{aligned}
I & =I_{s}\left(e^{\frac{V_{B E}}{V_{T}}}-1\right) \\
\text { given } I & =-0.75 I_{s}
\end{aligned}
$$

$$
-0.75 I_{\mathrm{s}}=\mathrm{I}_{\mathrm{s}}\left(\mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{T}}}}-1\right)
$$

$$
\mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{T}}}}=0.25
$$

$$
\mathrm{V}_{\mathrm{BE}}=-0.02584 \times 1.386
$$

$$
\mathrm{V}_{\mathrm{BE}}=-0.035821
$$

$$
\left|\mathrm{V}_{\mathrm{BE}}\right|=35.821 \mathrm{mV}
$$

45. A single bit, equally likely to be 0 and 1 , is to be sent across an additive white Gaussian noise (AWGN) channel with power spectral density $\mathrm{N}_{\mathrm{o}} / 2$. Binary signaling, with $0 \rightarrow$ $p(t)$ and $1 \rightarrow q(t)$, is used for the transmission, along with an optimal receiver that minimizes the bit-error probability.

Let $\varphi_{1}(\mathrm{t}), \varphi_{2}(\mathrm{t})$ form an ortho-normal signal set.

If we choose $p(t)=\varphi_{1}(t)$ and $q(t)=-\varphi_{1}(t)$, we would obtain a certain bit-error probability P_{b}.

If we keep $p(t)=\varphi_{1}(t)$, but take $q(t)=$ $\sqrt{\mathrm{E}} \varphi_{2}(\mathrm{t})$, for what value of E would we obtain the same bit-error probability P_{b} ?
(a) 0
(b) 1
(c) 3
(d) 2

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION

Ans. (c)
Sol. Bits 0 and 1 are equally likely

$$
\mathrm{p}(0)=\frac{1}{2}=\mathrm{p}(1)
$$

when $p(t)=\phi_{1}(\mathrm{t})$ and $\mathrm{q}(\mathrm{t})=-\phi_{1}(\mathrm{t})$
Constellation diagram

Probability of error

$$
\begin{align*}
& \mathrm{p}_{\mathrm{e}_{1}}=\mathrm{Q}\left(\sqrt{\frac{\mathrm{~d}_{\min }^{2}}{2 \mathrm{~N}_{0}}}\right) \tag{i}\\
& \mathrm{d}_{\min }=2 \\
& \mathrm{p}_{\mathrm{e}_{1}}=\mathrm{Q}\left(\sqrt{\frac{4}{2 \mathrm{~N}_{0}}}\right)
\end{align*}
$$

When $p(t)=\phi_{1}(t)$ and $q(t)=\sqrt{E} \phi_{2}(t)$

$$
\begin{align*}
\mathrm{d}_{\min } & =\sqrt{\mathrm{E}+1} \\
\mathrm{p}_{\mathrm{e}_{2}} & =\mathrm{Q}\left[\sqrt{\frac{\mathrm{~d}_{\min }^{2}}{2 \mathrm{~N}_{0}}}\right] \tag{ii}\\
\mathrm{p}_{\mathrm{e}_{2}} & =\mathrm{Q}\left[\sqrt{\frac{\mathrm{E}+1}{2 \mathrm{~N}_{0}}}\right] \tag{iii}
\end{align*}
$$

Given,

$$
\begin{aligned}
\mathrm{p}_{\mathrm{e}_{1}} & =\mathrm{p}_{\mathrm{e}_{2}} \\
4 & =\mathrm{E}+1 \Rightarrow \mathrm{E}=3
\end{aligned}
$$

46. Consider the homogeneous ordinary differential equation :
$x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=0, x>0$
with $\mathrm{y}(\mathrm{x})$ as a general solution. Given that $\mathrm{y}(1)=1$ and $\mathrm{y}(2)=14$
the value of $y(1.5)$, rounded of to two decimal places, is \qquad _.

Ans. (5.25)
Sol. Consider the homogeneous ordinary differential equation
$x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=0$
Assuming, $x=\mathrm{e}^{\mathrm{z}}, \frac{\mathrm{d}}{\mathrm{dz}}=\theta, \mathrm{z}=\ln \mathrm{x}$
equation (i) can be written as
$[(\theta)(\theta-1)-3 \theta+3] y=0$
$\left[\theta^{2}-\theta-3 \theta+3\right] y=0$
$\theta^{2}-4 \theta+3=0$
$\theta=1,3$
so, $\mathrm{y}=\mathrm{C}_{1} \mathrm{e}^{\mathrm{z}}+\mathrm{C}_{2} \mathrm{e}^{3 \mathrm{z}}$
$(\mathrm{z}=\ln \mathrm{x})$
$\mathrm{y}=\mathrm{C}_{1} \mathrm{e}^{\ln \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{3 \ln \mathrm{x}}$
$\mathrm{y}=\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \mathrm{x}^{3}$
Putting initial conditions $y(1)=1$ and $y(2)=14$
so, $\mathrm{C}_{1}+\mathrm{C}_{2}=1$
$\& 2 \mathrm{C}_{1}+8 \mathrm{C}_{2}=14$
Solving (ii) \& (iii) we get
$\mathrm{C}_{1}=-1$ and $\mathrm{C}_{2}=2$
so, $\mathrm{y}=-\mathrm{x}+2 \mathrm{x}^{3}$
$y(1.5)=-1.5+2(1.5)^{3}$

$$
\mathrm{y}(1.5)=5.25
$$

GATE 2019
EC
47. Let a random process $\mathrm{Y}(\mathrm{t})$ be described as $\mathrm{Y}(\mathrm{t})=\mathrm{h}(\mathrm{t}) * \mathrm{X}(\mathrm{t})+\mathrm{Z}(\mathrm{t})$, where $\mathrm{X}(\mathrm{t})$ is a white noise process with power spectral density $S_{x}(f)=5 \mathrm{~W} / \mathrm{Hz}$. The filter $h(t)$ has a magnitude response given by $|\mathrm{H}(\mathrm{f})|=0.5$ for $-5 \leq f \leq 5$, and zero elsewhere. $\mathrm{Z}(\mathrm{t})$ is a stationary random process, uncorrelated with $\mathrm{X}(\mathrm{t})$, with power spectral density as shown in the figure. The power in $\mathrm{Y}(\mathrm{t})$, in watts, is equal to \qquad W (rounded off to two decimal places).

Ans. (17.5)
Sol. $\quad \mathrm{y}(\mathrm{t})=\mathrm{h}(\mathrm{t}) * \mathrm{x}(\mathrm{t})+\mathrm{z}(\mathrm{t})$
Given

Power spectral density of $y(t)$

$$
\mathrm{S}_{\mathrm{y}}(\mathrm{f})=|\mathrm{H}(\mathrm{f})|^{2} \mathrm{~S}_{\mathrm{x}}(\mathrm{f})+\mathrm{S}_{\mathrm{z}}(\mathrm{f})
$$

Power in $y(t)=\int_{-\infty}^{\infty} S_{y}(f)$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty}|\mathrm{H}(\mathrm{f})|^{2} \mathrm{~S}_{\mathrm{x}}(\mathrm{f}) \mathrm{df}+\int_{-\infty}^{\infty} \mathrm{S}_{\mathrm{z}}(\mathrm{f}) \mathrm{df} \\
& \quad=\int_{-5}^{5}\left(\frac{1}{2}\right)^{2} .5 \mathrm{df}+\frac{1}{2} \times 10 \times 1
\end{aligned}
$$

$$
=12.5+5=17.5 \mathrm{~W}
$$

48. In the circuit shown, the breakdown voltage and the maximum current of the Zener diode are 20 V and 60 mA , respectively. The values of R_{1} and R_{L} are 200Ω and $1 \mathrm{k} \Omega$, respectively. What is the range of V_{i} that will maintain the Zener diode in the 'on' state?

(a) 20 V to 28 V
(b) 18 V to 24 V
(c) 22 V to 34 V
(d) 24 V to 36 V

Ans. (d)
Sol.

When diode is in breakdown

$$
\begin{aligned}
\mathrm{I} & =\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{Z} \max } \\
\mathrm{I} & =\frac{20}{1 \mathrm{k} \Omega}+60 \\
& =20+60 \\
& =80 \mathrm{~mA} \\
\mathrm{~V}_{\mathrm{i} \max } & =200 \times 80 \times 10^{-3}+20 \\
& =16+20 \\
& =36 \text { volt } \\
24 \mathrm{~V}<\mathrm{V}_{\mathrm{i}} & <36 \text { volt }
\end{aligned}
$$

49. In the circuit shown, V_{s} is a 10 V square wave of period, $T=4 \mathrm{~ms}$ with $\mathrm{R}=500 \Omega$ and $\mathrm{C}=$ $10 \mu \mathrm{~F}$. The capacitor is initially uncharged at $\mathrm{t}=0$, and the diode is assumed to be ideal. The voltage across the capacitor $\left(\mathrm{V}_{\mathrm{c}}\right)$ at 3 ms is equal to \qquad volts (rounded off to one decimal place).

Ans. (3.29)

Sol.

For $0<\mathrm{t}<\mathrm{T} / 2$ or $0<\mathrm{t}<2 \mathrm{~ms}$ diode is ON

$$
\text { at } \begin{aligned}
\mathrm{V}_{\mathrm{c}}(\mathrm{t}) & =10-10 \mathrm{e}^{-200 \mathrm{t}} \\
\mathrm{t} & =2 \mathrm{~m} \mathrm{sec} .
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{c}}=10-10 \mathrm{e}^{-0.4}
$$

$$
\mathrm{V}_{\mathrm{c}}=3.29
$$

when $2 \mathrm{~ms}<\mathrm{t}<4 \mathrm{~ms}$
diode is OFF capacitor has no discharge path

hence $\mathrm{V}_{\mathrm{c}}(\mathrm{t}=3 \mathrm{~m} \mathrm{sec})=3.29$ volt.
50. In the circuit shown, if $v(t)=2 \sin (1000 t)$ volts, $R=1 \mathrm{k} \Omega$ and $C=1 \mu F$, then the steady-state current $i(t)$, in milliamperes (mA), is

(a) $3 \sin (1000 t)+\cos (1000 t)$
(b) $2 \sin (100 t)+2 \cos (1000 t)$
(c) $\sin (100 \mathrm{t})+\cos (1000 \mathrm{t})$
(d) $\sin (1000 t)+3 \cos (1000 t)$

Ans. (a)
Sol.

$\omega=1000$
$\mathrm{C}=1 \mu \mathrm{~F}$

$$
\mathrm{R}=1 \mathrm{k} \Omega
$$

$$
Z_{1}=\frac{R \times \frac{1}{j \omega \mathrm{C} / 3}}{R+\frac{1}{j \omega \mathrm{C} / 3}}=\frac{R}{1+j \omega R \frac{C}{3}}
$$

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{T}} & =\frac{2}{3} \mathrm{Z}_{1}=\frac{2}{3}\left[\frac{\mathrm{R}}{1+\mathrm{j} \omega \mathrm{RC} / 3}\right] \\
& =\frac{2}{3} \times \frac{10^{3}}{1+\mathrm{j} 10^{3} \frac{10^{3} \times 10^{-6}}{3}}
\end{aligned}
$$

$$
\mathrm{Z}_{\mathrm{T}}=\frac{2}{3} \times \frac{10^{3}}{(1+\mathrm{j} / 3)}
$$

$$
=\frac{2}{3} \times \frac{3 \times 10^{3}}{(3+\mathrm{j})}=\frac{2 \times 10^{3}}{3+\mathrm{j}}
$$

$$
\mathrm{i}=\frac{\mathrm{V}(\mathrm{t})}{\mathrm{Z}_{\mathrm{T}}}=\frac{2 \sin (1000 \mathrm{t})}{\frac{2 \times 10^{3}}{3+\mathrm{j}}}
$$

$$
=[(3+\mathrm{j}) \sin (1000 \mathrm{t})]
$$

$i(t)=[3 \sin 1000 t+j \sin 1000 t] m A$
$\mathrm{i}(\mathrm{t})=[3 \sin 1000 \mathrm{t}+1 \angle 90(\sin 1000 \mathrm{t})] \mathrm{mA}$
$=[3 \sin 1000 \mathrm{t}+\sin (1000 \mathrm{t}+90)] \mathrm{mA}$
$\mathrm{i}(\mathrm{t})=[3 \sin (1000 \mathrm{t})+\cos 1000 \mathrm{t}] \mathrm{mA}$

GATE 2019
51. Consider a long-channel MOSFET with a channel length $1 \mu \mathrm{~m}$ and width $10 \mu \mathrm{~m}$. The device parameters are acceptor concentration $\mathrm{N}_{\mathrm{A}}=5 \times 10^{16} \mathrm{~cm}^{-3}$, electron mobility $\mu_{\mathrm{n}}=$ $800 \mathrm{~cm}^{2} / V$-s, oxide capacitance/area $\mathrm{C}_{\mathrm{ox}}=$ $3.45 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}$, threshold voltage $\mathrm{V}_{\mathrm{T}}=$ 0.7 V . The drain saturation current ($\mathrm{I}_{\text {Dsat }}$) for a gate voltage of 5 V is \qquad mA (rounded off to two decimal places).
$\left[\varepsilon_{0}=8.854 \times 10^{-14} \mathrm{~F} / \mathrm{cm}, \varepsilon_{\text {si }}=11.9\right]$
Ans. (25.51)
Sol. Given

$$
\begin{aligned}
& \mathrm{L}=1 \mu \mathrm{~m}, \mathrm{~W}=10 \mu \mathrm{~m} \\
& \mathrm{~N}_{\mathrm{A}}=5 \times 10^{16} \mathrm{~cm}^{-3} \\
& \mu_{\mathrm{n}}=800 \frac{\mathrm{~cm}^{2}}{\mathrm{v}-\mathrm{s}}, \\
& \mathrm{C}_{\mathrm{ox}}=3.45 \times 10^{-7} \frac{\mathrm{~F}}{\mathrm{~cm}^{2}} \\
& \mathrm{~V}_{\mathrm{T}}=0.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{G}}=5 \mathrm{~V} \\
& \mathrm{I}_{\text {Dsat. }}=\frac{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \mathrm{~W}}{2 \mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2} \\
&=\frac{800 \times 3.45 \times 10^{-7} \times 10}{2 \times 1}(5-0.7)^{2} \\
&=13.8 \times 10^{-4} \times(4.3)^{2} \\
& \mathrm{I}_{\mathrm{Dsat}}=25.516 \mathrm{~mA}
\end{aligned}
$$

52. It is desired to find a three-tap causal filter which gives zero signal as an output to an input of the form
$\mathrm{x}[\mathrm{n}]=\mathrm{c}_{1} \exp \left(-\frac{\mathrm{j} \pi \mathrm{n}}{2}\right)+\mathrm{c}_{2} \exp \left(\frac{\mathrm{j} \pi \mathrm{n}}{2}\right)$
where c_{1} and c_{2} are real numbers. The desired three-tap filter is given by

$$
\mathrm{h}[0]=1, \mathrm{~h}[1]=\mathrm{a}, \mathrm{~h}[2]=\mathrm{b}
$$

and $\mathrm{h}[\mathrm{n}]=0$ for $\mathrm{n}<0$ or $\mathrm{n}>2$
What are the values of the filter taps a and b if the output is $\mathrm{y}[\mathrm{n}]=0$ for all n , when $\mathrm{x}[\mathrm{n}]$ is as given above?

GATE 2019
Detailed Solution
09-02-2019 | MORNING SESSION

(a) $\mathrm{a}=-1, \mathrm{~b}=1$
(b) $\mathrm{a}=0, \mathrm{~b}=1$
(c) $\mathrm{a}=1, \mathrm{~b}=1$
(d) $\mathrm{a}=0, \mathrm{~b}=-1$

Ans. b
Sol.

Let fourier transform of $h(n)$ is $H(\omega)$
$\mathrm{H}(\omega)=1+\mathrm{ae}^{\mathrm{j} \omega}+\mathrm{be} \mathrm{e}^{\mathrm{j} 2 \omega}$
for input
$x(n)=c_{1} e^{-j\left(\frac{n \pi}{2}\right)}+c_{2} e^{j\left(\frac{n \pi}{2}\right)}$
for output

$$
\begin{align*}
y(n)= & c_{1}\left|H\left(\omega=-\frac{\pi}{2}\right)\right| e^{-j \frac{n \pi}{2}}+c_{2}\left|H\left(\omega=\frac{\pi}{2}\right)\right| e^{+j\left(\frac{n \pi}{2}\right)} \\
& \text { for } y(n)=0 \\
& \left|H\left(\omega=\frac{-\pi}{2}\right)\right|=0 \\
& 1+a e^{-j \frac{\pi}{2}}+b e^{-j \pi}=0 \\
& 1-a j-b=0 \\
& (1-b)-a j=0 \tag{1}
\end{align*}
$$

and $\left|H\left(\omega=\frac{\pi}{2}\right)\right|=0$

$$
1+a e^{\frac{j \pi}{2}}+b e^{+j \pi}=0
$$

$1+a j-b=0$
$(1-b)+a j=0$
from (1) and (2)
$1-b=0$
$\mathrm{b}=1$
$\mathrm{a}=0$
53. The block diagram of a system is illustrated in the figure shown, where $\mathrm{X}(\mathrm{s})$ is the input and $\mathrm{Y}(\mathrm{s})$ is the output. The transfer function
$H(s)=\frac{Y(s)}{X(s)}$ is

(a) $\mathrm{H}(\mathrm{s})=\frac{\mathrm{s}+1}{\mathrm{~s}^{2}+\mathrm{s}+1}$
(b) $\mathrm{H}(\mathrm{s})=\frac{\mathrm{s}^{2}+1}{\mathrm{~s}^{3}+2 \mathrm{~s}^{2}+\mathrm{s}+1}$
(c) $\mathrm{H}(\mathrm{s})=\frac{\mathrm{s}^{2}+1}{2 \mathrm{~s}^{2}+1}$
(d) $\mathrm{H}(\mathrm{s})=\frac{\mathrm{s}^{2}+1}{\mathrm{~s}^{3}+\mathrm{s}^{2}+\mathrm{s}+1}$

Ans. (b)
Sol.

Transfer function

$$
\frac{Y(s)}{X(s)}=\frac{\frac{s^{2}+1}{s^{3}+s^{2}+s}}{1+\frac{s^{2}+1}{s^{3}+s^{2}+s}}
$$

GATE 2019 Detailed Solution 09-02-2019 | MORNING SESSION

$$
\begin{array}{r}
H(s)=\frac{s^{2}+1}{s^{3}+2 s^{2}+s+1} \\
H(s)=\frac{Y(s)}{X(s)}=\frac{s^{2}+1}{s^{3}+2 s^{2}+s+1}
\end{array}
$$

54. A random variable X takes values -1 and +1 with probabilities 0.2 and 0.8 , respectively. It is transmitted across a channel which adds noise N, so that the random variable at the channel output is $Y=X+N$. The noise N is independent of X, and is uniformly distributed over the interval $[-2,2]$. The receiver makes a decision
$\hat{\mathrm{X}}=\left\{\begin{array}{l}-1, \text { if } \quad \mathrm{Y} \leq \theta \\ +1, \text { if } \quad \mathrm{Y}>\theta\end{array}\right.$
where the threshold $\theta \in[-1,1]$ is chosen so as to minimize the probability of error $\operatorname{Pr}[\hat{X} \neq \mathrm{X}]$. The minimum probability of error, rounded off to 1 decimal place, is \qquad .

Ans. (0.1)
Sol. $\quad p(x=-1)=0.2$
$p(x=1)=0.8$
and pdf of noise

at receiver

$p_{e}=p(x=-1) p\left(\frac{1 R_{x}}{-1 T_{x}}\right)+p(x=1) p\left(\frac{-1}{1 T_{x}}\right)$
$p_{e}=0.2 \frac{1}{4}(1-\theta)+0.8 \times \frac{1}{4}(1+\theta)$
For min. p_{e}

$$
\begin{aligned}
\frac{d p_{e}}{d \theta} & =0 \\
p_{e} & =-\frac{0.2}{4}+\frac{0.8}{4}=\frac{0.6}{4}=0.1
\end{aligned}
$$

55. Consider a causal second-order system with the transfer function
$G(s)=\frac{1}{1+2 s+s^{2}}$
with a unit-step $R(s)=\frac{1}{s}$ as an input. Let C(s) be the corresponding output. The time taken by the system output $\mathrm{c}(\mathrm{t})$ to reach 94% of its steady-state value $\lim _{t \rightarrow \infty} c(t)$, rounded off to two decimal places, is
(a) 3.89
(b) 2.81
(c) 5.25
(d) 4.50

Ans. (d)

Sol.

$$
\begin{aligned}
\mathrm{G}(\mathrm{~s}) & =\frac{1}{\mathrm{~s}^{2}+2 \mathrm{~s}+1} \\
\mathrm{R}(\mathrm{~s}) & =\frac{1}{\mathrm{~s}} \\
\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})} & =\mathrm{G}(\mathrm{~s}) \\
\mathrm{C}(\mathrm{~s}) & =\frac{1}{\mathrm{~s}} \frac{1}{\left(\mathrm{~s}^{2}+2 \mathrm{~s}+1\right)} \\
\mathrm{C}(\mathrm{~s}) & =\frac{1}{\mathrm{~s}(\mathrm{~s}+1)^{2}}
\end{aligned}
$$

Applying partial fraction

$$
\begin{aligned}
\frac{1}{\mathrm{~s}(\mathrm{~s}+1)^{2}} & =\frac{\mathrm{A}}{\mathrm{~s}}+\frac{\mathrm{B}}{(\mathrm{~s}+1)}+\frac{\mathrm{C}}{(\mathrm{~s}+1)^{2}} \\
1 & =\mathrm{A}(\mathrm{~s}+1)^{2}+\mathrm{Bs}(\mathrm{~s}+1)+\mathrm{Cs}
\end{aligned}
$$

Now comparing coefficients on both sides
$\mathrm{A}=1, \mathrm{~B}=-1, \mathrm{C}=-1$

$$
\mathrm{C}(\mathrm{~s})=\frac{1}{\mathrm{~s}}-\frac{1}{(\mathrm{~s}+1)}-\frac{1}{(\mathrm{~s}+1)^{2}}
$$

Now applying inverse Laplace transform

$$
\mathrm{C}(\mathrm{t})=1-\mathrm{e}^{-\mathrm{t}}-\mathrm{te}^{-\mathrm{t}}
$$

Steady state value $\lim _{\mathrm{t} \rightarrow \infty} \mathrm{c}(\mathrm{t})=1-\mathrm{e}^{-\infty}-\infty \mathrm{e}^{-\infty}$
$=1$
Now, $1 \times \frac{94}{100}=1-\mathrm{e}^{-\mathrm{t}}-\mathrm{te}^{-\mathrm{t}}$

$$
0.94=1-\mathrm{e}^{-\mathrm{t}}-\mathrm{te}^{-\mathrm{t}}
$$

From trial and error method

$$
t=4.5
$$

