

FINAL NEET(UG)-2019 EXAMINATION

(Held On Sunday 05th MAY, 2019)

	(Heid Oli Odilda)		MAI, 2010)	
	CHEMISTRY		TEST PAPER WITH ANSWER	
1. Ans.	Under isothermal condition, a gas at 300 K expands from 0.1L to 0.25L against a constant external pressure of 2 bar. The work done by the gas is :- [Given that 1L bar = 100 J] (1) -30 J (2) 5kJ (3) 25 J (4) 30 J (1)	8.	The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is :- (1) 10 σ bonds and 3π bonds (2) 8 σ bonds and 5π bonds (3) 11 σ bonds and 2π bonds (4) 13 σ bonds and no π bond	
2.	A compound is formed by cation C and anion A.	Ans.		
	The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is :- (1) C_2A_3 (2) C_3A_2 (3) C_3A_4 (4) C_4A_3	9.	Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory? (1) O ₂ (2) N ₂ (3) C ₂ (4) Be ₂	
Ans.		Ans.		
3.	pH of a saturated solution of Ca(OH) ₂ is 9. The solubility product (K_{sp}) of Ca(OH) ₂ is :- (1) 0.5×10^{-15} (2) 0.25×10^{-10} (3) 0.125×10^{-15} (4) 0.5×10^{-10}	10.	Which of the following reactions are disproportionation reaction? (a) $2Cu^+ \rightarrow Cu^{2+} + Cu^0$ (b) $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$	
Ans.	(1)		(c) $2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$	
4.	The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is :- (1) 10 (2) 20 (3) 30 (4) 40		(d) $2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^{\oplus}$ Select the correct option from the following :- (1) (a) and (b) only (2) (a), (b) and (c)	
Ans.	(3)		(3) (a), (c) and (d) (4) (a) and (d) only	
5.	For an ideal solution, the correct option is :- (1) $\Delta_{mix} S = 0$ at constant T and P (2) $\Delta_{mix} V \neq 0$ at constant T and P (3) $\Delta_{mix} H = 0$ at constant T and P (4) $\Delta_{mix} G = 0$ at constant T and P	Ans. 11.	(1)Among the following, the narrow spectrum antibioticis :-(1) penicillin G(2) ampicillin(3) amoxycillin(4) chloramphenicol	
Ans.		Ans.		
6.	For a cell involving one electron $E_{cell}^{\Theta} = 0.59V$ at 298 K, the equilibrium constant for the cell reaction is :- $\left[\text{Given that } \frac{2.303\text{RT}}{\text{F}} = 0.059V \text{ at } \text{T} = 298\text{K} \right]$	12.	The correct order of the basic strength of methyl substituted amines in aqueous solution is :- (1) $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$ (2) $(CH_3)_3N>CH_3NH_2 > (CH_3)_2NH$ (3) $(CH_3)_3N>(CH_3)_2NH>CH_3NH_2$ (4) $CH_3NH_2>(CH_3)_2NH > (CH_3)_3N$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ans. 13.		
Ans. 7.	Among the following, the one that is not a green house gas is :-		(1) 50 mL of 1M AgNO ₃ + 50 mL of 1.5 M KI (2) 50 mL of 1M AgNO ₃ + 50 mL of 2 M KI (3) 50 mL of 2 M AgNO ₃ + 50 mL of 1.5 M KI	
Ans.	(1) nitrous oxide(2) methane(3) ozone(4) sulphur dioxide(4)	Ans.	(4) 50 mL of 0.1 M AgNO ₃ + 50 mL of 0.1 M KI (1,2)	

Final NEET(UG)-2019 Exam/05-05-2019

- $\label{eq:2.1} \textbf{14.} \quad \text{Conjugate base for Bronsted acids H_2O and HF are:-}$
 - (1) OH^- and H_2F^+ respectively
 - (2) H_3O^+ and F^- , respectively
 - (3) OH^- and F^- , respectively
 - (4) H_3O^+ and H_2F^+ , respectively

Ans. (3)

- **15.** Which will make basic buffer ?
 - (1) 50 mL of 0.1 M NaOH + 25 mL of 0.1 M CH₃COOH
 - (2) 100 mL of 0.1 M CH₃COOH + 100 mL of 0.1M NaOH
 - (3) 100 mL of 0.1 M HCl + 200 mL of 0.1 M NH₄OH
 - (4) 100 mL of 0.1 M HCl + 100 mL of 0.1 M NaOH

Ans. (3)

- 16. The compound that is most difficult to protonate is:-
 - (1) $H \sim O H$ (2) $H_{3}C \sim O H$
 - (3) H₃C CH₃

(4) Ph O H

Ans. (4)

17. The most suitable reagent for the following conversion is :-

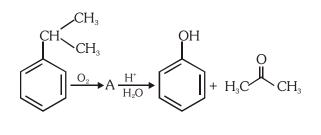
$$H_{3}C-C=C-CH_{3} \xrightarrow{H_{3}C} \underset{H}{\overset{CH_{3}}{\longrightarrow}} \overset{CH_{3}}{\underset{H}{\longrightarrow}}$$

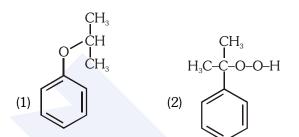
cis-2-butene

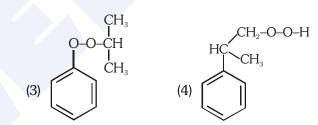
- (1) Na/liquid NH_3
- (2) H₂, Pd/C, quinoline (3) Zn/HCl (4) Hg²⁺/H⁺, H₂O

Ans. (2)

18. Which of the following species is **not** stable ?


 (1) $[SiF_6]^{2-}$ (2) $[GeCl_6]^{2-}$


 (3) $[Sn(OH)_6]^{2-}$ (4) $[SiCl_6]^{2-}$


Ans. (4)

- **19.** Which of the following is an amphoteric hydroxide?(1) Sr(OH)2(2) Ca(OH)2(3) Mg(OH)2(4) Be(OH)2
- Ans. (4)

20. The structure of intermediate A in the following reaction is :-

Ans. (2)

21. The manganate and permanganate ions are tetrahedral, due to

- (1) The π -bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
- (2) There is no π -bonding
- (3) The π-bonding involves overlap of p-orbitals of oxygen with p-orbitals of managanese
- (4) The π -bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese

Ans. (1)

22. For the second period elements the **correct** increasing order of first ionisation enthalpy is :-

(1) Li < Be < B < C < N < O < F < Ne (2) Li < B < P_2 < C < O < N < F < Ne

(2) Li
$$<$$
 B $<$ Be $<$ C $<$ O $<$ N $<$ F $<$ Ne
(3) Li $<$ B $<$ Be $<$ C $<$ N $<$ O $<$ F $<$ Ne

(4) Li < Be < B < C < O < N < F < Ne

Ans. (2)

2

🙈 ALLEI

path to success	CAREER KOTA (F	INSTITUTE AJASTHAN)						
23.	If t	he rate co	onstant f	for a	first order	reaction is k,	2	
	the time (t) required for the completion of 99							
	the reaction is given by :-							
	(1)	(1) $t = 0.693/k$		(2) t = $6.909/k$				
	(3)	t = 4.60)6/k		(4) $t = 2.3$	303/k		
Ans.	(3)							
24.								
	 (1) Three equatorial P–Cl bonds make an angle of 120° with each other 							
	(2) Two axial P–Cl bonds make an angle of 180°							
	with each other							
	(3) Axial P–Cl bonds are longer than equatorial							
	P-Cl bonds							
	(4) PCl ₅ molecule is non-reactive							
Ans.								
25.	4d,	, 5p, 5f an	nd 6p orb	oitals a	are arrange	d in the order		
	of decreasing energy. The correct option is :-							
	(1) $5f > 6p > 5p > 4d$ (2) $6p > 5f > 5p > 4$					of > 5p > 4d		
	(3)	6p > 5f	> 4d >	5p	(4) $5f > 6$	p > 4d > 5p		
Ans.	(1)							
26 .	The biodegradable polymer is :-							
			(2) nylon 2	n 2–nylon 6				
	(3) nylon–6 (4) Buna–S			5				
Ans.	(2)							
27.								
	structure in Column-II and assign the correct							
	coc	de:-						
	Column-I			Column-II				
	(a)	XeF ₄	(i)		pyramidal			
	(b)	XeF ₆	(ii)		square pla	inar		
	(c)	XeOF ₄	(iii)		distorted c	octahedral		
	(d)	XeO ₃	(iv)		square py	ramidal		
	Co	de :						
		(a)	(b)	(c)	(d)		A	
	(1)	(i)	(ii)	(iii)	(iv)		3	
	(2)	(ii)	(iii)	(iv)	(i)			
	(3)	(ii)	(iii)	(i)	(iv)			
	141	()	<i>(</i> •)	(1)	(***		1	

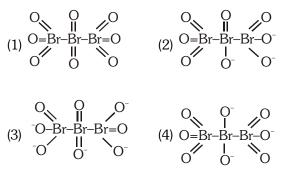
Ans. (2)

(4) (iii)

Which is the **correct** thermal stability order for H_2E **28**.

(i)

(ii)


(E=O, S, Se, Te and Po)?

(iv)

- (1) $H_2S < H_2O < H_2Se < H_2Te < H_2Po$
- (2) $H_2O < H_2S < H_2Se < H_2Te < H_2Po$
- (3) $H_2Po < H_2Te < H_2Se < H_2S < H_2O$
- (4) $H_2Se < H_2Te < H_2Po < H_2O < H_2S$

Ans. (3)

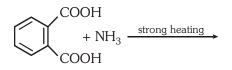
The **correct** structure of tribromooctaoxide is :-9.

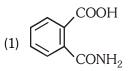
Ans. (1)

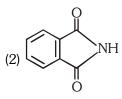
0. An alkene "A" on reaction with O_3 and $Zn-H_2O$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene "A" gives "B" as the major product. The structure of product "B" is :-

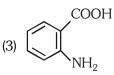
Ans. (3)

- Enzymes that utilize ATP in phosphate transfer 1. require an alkaline earth metal (M) as the cofactor. M is : (1) Be (2) Mg (3) Ca (4) Sr Ans. (2)


32. Which one is malachite from the following? (1) $CuFeS_2$ $(2) Cu(OH)_2$ (3) Fe₃O₄ (4) CuCO₃.Cu(OH)₂ Ans. (4)


Final NEET(UG)-2019 Exam/05-05-2019


33.	Which of the following series of transitions in the	38.	Which of the following is incorrect statement ?		
	spectrum of hydrogen atom falls in visible region ?		(1) PbF_4 is covalent in nature		
	(1) Lyman series (2) Balmer series		(2) SiCl ₄ is easily hydrolysed		
	(3) Paschen series (4) Brackett series		(3) GeX_4 (X = F, Cl, Br, I) is more stable than GeX_2		
Ans.	(2)		(4) SnF₄ is ionic in nature		
34.	The mixture that forms maximum boiling azeotrope	Ans.			
	(1) Water + Nitric acid	39.	The non-essential amino acid among the following		
	(2) Ethanol + Water		is :		
	(3) Acetone + Carbon disulphide		(1) valine (2) leucine		
Anc	(4) Heptane + Octane		(3) alanine (4) lysine		
Ans. 35.	(1) For the cell reaction	Ans.	(3)		
55.	$2Fe^{3+}$ (aq) + 2I ⁻ (aq) $\rightarrow 2Fe^{2+}$ (aq) + I ₂ (aq)	40.	A gas at 350 K and 15 bar has molar volume		
			20 percent smaller than that for an ideal gas under		
	E_{cell}^{\odot} = 0.24V $$ at 298 K. The standard Gibbs energy		the same conditions. The correct option about the		
	$(\Lambda^{\circ} \cap^{\bigcirc})$		gas and its compressibility factor (Z) is :		
	$\left(\Delta_{r}^{\circ}G^{\ominus} ight)$ of the cell reaction is :		(1) $Z > 1$ and attractive forces are dominant		
	[Given that Faraday constant $F = 96500 \text{ C mol}^{-1}$]		(2) $Z > 1$ and repulsive forces are dominant		
	$(1) - 46.32 \text{ kJ mol}^{-1}$		(3) $Z < 1$ and attractive forces are dominant		
	$(2) - 23.16 \text{ kJ mol}^{-1}$		(4) $Z < 1$ and repulsive forces are dominant (4) $Z < 1$ and repulsive forces are dominant		
	(3) 46.32 kJ mol ⁻¹				
	(4) 23.16 kJ mol ⁻¹	Ans.			
Ans.	(1)	41.	Among the following, the reaction that proceeds		
36.	In which case change in entropy is negative ?		through an electrophilic substitution is :		
	(1) Evaporation of water				
	(2) Expansion of a gas at constant temperature		(1) $\langle N_2 Cl \xrightarrow{\Theta} N_2 Cl_2 \rightarrow \langle N_2 Cl + N_2 \rangle$		
	(3) Sublimation of solid to gas (4) $2H(g) \rightarrow H_{2}(g)$				
Ans.	(4) $2H(g) \rightarrow H_2(g)$ (4)				
37.	Match the following :		(2) $\langle - \rangle$ + Cl ₂ $\xrightarrow{\text{AlCl}_3}$ $\langle - \rangle$ -Cl + HCl		
	(a) Pure nitrogen (i) Chlorine				
	(b) Haber process (ii) Sulphuric acid				
	(c) Contact process (iii) Ammonia		Cl		
	(d) Deacon's process (iv) Sodium azide or		(m) + Cl $\xrightarrow{UV \text{ light}}$ Cl - Cl		
	Barium azide		(3) $\langle - \rangle$ + Cl ₂ \rightarrow Cl $\langle - \rangle$ Cl		
	Which of the following is the correct option ?		CI CI		
	(a) (b) (c) (d)				
	(1) (i) (ii) (iii) (iv)		heat		
	(2) (ii) (iv) (i) (iii)		$(4) \qquad \qquad \bigcirc -CH_2OH + HCI \xrightarrow{heat} \qquad \bigcirc -CH_2CI + H_2O$		
	(3) (iii) (iv) (ii) (i)	Ans.	(2)		
	(4) (iv) (iii) (ii) (i)		• •		
Ans.	(4)				


Atti to Juget

- ALLE 8
- 42. The major product of the following reaction is :

43. For the chemical reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ the **correct** option is :

(1)
$$-\frac{1}{3}\frac{d[H_2]}{dt} = -\frac{1}{2}\frac{d[NH_3]}{dt}$$

(2)
$$-\frac{d[N_2]}{dt} = 2\frac{d[NH_3]}{dt}$$

(3)
$$-\frac{d[N_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$$

(4)
$$3\frac{d[H_2]}{dt} = 2\frac{d[NH_3]}{dt}$$

dt

Ans. (3)

What is the **correct** electronic configuration of the **44**. central atom in K4[Fe(CN)6] based on crystal field theory ?

(1)
$$t_{2g}^4 e_g^2$$
 (2) $t_{2g}^6 e_g^6$

(4) $e^4 t_2^2$ (3) $e^{3}t_{2}^{3}$

Ans. (2)

- 45. The method used to remove temporary hardness of water is :
 - (1) Calgon's method
 - (2) Clark's method
 - (3) Ion-exchange method
 - (4) Synthetic resins method

Ans. (2)