

FINAL NEET(UG)-2019 EXAMINATION

(Held On Sunday 05th MAY, 2019)

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION

1. Under isothermal condition, a gas at 300 K expands from 0.1L to 0.25L against a constant external pressure of 2 bar. The work done by the gas is :-[Given that 1L bar = 100 J] (1) -30 J (2) 5kJ (3) 25 J (4) 30 J Ans. (1) **Sol.** $W = -P_{ext} (V_2 - V_1)$ $P_{ext} = 2 bar$ $V_1 = 0.1 L$ $V_2 = 0.25 L$ W = -2 bar[0.25 - 0.1] L $W = -2 \times 0.15$ bar L W = -0.30 bar L $W = (-0.30) \times 100 = -30 J$ 2. A compound is formed by cation C and anion A. The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is :- $(1) C_2 A_3$ $(2) C_3 A_2$ $(3) C_3 A_4$ $(4) C_4 A_3$ Ans. (3) Sol. Anion A in HCP No of ions of A in Unit cell = 6No of Octahedral voids = 675% is occupied by cations C No of cations C = $6 \times \frac{75}{100}$ $= 6 \times \frac{3}{4}$ $=\frac{9}{2}$ C_{9/2}A₆ C₉A₁₂ Simple ratio C_3A_4 pH of a saturated solution of Ca(OH)₂ is 9. The solubility product (K_{sp}) of Ca(OH)₂ is :-3. (3) 0.125×10^{-15} (1) 0.5×10^{-15} (2) 0.25×10^{-10} (4) 0.5×10^{-10} Ans. (1) **Sol.** $Ca(OH)_2(s) \rightleftharpoons Ca^{+2}(aq) + 2OH^{-}(aq)$ S 2S pH = 9; pOH = 5; $[OH^{-}] = 10^{-5} = 2S$ $S = \frac{10^{-5}}{2}$ $K_{sp} = [Ca^{+2}] [OH^{-}]^2$ $K_{sp} = S \times (2S)^2$ $K_{sp} = 4S^3$ $K_{sp} = 4 \times \left(\frac{10^{-5}}{2}\right)^3$ $K_{\rm sp} = 0.5 \times 10^{-15}$

The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process 4. is :-(2) 20 (1) 10(3) 30(4) 40Ans. (3) **Sol.** $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ 2 mole $NH_3(g)$ requires 3 mole $H_2(g)$ 20 mole $NH_3(g)$ requires $=\frac{3}{2}\times 20$ mole H₂(g) = 30 mole 5. For an ideal solution, the **correct** option is :-(1) $\Delta_{mix} S = 0$ at constant T and P (2) $\Delta_{mix} V \neq 0$ at constant T and P (3) $\Delta_{\text{mix}} H = 0$ at constant T and P (4) Δ_{mix} G = 0 at constant T and P Ans. (3) Sol. For ideal solution $\Delta H_{mix} = 0$ For a cell involving one electron $E_{cell}^{\Theta} = 0.59V$ at 298 K, the equilibrium constant for the cell reaction is :-6. Given that $\frac{2.303\text{RT}}{\text{F}} = 0.059\text{V}$ at T = 298K (3) 1.0×10^{10} (1) 1.0×10^2 (2) 1.0×10^5 (4) 1.0×10^{30} Ans. (3) **Sol.** $E_{cell} = E_{cell}^{o} - \frac{2.303 \text{ RT}}{nF} \log_{10} Q$ at equilibrium $E_{cell} = 0$, $Q = K_{eq.}$ $0 = E_{\text{cell}}^{\circ} - \frac{0.0591}{1} log_{10} K_{\text{eq.}}$ $E_{cell}^{o} = +0.0591 \log_{10} K_{eq}$ $0.59 = + 0.0591 \log_{10} K_{eq}$ $\begin{array}{l} +10 = \log_{10} K_{eq.} \\ K_{eq.} = \ 10^{+10} \end{array}$ 7. Among the following, the one that is not a green house gas is :-(1) nitrous oxide (2) methane (3) ozone (4) sulphur dioxide Ans. (4) Sol. Besides carbon dioxide, other greenhouse gases are methane, water vapour, nitrous oxide, CFCs and ozone. The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is :-8. (1) 10 σ bonds and 3π bonds (2) 8 σ bonds and 5π bonds (3) 11 σ bonds and 2π bonds (4) 13 σ bonds and no π bond Ans. (1) **Sol.** H-C-C=C-C=C-H Number of sigma bonds = 10Number of π -bonds = 3

CODE - P2

Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory? 9. (4) Be₂ $(1) O_2$ (2) N_2 $(3) C_2$ Ans. (3) Sol. According to M.O.T. electronic configuration of C_2 molecule is - $\sigma 1s^2 < \sigma^* 1s^2 < \sigma 2s^2 < \sigma^* 2s^2 < \pi_2 p_x^2 = \pi_2 p_y^2$ so, C_2 molecule contain only ' π ' bond 10. Which of the following reactions are disproportionation reaction ? (a) $2Cu^+ \rightarrow Cu^{2+} + Cu^0$ (b) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$ (c) $2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$ (d) $2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^{\oplus}$ Select the **correct** option from the following :-(1) (a) and (b) only (2) (a), (b) and (c) (3) (a), (c) and (d) (4) (a) and (d) only Ans. (1) **Sol.** (a) $2Cu^+ \rightarrow Cu^{+2} + Cu$ $Cu^+ \rightarrow Cu^{+2}$ (oxidation) $Cu^+ \rightarrow Cu$ (Reduction) (b) $MnO_4^{2-} \rightarrow MnO_4^{-}$ (oxidation) +6 +7 MnO₄²⁻ \rightarrow MnO₂ (Reduction) +4 The above two reaction are disproportionation. 11. Among the following, the narrow spectrum antibiotic is :-(1) penicillin G (2) ampicillin (3) amoxycillin (4) chloramphenicol Ans. (1) Sol. The antibiotics which effective mainly against Gram-positive or Gram-negative bacteria are **narrow spectrum** antibiotics. Penicillin G has a narrow spectrum. ampicillin, amoxycillin, chloramphenicol are **broad spectrum antibiotics**. 12. The correct order of the basic strength of methyl substituted amines in aqueous solution is :-(1) $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$ (2) (CH₃)₃N>CH₃NH₂ > (CH₃)₂NH (3) (CH₃)₃N>(CH₃)₂NH>CH₃NH₂ (4) $CH_3NH_2 > (CH_3)_2NH > (CH_3)_3N$ Ans. (1) The order of basic strength in case of methyl substituted amines and ethyl substituted amines in aqueous solution Sol. is as follows : $(C_2H_5)_2$ NH > $(C_2H_5)_3$ N > C_2H_5 NH₂ > NH₃ $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$ Which mixture of the solutions will lead to the formation of negatively charged colloidal [AqI] I^- sol. ? 13. (1) 50 mL of 1M AgNO₃ + 50 mL of 1.5 M KI (2) 50 mL of 1M AgNO₃ + 50 mL of 2 M KI (3) 50 mL of 2 M AgNO₃ + 50 mL of 1.5 M KI (4) 50 mL of 0.1 M AgNO₃ + 50 mL of 0.1 M KI Ans. (1,2) **Sol.** In negatively charged colloid [AgI] [-, [-] is preferentially adsorbed. $AqNO_3 + KI \rightarrow AqI + KNO_3$ When KI is in excess, I⁻ will be adsorbed on the surface of AgI and [AgI] I⁻ is formed

Final NEET{UG}-2019 Exam/05-05-2019
14. Conjugate base for Bronsted acids H₂O and HF are:
(1) OH and H₂F* respectively (2) H₃O* and F⁻, respectively
(3) OH⁻ and F⁻, respectively (4) H₃O* and H₂F*, respectively
Ans. (3)
Sol. Conjugate base of H₂O is OH⁻
Conjugate base of HF is F⁻
15. Which will make basic buffer ?
(1) 50 mL of 0.1 M NaOH + 25 mL of 0.1 M CH₃COOH
(2) 100 mL of 0.1 M NHCH + 200 mL of 0.1 M NAOH
(3) 100 mL of 0.1 M HCH + 200 mL of 0.1 M NAOH
(4) 100 mL of 0.1 M HCH + 200 mL of 0.1 M NAOH
(3) 100 mL of 0.1 M HCH + 100 mL of 0.1 M NAOH
Ans. (3)
Sol. Basic buffer is mixture of weak base and salt of weak base with strong acid
mill mole of HCH = 100 × 0.1 = 10 millit mole
HCH + NH₄CH + NM₄CH + H₂O
10 20 - - -
- 10 10
16. The compound that is most difficult to protonate is:
(1)
$$H^{-O}H^{-$$

(i) size of Cl^- is large so it cannot accommodate around Si^{+4} due to limitation of size (ii) Interaction between lone pair of chloride ion and Si^{+4} is not very strong

4

- **19.** Which of the following is an amphoteric hydroxide?
 $(1) \operatorname{Sr}(OH)_2$ (2) Ca(OH)_2(3) Mg(OH)_2(4) Be(OH)_2
- Ans. (4)
- **Sol.** Be(OH)₂ is an amphoteric hydroxide rest all are basic hydroxides
- **20.** The structure of intermediate A in the following reaction is :-

Ans. (2)

Sol. Phenol is manufactured from the hydrocarbon, cumene. Cumene (isopropylbenzene) is oxidised in the presence of air to cumene hydroperoxide. it is converted to phenol and acetone by treating it with dilute acid. Acetone, a by-product of this reaction, is also obtained in large quantities by this method.

- 21. The manganate and permanganate ions are tetrahedral, due to
 - (1) The π -bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
 - (2) There is no π -bonding
 - (3) The π -bonding involves overlap of p-orbitals of oxygen with p-orbitals of managanese
 - (4) The π -bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese

Ans. (1)

Sol. MnO_4^{-2} (Mangnate ion) and MnO_4^{-} (Permangnate ion)

both are tetrahedral

Since ${}^{\!\prime}\pi{}^{\!\prime}$ bond is formed between p-orbital of oxygen and d–orbital of Managnese

22. For the second period elements the **correct** increasing order of first ionisation enthalpy is :-(1) Li < Be < B < C < N < O < F < Ne(2) Li < B < Be < C < O < N < F < Ne(3) Li < B < Be < C < N < O < F < Ne(4) Li < Be < B < C < O < N < F < NeAns. (2) Sol. For same shell $[s^1 < p^1 < s^2 < p^2 < p^4 < p^3 < p^5 < p^6]$ Li < B < Be < C < O < N < F < Ne23. If the rate constant for a first order reaction is k, the time (t) required for the completion of 90% of the reaction is given by :-(3) t = 4.606/k(1) t = 0.693/k(2) t = 6.909/k(4) t = 2.303/kAns. (3) Sol. For first order reaction $k = \frac{1}{t} ln \left[\frac{A_{o}}{A_{t}} \right]$ For 99% completing [A]_o=100, [A]_t=1 For 99% completion, $k = \frac{1}{t} ln \left[\frac{100}{1} \right]$ $k = \frac{2.303 \log_{10} 100}{t}$ $k = \frac{2.303 \times 2}{t}$ $k = \frac{4.606}{t}$ $t = \frac{4.606}{k}$ Identify the **incorrect** statement related to PCl₅ from the following :-24. (1) Three equatorial P-Cl bonds make an angle of 120° with each other (2) Two axial P-Cl bonds make an angle of 180° with each other (3) Axial P–Cl bonds are longer than equatorial P–Cl bonds (4) PCl₅ molecule is non-reactive

Ans. (4)

 PCl_5 is reactive molecule

25. 4d, 5p, 5f and 6p orbitals are arranged in the order of decreasing energy. The **correct** option is :-(1) 5f > 6p > 5p > 4d(2) 6p > 5f > 5p > 4d(3) 6p > 5f > 4d > 5p(4) 5f > 6p > 4d > 5p

Ans. (1)

Sol. According to (n+l) rule, correct order of energy is 5f > 6p > 5p > 4dFor same value of (n+l); higher is the value of n, higher will be the energy.

6

path to success	CODE - P2						
26.	The biodegradable polymer is :-					•	
	(1) nylon– ϵ			n 2–nylon 6	(3) nylon–6	(4) Buna–S	
Ans.	(2)						
Sol.	Nylon 2–ny	lon 6					
	It is an alterr	nating polyam	iide copolyi	ner of glycine (H	I_2N-CH_2-COOH) and	amino caproic acid [H ₂ N (CH ₂) ₅ COOH]
	and is biod	egradable.					
27.		Match the Xenon compounds in Column–I with its structure in Column–II and assign the correct code:-					
	Colum		Colum				
	(a) XeF ₄	(i)	pyramic				
	(b) XeF ₆	(ii)	square				
	(c) XeOF ₄			d octahedral			
	(d) XeO ₃	(iv)	square	pyramidal			
	Code :						
	(a)	(b)	(c)	(d)			
	(1) (i)	(ii)	(iii)	(iv)			
	(2) (ii)	(iii) ()	(iv)	(i)			
	(3) (ii)	(iii) (;)	(i)	(i∨)			
•	(4) (iii)	(iv)	(i)	(ii)			
Ans.		3 12	0	,			
Sol.	(a) XeF ₄ –	$sp^{3}d^{2}$, ℓp	= 2, squ	are planar			
	(b) XeF ₆ -	sp°d°, lp =	= 1, Dist	orted octahedr	al		
		$- sp^{2} d^{3}, \ell p =$		uare pyramidal idal			
28.					H ₂ E (E=O, S, Se, Te	and P_0 ?	
20.						$H_2Se < H_2Te < H_2Po$	
						$< H_2 P_0 < H_2 O < H_2 S$	
Ans.	., 5	< 1121e < 112	256 < 1125	< 1120	(4) 11236 < 11216	$< 11_{2}FO < 11_{2}O < 11_{2}S$	
	• •	S H ₂ Se H	I.T. H.I				
301.			=		stability decreases		
29.				octaoxide is :-	stability decreases		
27.				Joeldoxide 13.			
	0, (0, 0			0, 0	0	
	(1) O=Br-F	Br-Br=0			O = Br - Br	0-	
	(1) O				$(2) \begin{array}{c} O & O \\ O = Br - Br - Br - Br - Dr - O \\ O & O \end{array}$	0- 0-	
	0 (5 0			0 0	0	
	0	0 0- II / -Br-Br=0 II 0-			0, 0-	С	
	(3) ⁻ O-Br-	-Br-Br=O			(4) $O=Br-Br-Br-Br-Hr-Hr-Hr-Hr-Hr-Hr-Hr-Hr-Hr-Hr-Hr-Hr-Hr$	\mathcal{O}^{-}	
	0	II_ `0⁻			0 0 [−] (4) 0=Br-Br-Br-Br- 0 1	2	
		-			0 0	J	

Sol. The correct structure is :

other options are anionic

30. An alkene "A" on reaction with O_3 and $Zn-H_2O$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene "A" gives "B" as the major product. The structure of product "B" is :-

	(1) CI-CH ₂ -CH ₂ -CH H_3	CH ₂ Cl I (2) H ₃ C–CH ₂ –CH–CH ₃	3
	-		
	$\begin{array}{c} CH_{3} \\ I \\ H_{3}C-CH_{2}-C-CH_{3} \\ I \\ CI \end{array}$	CH ₃ (4) H ₃ C-CH-CH I I Cl CH ₃	
Ans. Sol.		5	
	$ \begin{array}{c} H_{3}C \\ H_{3}C \end{array} \subset = \underbrace{O O}_{H_{3}C} = C - C H_{3} \longrightarrow \begin{array}{c} H_{3}C \\ H_{3}C \end{array} \xrightarrow{C = C - C H_{3}} \begin{pmatrix} A \end{pmatrix} \\ H_{3}C & H_{3}C \\ H_{3}C$		
	$H_{3}C-C-CH_{2}-CH_{3} \leftarrow C \xrightarrow{C} H_{3}C \xrightarrow{C} C-CH_{2}-CH_{3}$ $H_{3}C \xrightarrow{C} H_{3}C \xrightarrow{C} C-CH_{2}-CH_{3}$ $H_{3}C \xrightarrow{C} H_{3}C \xrightarrow{C} C-CH_{2}-CH_{3}$ $H_{3}C \xrightarrow{C} C-CH_{2}-CH_{3}$ $H_{3}C \xrightarrow{C} C-CH_{2}-CH_{3}$		
31.	Enzymes that utilize ATP in phosphate transfer r	equire an alkaline earth m	netal (M) as the cofactor. M is :
	(1) Be (2) Mg	(3) Ca	(4) Sr
Ans.	(2)		
Sol.	All enzymes that utilize ATP in phosphate transfe	er required magnesium as	the cofactor.
32.	Which one is malachite from the following ?		
	(1) $CuFeS_2$ (2) $Cu(OH)_2$	(3) Fe_3O_4	(4) CuCO ₃ .Cu(OH) ₂
Ans.			
Sol.	malachite \Rightarrow CuCO ₃ .Cu(OH) ₂		
33.	Which of the following series of transitions in the		om falls in visible region ?
	(1) Lyman series	(2) Balmer series	
	(3) Paschen series	(4) Brackett series	
Ans.			
Sol.	In spectrum of hydrogen atom, spectral lines of		e region.
34.	The mixture that forms maximum boiling azeotro	-	
	(1) Water + Nitric acid	(2) Ethanol + Water	
A	(3) Acetone + Carbon disulphide	(4) Heptane + Octane	
Ans.		and a shirth a h	1
Sol.	Maximum boiling azeotrope are formed by solution	ons which show negative c	ieviation from ideal denaviour.

Water + Nitric acid shows negative deviation.

35.	For the cell reaction			
	2Fe^{3+} (aq) + 2I^{-} (aq) \rightarrow	2Fe ²⁺ (aq) + I ₂ (aq)		
	E_{cell}^{\ominus} = 0.24V at 298 K. The standard Gibbs energy $\left(\Delta_r^{\circ}G^{\ominus}\right)$ of the cell reaction is :			
	[Given that Faraday cons	stant F = 96500 C mol ⁻¹]		
	(1) – 46.32 kJ mol ⁻¹	(2) – 23.16 kJ mol ⁻¹	(3) 46.32 kJ mol ⁻¹	(4) 23.16 kJ mol ⁻¹
Ans.	(1)			
Sol.	$2\mathrm{Fe}^{3+}$ (aq) + $2\mathrm{I}^{-}$ (aq) \rightarrow	2Fe ²⁺ (aq) + I ₂ (aq)		
	n = 2			
	$\Delta G^{\circ} = -nFE^{\circ}$			
	$= -2 \times 96500 \times$	(0.24)		
	= - 46320 J			
	= - 46.32 kJ mol	-1		
36.	In which case change in	entropy is negative ?		
	(1) Evaporation of water		(2) Expansion of a gas a	t constant temperature
	(3) Sublimation of solid to	o gas	(4) $2H(g) \rightarrow H_2(g)$	
Ans.	(4)			
Sol.	$2H(g) \rightarrow H_2(g)$			
	Due to bond formation,	entropy decreases.		
37.	Match the following :			
	(a) Pure nitrogen	(i) Chlorine		
	(b) Haber process	(ii) Sulphuric acid		
	(c) Contact process	(iii) Ammonia		
	(d) Deacon's process	(iv) Sodium azide or		
		Barium azide		
	Which of the following is		(a)	(L)
	(a)	(b)	(c)	(d)
	(1) (i) (2) (ii)	(ii) (i∨)	(iii) (i)	(i∨) (;;;)
	(2) (ii) (3) (iii)	(iv)	(i) (ii)	(iii) (i)
	(4) (iv)	(iii)	(ii)	(i)
Ans.			()	(4)
Sol.	(a) Pure nitrogen \Rightarrow	Thermal decomposition	of sodiumazide or Bariuma	zide
		$(2NaN_3 \xrightarrow{\Lambda} 2Na + 1)$	3N ₂)	
		$(Ba(N_3)_2 \xrightarrow{\Lambda} Ba + 3)$	N ₂)	
	(b) Haber process \Rightarrow	Formation of Ammonia		
		$(N_2 + 3H_2 \rightleftharpoons 2NH_3)$		
	(c) Contact process \Rightarrow	manufacture of H_2SO_4		
	(d) Deacon's process \Rightarrow	Formation of Cl_2 gas		
	(HCl + O _{2(Atmosphere)}	$\xrightarrow{CuCl_2} H_2O + Cl_2)$		

38.	Which of the following is incorrect statement ?					
	(1) PbF ₄ is covalent in nature					
	(2) SiCl ₄ is easily hydroly	(2) SiCl ₄ is easily hydrolysed				
	(3) GeX ₄ (X = F, Cl, Br, I) is more stable than GeX_2					
	(4) SnF_4 is ionic in nature					
Ans.	(1)					
Sol.	PbF ₄ is an ionic compound due to large size of cation and small size of anion. Rest all are correct options					
39 .	The non-essential amino	acid among the fol	lowing is :			
	(1) valine	(2) leucine	(3) alanine	(4) lysine		
Ans.	(3)					
Sol.	non-essential amino acid – alanine					
	Essential amino acid – va	lline, leucine, lysine	2			
40 .	A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same					
	conditions. The correct option about the gas and its compressibility factor (Z) is :					
	(1) $Z > 1$ and attractive forces are dominant					
	(2) $Z > 1$ and repulsive forces are dominant					
	(3) $Z < 1$ and attractive forces are dominant					
	(4) $Z < 1$ and repulsive forces are dominant					
A	(2)					

Ans. (3)

Sol. $(V_m)_{real} < (V_m)_{ideal}$

$$Z = \frac{\left(V_{m}\right)_{real}}{\left(V_{m}\right)_{ideal}}$$

- Z < 1 and attractive forces are dominant.
- 41. Among the following, the reaction that proceeds through an electrophilic substitution is :

Ans. (2)

Sol. Halogenation (Electrophilic substitution reactions) : Arenes react with halogens in the presence of a Lewis acid like anhydrous AlCl₃

Chlorobenzene

