FINAL NEET(UG)-2019 EXAMINATION

(Held On Sunday 05 ${ }^{\text {th }}$ MAY, 2019)

GHEMISTRY

TEST PAPER WITH ANSWER \& SOLUIION

1. Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25 L against a constant external pressure of 2 bar. The work done by the gas is :-
[Given that 1 L bar $=100 \mathrm{~J}$]
(1) -30 J
(2) 5 kJ
(3) 25 J
(4) 30 J

Ans. (1)
Sol. $\mathrm{W}=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$P_{\text {ext }}=2 \mathrm{bar}$
$\mathrm{V}_{1}=0.1 \mathrm{~L}$
$\mathrm{V}_{2}=0.25 \mathrm{~L}$
$\mathrm{W}=-2 \operatorname{bar[0.25-0.1]} \mathrm{~L}$
$\mathrm{W}=-2 \times 0.15$ bar L
$\mathrm{W}=-0.30$ bar L
$\mathrm{W}=(-0.30) \times 100=-30 \mathrm{~J}$
2. A compound is formed by cation C and anion A. The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is :-
(1) $\mathrm{C}_{2} \mathrm{~A}_{3}$
(2) $\mathrm{C}_{3} \mathrm{~A}_{2}$
(3) $\mathrm{C}_{3} \mathrm{~A}_{4}$
(4) $\mathrm{C}_{4} \mathrm{~A}_{3}$

Ans. (3)
Sol. Anion A in HCP
No of ions of A in Unit cell $=6$
No of Octahedral voids $=6$
75% is occupied by cations C
No of cations $C=6 \times \frac{75}{100}$

$$
\begin{aligned}
& =6 \times \frac{3}{4} \\
& =\frac{9}{2}
\end{aligned}
$$

$\mathrm{C}_{9 / 2} \mathrm{~A}_{6}$
$\mathrm{C}_{9} \mathrm{~A}_{12}$
Simple ratio $\mathrm{C}_{3} \mathrm{~A}_{4}$
3. pH of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 9 . The solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is :-
(1) 0.5×10^{-15}
(2) 0.25×10^{-10}
(3) 0.125×10^{-15}
(4) 0.5×10^{-10}

Ans. (1)
Sol. $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{+2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{S} \quad 2 \mathrm{~S}$
$\mathrm{pH}=9 ; \mathrm{pOH}=5 ;\left[\mathrm{OH}^{-}\right]=10^{-5}=2 \mathrm{~S}$
$S=\frac{10^{-5}}{2}$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{S} \times(2 \mathrm{~S})^{2}$
$K_{\text {sp }}=4 S^{3}$
$K_{\text {sp }}=4 \times\left(\frac{10^{-5}}{2}\right)^{3}$
$K_{\text {sp }}=0.5 \times 10^{-15}$
4. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is :-
(1) 10
(2) 20
(3) 30
(4) 40

Ans. (3)
Sol. $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
2 mole $\mathrm{NH}_{3}(\mathrm{~g})$ requires 3 mole $\mathrm{H}_{2}(\mathrm{~g})$
20 mole $\mathrm{NH}_{3}(\mathrm{~g})$ requires

$$
\begin{aligned}
& =\frac{3}{2} \times 20 \text { mole } \mathrm{H}_{2}(\mathrm{~g}) \\
& =30 \text { mole }
\end{aligned}
$$

5. For an ideal solution, the correct option is :-
(1) $\Delta_{\text {mix }} S=0$ at constant T and P
(2) $\Delta_{\text {mix }} \mathrm{V} \neq 0$ at constant T and P
(3) $\Delta_{\text {mix }} \mathrm{H}=0$ at constant T and P
(4) $\Delta_{\text {mix }} G=0$ at constant T and P

Ans. (3)

Sol. For ideal solution $\Delta \mathrm{H}_{\text {mix }}=0$
6. For a cell involving one electron $\mathrm{E}_{\text {cell }}^{\Theta}=0.59 \mathrm{~V}$ at 298 K , the equilibrium constant for the cell reaction is :-
$\left[\right.$ Given that $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059 \mathrm{~V}$ at $\left.\mathrm{T}=298 \mathrm{~K}\right]$
(1) 1.0×10^{2}
(2) 1.0×10^{5}
(3) 1.0×10^{10}
(4) 1.0×10^{30}

Ans. (3)

Sol. $\quad \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log _{10} \mathrm{Q}$
at equlibrium $\mathrm{E}_{\text {cell }}=0, \mathrm{Q}=\mathrm{K}_{\text {eq }}$.
$0=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.0591}{1} \log _{10} \mathrm{~K}_{\text {eq. }}$
$\mathrm{E}_{\text {cell }}^{\circ}=+0.0591 \log _{10} \mathrm{~K}_{\text {eq. }}$
$0.59=+0.0591 \log _{10} K_{\text {eq }}$.
$+10=\log _{10} K_{\text {eq }}$.
$\mathrm{K}_{\text {eq. }}=10^{+10}$
7. Among the following, the one that is not a green house gas is :-
(1) nitrous oxide
(2) methane
(3) ozone
(4) sulphur dioxide

Ans. (4)
Sol. Besides carbon dioxide, other greenhouse gases are methane, water vapour, nitrous oxide, CFCs and ozone.
8. The number of sigma (σ) and $\mathrm{pi}(\pi)$ bonds in pent-2-en-4-yne is :-
(1) 10σ bonds and 3π bonds
(2) 8σ bonds and 5π bonds
(3) 11σ bonds and 2π bonds
(4) 13σ bonds and no π bond

Ans. (1)

Sol.

Number of sigma bonds $=10$
Number of π-bonds $=3$
9. Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory?
(1) O_{2}
(2) N_{2}
(3) C_{2}
(4) Be_{2}

Ans. (3)
Sol. According to M.O.T. electronic configuration of C_{2} molecule is -
$\sigma 1 \mathrm{~s}^{2}<\sigma^{*} 1 \mathrm{~s}^{2}<\sigma 2 \mathrm{~s}^{2}<\sigma^{*} 2 \mathrm{~s}^{2}<\pi_{2} p_{\mathrm{x}}^{2}=\pi_{2} p_{\mathrm{y}}^{2}$
so, C_{2} molecule contain only ' π ' bond
10. Which of the following reactions are disproportionation reaction?
(a) $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}^{0}$
(b) $3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(c) $2 \mathrm{KMnO}_{4} \xrightarrow{\Delta} \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
(d) $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{MnO}_{2}+4 \mathrm{H}^{\oplus}$

Select the correct option from the following :-
(1) (a) and (b) only
(2) (a), (b) and (c)
(3) (a), (c) and (d)
(4) (a) and (d) only

Ans. (1)
Sol. (a) $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{+2}+\mathrm{Cu}$
$\left[\begin{array}{l}\mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{+2} \text { (oxidation) } \\ \mathrm{Cu}^{+} \rightarrow \mathrm{Cu} \text { (Re duction) }\end{array}\right]$
(b) $\mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{MnO}_{4}^{-}$(oxidation)
$+6 \quad+7$
$\mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{MnO}_{2}$ (Reduction)
$+6 \quad+4$
The above two reaction are disproportionation.
11. Among the following, the narrow spectrum antibiotic is :-
(1) penicillin G
(2) ampicillin
(3) amoxycillin
(4) chloramphenicol

Ans. (1)
Sol. The antibiotics which effective mainly against Gram-positive or Gram-negative bacteria are narrow spectrum antibiotics. Penicillin \mathbf{G} has a narrow spectrum.
ampicillin, amoxycillin, chloramphenicol are broad spectrum antibiotics.
12. The correct order of the basic strength of methyl substituted amines in aqueous solution is :-
(1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(2) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(3) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}$
(4) $\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$

Ans. (1)
Sol. The order of basic strength in case of methyl substituted amines and ethyl substituted amines in aqueous solution is as follows :

$$
\begin{aligned}
& \left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{NH}_{3} \\
& \left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{NH}_{3}
\end{aligned}
$$

13. Which mixture of the solutions will lead to the formation of negatively charged colloidal [AgI] I^{-}sol. ?
(1) 50 mL of $1 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 1.5 M KI
(2) 50 mL of $1 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 2 M KI
(3) 50 mL of $2 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 1.5 M KI
(4) 50 mL of $0.1 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 0.1 M KI

Ans. (1,2)
Sol. In negatively charged colloid [AgI] $\mathrm{I}^{-}, \mathrm{I}^{-}$is preferentially adsorbed.
$\mathrm{AgNO}_{3}+\mathrm{KI} \rightarrow \mathrm{AgI}+\mathrm{KNO}_{3}$
When KI is in excess, I^{-}will be adsorbed on the surface of AgI and $[\mathrm{AgI}] \mathrm{I}^{-}$is formed
14. Conjugate base for Bronsted acids $\mathrm{H}_{2} \mathrm{O}$ and HF are:-
(1) OH^{-}and $\mathrm{H}_{2} \mathrm{~F}^{+}$respectively
(2) $\mathrm{H}_{3} \mathrm{O}^{+}$and F^{-}, respectively
(3) OH^{-}and F^{-}, respectively
(4) $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$, respectively

Ans. (3)
Sol. Conjugate base of $\mathrm{H}_{2} \mathrm{O}$ is OH^{-}
Conjugate base of HF is F^{-}
15. Which will make basic buffer?
(1) 50 mL of $0.1 \mathrm{M} \mathrm{NaOH}+25 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(2) 100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of 0.1 M NaOH
(3) 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+200 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$
(4) 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+100 \mathrm{~mL}$ of 0.1 M NaOH

Ans. (3)
Sol. Basic buffer is mixture of weak base and salt of weak base with strong acid
milli mole of $\mathrm{HCl}=100 \times 0.1=10$ milli mole
milli mole of $\mathrm{NH}_{4} \mathrm{OH}=200 \times 0.1=20$ milli mole
$\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
$1020 \quad-\quad$ -

- $10 \quad 10$

16. The compound that is most difficult to protonate is:-
(1)

(2)

(3)

(4)

Ans. (4)
Sol. In case of phenol lone pair of oxygen is delocalized in ring.

17. The most suitable reagent for the following conversion is :-

(1) Na /liquid NH_{3}
(2) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, quinoline
(3) $\mathrm{Zn} / \mathrm{HCl}$
(4) $\mathrm{Hg}^{2+} / \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$

Ans. (2)

Sol.

18. Which of the following species is not stable?
(1) $\left[\mathrm{SiF}_{6}\right]^{2-}$
(2) $\left[\mathrm{GeCl}_{6}\right]^{2-}$
(3) $\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]^{2-}$
(4) $\left[\mathrm{SiCl}_{6}\right]^{2-}$

Ans. (4)
Sol. SiCl_{6}^{2-} does not exist since
(i) size of Cl^{-}is large so it cannot accommodate around Si^{+4} due to limitation of size
(ii) Interaction between lone pair of chloride ion and Si^{+4} is not very strong
the following is an amphoteric hydroxide?
(1) $\mathrm{Sr}(\mathrm{OH})_{2}$
(2) $\mathrm{Ca}(\mathrm{OH})_{2}$
(3) $\mathrm{Mg}(\mathrm{OH})_{2}$
(4) $\mathrm{Be}(\mathrm{OH})_{2}$

Ans. (4)
Sol. $\mathrm{Be}(\mathrm{OH})_{2}$ is an amphoteric hydroxide rest all are basic hydroxides
20. The structure of intermediate A in the following reaction is :-

(1)

(2)

(3)

(4)

Ans. (2)
Sol. Phenol is manufactured from the hydrocarbon, cumene. Cumene (isopropylbenzene) is oxidised in the presence of air to cumene hydroperoxide. it is converted to phenol and acetone by treating it with dilute acid. Acetone, a by-product of this reaction, is also obtained in large quantities by this method.

21. The manganate and permanganate ions are tetrahedral, due to
(1) The π-bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
(2) There is no π-bonding
(3) The π-bonding involves overlap of p -orbitals of oxygen with p -orbitals of managanese
(4) The π-bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese

Ans. (1)
Sol. MnO_{4}^{-2} (Mangnate ion) and MnO_{4}^{-}(Permangnate ion)
both are tetrahedral

Since ' π ' bond is formed between p-orbital of oxygen and d-orbital of Managnese
22. For the second period elements the correct increasing order of first ionisation enthalpy is :-
(1) $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}<\mathrm{Ne}$
(2) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}<\mathrm{Ne}$
(3) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}<\mathrm{Ne}$
(4) $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}<\mathrm{Ne}$

Ans. (2)
Sol. For same shell
[s ${ }^{1}<\mathrm{p}^{1}<\mathrm{s}^{2}<\mathrm{p}^{2}<\mathrm{p}^{4}<\mathrm{p}^{3}<\mathrm{p}^{5}<\mathrm{p}^{6}$]
$\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}<\mathrm{Ne}$
23. If the rate constant for a first order reaction is k, the time (t) required for the completion of 90% of the reaction is given by :-
(1) $t=0.693 / \mathrm{k}$
(2) $t=6.909 / \mathrm{k}$
(3) $t=4.606 / \mathrm{k}$
(4) $t=2.303 / \mathrm{k}$

Ans. (3)
Sol. For first order reaction

$$
\begin{array}{ll}
\mathrm{k}=\frac{1}{\mathrm{t}} \ln \left[\frac{\mathrm{~A}_{\mathrm{o}}}{\mathrm{~A}_{\mathrm{t}}}\right] & \begin{array}{l}
\text { For 99\% completion, } \\
{[\mathrm{A}]_{o}=100, \quad[\mathrm{~A}]_{\mathrm{t}}=1}
\end{array} \\
\mathrm{k}=\frac{1}{\mathrm{t}} \ln \left[\frac{100}{1}\right] & \\
\mathrm{k}=\frac{2.303 \log _{10} 100}{\mathrm{t}} \\
\mathrm{k}=\frac{2.303 \times 2}{\mathrm{t}} \\
\mathrm{k}=\frac{4.606}{\mathrm{t}} \\
\mathrm{t}=\frac{4.606}{\mathrm{k}} &
\end{array}
$$

24. Identify the incorrect statement related to PCl_{5} from the following :-
(1) Three equatorial $\mathrm{P}-\mathrm{Cl}$ bonds make an angle of 120° with each other
(2) Two axial $\mathrm{P}-\mathrm{Cl}$ bonds make an angle of 180° with each other
(3) Axial $\mathrm{P}-\mathrm{Cl}$ bonds are longer than equatorial $\mathrm{P}-\mathrm{Cl}$ bonds
(4) PCl_{5} molecule is non-reactive

Ans. (4)

Sol.

PCl_{5} is reactive molecule
25. $4 d, 5 p, 5 f$ and 6 p orbitals are arranged in the order of decreasing energy. The correct option is :-
(1) $5 f>6 p>5 p>4 d$
(2) $6 p>5 f>5 p>4 d$
(3) $6 p>5 f>4 d>5 p$
(4) $5 f>6 p>4 d>5 p$

Ans. (1)
Sol. According to $(n+1)$ rule, correct order of energy is $5 f>6 p>5 p>4 d$
For same value of $(\mathrm{n}+1)$; higher is the value of n , higher will be the energy.
26. The biodegradable polymer is :-
(1) nylon-6,6
(2) nylon 2-nylon 6
(3) nylon-6
(4) Buna-S

Ans. (2)
Sol. Nylon 2-nylon 6 It is an alternating polyamide copolymer of glycine $\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}\right)$ and amino caproic acid $\left[\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOH}\right]$ and is biodegradable.
27. Match the Xenon compounds in Column-I with its structure in Column-II and assign the correct code:-

Column-I

(a) XeF_{4} (i)
(b) $\mathrm{XeF}_{6} \quad$ (ii)
(c) XeOF_{4} (iii)
(d) XeO_{3} (iv)

Code :

	(a)	(b)	(c)
(1)	(i)	(di)	(iii)
(2)	(ii)	(iii)	(iv)
(3)	(ii)	(iii)	(i)
(4)	(iii)	(iv)	(i)
(iv)			
(ii)			

Ans. (2)
Sol. (a) $\mathrm{XeF}_{4}-\mathrm{sp}^{3} \mathrm{~d}^{2}, \ell \mathrm{p}=2$, square planar
(b) $\mathrm{XeF}_{6}-\mathrm{sp}^{3} \mathrm{~d}^{3}, \ell \mathrm{p}=1$, Distorted octahedral
(c) $\mathrm{XeOF}_{4}-\mathrm{sp}^{3} \mathrm{~d}^{2}, \ell \mathrm{p}=1$, Square pyramidal
(d) $\mathrm{XeO}_{3}-\mathrm{sp}^{3}, \ell \mathrm{p}=1$, Pyramidal
28. Which is the correct thermal stability order for $\mathrm{H}_{2} \mathrm{E}(\mathrm{E}=\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}$ and Po$)$?
(1) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}$
(2) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}$
(3) $\mathrm{H}_{2} \mathrm{Po}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}$

Ans. (3)
Sol. $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{~S} \quad \mathrm{H}_{2} \mathrm{Se} \quad \mathrm{H}_{2} \mathrm{Te} \quad \mathrm{H}_{2} \mathrm{Po}$
\longrightarrow Size of central atom increases, thermal stability decreases
29. The correct structure of tribromooctaoxide is :-

(2)

(3)

(4)

Ans. (1)
Sol. The correct structure is :

other options are anionic
30. An alkene " A " on reaction with O_{3} and $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene " A " gives " B " as the major product. The structure of product " B " is :-
(1)

(2)

(3)

(4)

Ans. (3)
Sol.

31. Enzymes that utilize ATP in phosphate transfer require an alkaline earth metal (M) as the cofactor. M is :
(1) Be
(2) Mg
(3) Ca
(4) Sr

Ans. (2)
Sol. All enzymes that utilize ATP in phosphate transfer required magnesium as the cofactor.
32. Which one is malachite from the following?
(1) CuFeS_{2}
(2) $\mathrm{Cu}(\mathrm{OH})_{2}$
(3) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(4) $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$

Ans. (4)
Sol. malachite $\Rightarrow \mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$
33. Which of the following series of transitions in the spectrum of hydrogen atom falls in visible region ?
(1) Lyman series
(2) Balmer series
(3) Paschen series
(4) Brackett series

Ans. (2)
Sol. In spectrum of hydrogen atom, spectral lines of Balmer series lie in visible region.
34. The mixture that forms maximum boiling azeotrope is :
(1) Water + Nitric acid
(2) Ethanol + Water
(3) Acetone + Carbon disulphide
(4) Heptane + Octane

Ans. (1)
Sol. Maximum boiling azeotrope are formed by solutions which show negative deviation from ideal behaviour.
Water + Nitric acid shows negative deviation.
35. For the cell reaction
$2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$
$\mathrm{E}_{\text {cell }}^{\ominus}=0.24 \mathrm{~V}$ at 298 K . The standard Gibbs energy $\left(\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}\right)$ of the cell reaction is :
[Given that Faraday constant $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$]
(1) $-46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $-23.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $23.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (1)
Sol. $2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$

$$
\begin{aligned}
\mathrm{n} & =2 \\
\Delta \mathrm{G}^{\circ} & =-\mathrm{nFE}^{\circ} \\
& =-2 \times 96500 \times(0.24) \\
& =-46320 \mathrm{~J} \\
& =-46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

36. In which case change in entropy is negative ?
(1) Evaporation of water
(2) Expansion of a gas at constant temperature
(3) Sublimation of solid to gas
(4) $2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})$

Ans. (4)

Sol. $2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
Due to bond formation, entropy decreases.
37. Match the following :
(a) Pure nitrogen
(i) Chlorine
(b) Haber process
(ii) Sulphuric acid
(c) Contact process
(iii) Ammonia
(d) Deacon's process
(iv) Sodium azide or Barium azide

Which of the following is the correct option?

(a)	(b)	(c)	(d)
(1)	(i)	(ii)	(iii)
(2)	(ii)	(iv)	(i)
(3)	(iii)	(iv)	(ii)
(4)	(iv)	(ii)	(ii)

Ans. (4)
Sol. (a) Pure nitrogen \Rightarrow Thermal decomposition of sodiumazide or Bariumazide

$$
\begin{aligned}
& \left(2 \mathrm{NaN}_{3} \xrightarrow{\Delta} 2 \mathrm{Na}+3 \mathrm{~N}_{2}\right) \\
& \left(\mathrm{Ba}\left(\mathrm{~N}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{Ba}+3 \mathrm{~N}_{2}\right)
\end{aligned}
$$

(b) Haber process \Rightarrow Formation of Ammonia

$$
\left(\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}\right)
$$

(c) Contact process \Rightarrow manufacture of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(d) Deacon's process \Rightarrow Formation of Cl_{2} gas

$$
\left(\mathrm{HCl}+\mathrm{O}_{2 \text { (Atmosphere) }} \xrightarrow{\mathrm{CuCl}_{2}} \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}\right)
$$

38. Which of the following is incorrect statement?
(1) PbF_{4} is covalent in nature
(2) SiCl_{4} is easily hydrolysed
(3) $\mathrm{GeX}_{4}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ is more stable than GeX_{2}
(4) SnF_{4} is ionic in nature

Ans. (1)
Sol. PbF_{4} is an ionic compound due to large size of cation and small size of anion. Rest all are correct options
39. The non-essential amino acid among the following is :
(1) valine
(2) leucine
(3) alanine
(4) lysine

Ans. (3)
Sol. non-essential amino acid - alanine
Essential amino acid - valine, leucine, lysine
40. A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The correct option about the gas and its compressibility factor (Z) is :
(1) $Z>1$ and attractive forces are dominant
(2) $Z>1$ and repulsive forces are dominant
(3) $Z<1$ and attractive forces are dominant
(4) $\mathrm{Z}<1$ and repulsive forces are dominant

Ans. (3)
Sol. $\left(V_{m}\right)_{\text {real }}<\left(V_{m}\right)_{\text {ideal }}$
$\mathrm{Z}=\frac{\left(\mathrm{V}_{\mathrm{m}}\right)_{\text {real }}}{\left(\mathrm{V}_{\mathrm{m}}\right)_{\text {ideal }}}$
$\mathrm{Z}<1$ and attractive forces are dominant.
41. Among the following, the reaction that proceeds through an electrophilic substitution is :
(1)

(2)

(3)

(4)

Ans. (2)
Sol. Halogenation (Electrophilic substitution reactions) : Arenes react with halogens in the presence of a Lewis acid like anhydrous AlCl_{3}

42. The major product of the following reaction is :

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

43. For the chemical reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
the correct option is :
(1) $-\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
(2) $-\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=2 \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
(3) $-\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
(4) $3 \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=2 \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$

Ans. (3)
Sol. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$-\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=-\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=+\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
44. What is the correct electronic configuration of the central atom in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ based on crystal field theory?
(1) $t_{29}^{4} e_{g}^{2}$
(2) $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
(3) $e^{3} t_{2}^{3}$
(4) $e^{4} t_{2}^{2}$

Ans. (2)
Sol. In $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
$\mathrm{Fe}(26)=3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
$\mathrm{Fe}^{+2}=3 \mathrm{~d}^{6}$
in presence of SFL $3 \mathrm{~d}^{6} \rightarrow \mathrm{t}_{2 \mathrm{~g}}^{6} e_{g}^{0}$
45. The method used to remove temporary hardness of water is :
(1) Calgon's method
(2) Clark's method
(3) Ion-exchange method (4) Synthetic resins method

Ans. (2)
Sol. Clark's method used to remove temporary hardness of water

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

