HIGHER SECONDARY EXAMINATION, MARCH 2019

UNOFFICIAL ANSWER KEY

First Year

Part III

CODE: FY25

Exam	date: 07	7/03/2019 CHEMISTRY	ODE: FY	29
Qn No.	Sub Qn.	Value points / scoring Indicators	Split score	Total score.
1.		Absolute Zero (-273°c)	-	1
2.		(b) Or NH3	-	1
3.		3-Ethyl-1,1-dimethylcyclohexane	-	1
4.		Lizo (Lithium monoxide)	Ti-	1
5.		Zero (0) { Here Volume is assumed to be Constant)	-	1
6.		h/47c	-	1
7.		0.0525 has 3 Significant figures., On Rounding off, it become, 0.052 (has only 2 Significant figures)	-	1
8.		HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH		2
9.		$pH = -log[H^{\dagger}]$ $[H^{\dagger}] = 1 \times loc^{2}M$ $pH = -log[1 \times loc^{2}]$ $= -(-2)log lo [::log lo = l]$ $= 2$ $pH = 2$	1	2
10.		Considering Nacl, Becl2 and Alcl3 > ions are, Nat, Bet, Al3t. Greater the charge of the ion, the greater is the potarising power and greater will be the Covalent charecter. Nacl < Becl2 < Alcl3	1	2

			125
11.	Heterolytic cleavage: Bond breaks in such a fashion, that the shared pair of e-remains with one of the fragments > Carbocations and Carbanions are formed. Homolytic cleavage: Bond breaks in such a fashion that bare one of the shared pair of e-in the Covalent bond goes with Each of the bonded atoms.	1	2
12.	 Photoelectric Effect and Black body Radiation - Can't be explained by wave nature of EM Radiations. 	1	2
13.	Generally the electron gain Enthalpy become more negative as we move lyt to Right in a period. Also adding one more electron to 2p-orbital causes much repulsion than in 3p. Thus Chlorine has most negetive Electron gain Enthalpy.	1	2
14.	4NH3(g) + 50_a (g) \Longrightarrow 4 NO(g) + $6H2O_{CQ}$? $K_c = \frac{[H20]^2[N0]^4}{[O_2]^5[NH3]^4} \text{ or } k_p = \frac{P_{H20}^2 P_{N0}^4}{P_{02}^5 P_{NH3}^4}$ If we multiply whole reaction by a factor 2, $New K_c = K_c^2 \text{ or } k_p^2.$	1	2
15.	Propene is $CH_3 - CH = CH_2$ $CH_3 - CH = CH_2 + O_3 \longrightarrow CH_3 - CH$ $CH_3 - CH = CH_2 + O_3 \longrightarrow CH_3 - CH$ $CH_3 - CH$ $CH_2 + O_3 \longrightarrow CH_3 - CH$ $O - O$ $CH_3 - CH$ $O - O$	1	2
16.	In Diborane (B2H6), the B atoms are Sp3 hybridized a and has 4 hybrid orbitals. of these 2 B-H bonds lies in the Same plane, one above the plane 4 one	1	

	below the plane. The 4 equitorial B-H bonds are normal 2 centred 2e bonds and Bridged B-H bonds are 3 centred-2e bonds and are called Banana bonds. H B H H H H H H H H H H H	1	2
17.	process having potential to proceed without the assistance of an external agency is called spontaneous processes. for spontaneity AGI<0 or it must be Negetive		2
18.	$d = \underbrace{Pm}_{RT} \text{or} \underline{d \propto m}_{2}$ $do_{2} \propto mo_{2} \frac{do_{2}}{dc_{H4}} = \underbrace{\frac{mo_{2}}{mc_{H4}}} = \underbrace{\frac{37}{2}}_{16} = \underbrace{\frac{37}{2}}_{16} = \underbrace{\frac{do_{2}}{dc_{H4}}}_{2} = \underbrace{\frac{37}{2}}_{16} = \underbrace{\frac{37}{2}}_{$		2
19.	formal charge (FC) on 0 marked $1 = 6 - 2 - (\frac{1}{2})6 = +1$ FC on 0 marked $2 = 6 - 4 - (\frac{1}{2})4 = 0$ FC on 0 marked $3 = 6 - 6 - (\frac{1}{2})2 = -1$	1	2
20.	Aluminium belongs to Group 13 elements with a valence of 3 and Sulphur belongs to Group 16 with a valence of 2. (Both have period no.3) To mulae of compound is Al2S3.	1	2
21.	Anomalous behaviour of hi is attributed to its small Size, High lonisation Enthalpy and Large Charge to radius vatio.	1	

CH3COONH4 -> CH3COOT NH4 (Or)

CH3 COOT + NI H4+ + H20 == CH3 COOH + NIH4 OH

		the state of the s		137
	÷.x	CH3COOH \rightleftharpoons CH3COOT + H ⁺ NH4OH \rightleftharpoons NH4 [†] + OH ⁻ H2O \rightleftharpoons H ⁺ + OH ⁻ PH = 7 + ½ (pka - pkb) it may be Greater than 7 Or less than O7.		
23.	(a)	when pH of Rain water falls below 5-6, it is called Acid Rain The reaction of oxides of Nitrogen & sulphur with water after	1	
		oxidation are Contributors of acid Rain. $250_2 + 0_2 + 2420 \longrightarrow 24_2 SO_4$ (aq) $400_2 + 0_2 + 2420 \longrightarrow 4400_3$ (aq)	1	3
	(c)	Acid Rain is harmful for trees, plants. it washes away essential nutrients in soil & there by damages agriculture.	1	
24.		Alkynes on reaction with Linlards' catalyst (partially deactivated palladised charcol) gives its Alkenes $RC \equiv CR' + H2 \frac{Pd/C}{Pd/C} \Rightarrow \begin{array}{c} R \\ C \equiv C \end{array}$ (is -alkene)	1 42	3
		Alkynes on reduction with liq. NH3/Na gives trans alkene $RC = RC' + H2 \frac{Na}{liq.NH3} R = C = C$ H Trans - alkene	1 1/2	
25.		$N_2 + 3H_2 \longrightarrow 2NH_3$ $28g N_2$ needs $6gm H_2$ $250g N_2$ needs $\frac{6}{28} \times 250 g H_2$ $= 53.57gm$	1	
		But we have 50gm Hz.		

		-: limiting Reagent is H2. 6@m H2 gives 34 gr-NH3	1	7
		1 gm H2 gives 34 g NH3 50 g H2 gives 34 x 50 = 283.33 gm	1	3
<i>2</i> 6.		Mo config of O_2 No: of e^- in O_2 molecule = 16 . $\therefore d^- ls^2 d^+ ls^2 d^- 2s^2 d^+ 2s^2 d^- 2p_z^2 d^- 2p_x^2 d^+ 2p_x^4$ $\qquad \qquad $	1	3
		Tis ² $\frac{4}{5}$ 1s ² $\frac{1}{2}$ $\frac{4}{5}$ $\frac{2}{5}$ $\frac{4}{5}$ $\frac{2}{5}$ $\frac{2}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ Bond order = $\frac{1}{2}$ (Nb - Na) = $\frac{1}{2}$ (10 - 4) = $\frac{6}{2}$ = $\frac{3}{5}$ N ₂ having higher bond order, it is more stable. N ₂ have all e paired - diamagnetic	1	
27 ·	(a)	1+ is because two wrong assumptions made in the kinetic theory of gases. i) There is no force of attraction b/w gas molecules. ii) Volume of a single molecule can be neglected Compared	(1)	3
	(b) (c)	to total volume. At High pressure / Low temp. Temp. at which real gases behave ideally.	(1)	

28.	structure: Correct figure in Gas phase/in solid phase (NCERT page. 286)	1	
	Preparation: i) Acidifying barium peroxide & removing Excess water ii) Electrolysis of Sulphate Solutions followed by Hydrolysis. iii) Auto-oxidation of 2- Elhyl anthraquinols. (Any One is Sufficient)	1	3
	Chemical rect ¹ = $2Fe^{2t} + 2H^{t} + H_{2}O_{2} \rightarrow 2Fe^{3t} + 2H_{2}O$ Pbs + $4H_{2}O_{2} \rightarrow PbSO_{4} + 4H_{2}O$ Hocl + $H_{2}O_{2} \rightarrow H_{3}O^{t} + Cl^{-} + O_{2}$ (Any One reaction)	1	
29.	$P_4 + OH_{(aq)} \longrightarrow PH_{3(g)} + HPO_{2(aq)}$ $\rightarrow OH^-$ indicate Reaction occurs in Basic Medium		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Oxidation half: $P_4 \longrightarrow HPO_2^-$		
	$P_4 \rightarrow 4 \text{ HPO}_2^-$ Anid no of Photon and In adding the		
	$6xid^n$ no: of P balanced by adding set $P_4 \longrightarrow 4HPO_2^- + 8e^-$		
	charge balanced by adding 120H		
	$P_4 + 120H^- \longrightarrow 4HPO_2^- + 8e^-$		
	H and O are balanced by adding 4H2O		
	Redu $P_4 + 120H^- \longrightarrow 4HPO_2^- + 8e^- + 4H_2O \longrightarrow (1)$		
	Reduction half		
	$P_4 \rightarrow PH_3$		
	$P_4 \longrightarrow 4PH_3$		
1	(o) (-3)×4		

Group of Organo Silicon polymers which have +R2SiO+

31

(a)

as a repeating unit.

(b)

Polymerisation

$$-0 + \frac{1}{1}$$

$$-0 +$$

SILICONE

(c) Chain length can be controlled by adding (CH3)35icl which blocks the Ends. / Reaction.

1

2

32

i) structural Isomerism

a) chain Isomerism.

Compounds with same molecular formular but differ in combon skeleton.

Eq: Butane and 2-methyl propane.

b) Pasition Isomerism

compounds with same molecular formular but differ in position of function group, double / triple bond.

Eg: pentan -1-ol and pentan -2-ol

C) Functional Isomerism

compounds with molecular formulae but differ in functional group.

Egs: Aldehydes & ketones or propanone & propanal.

		d) Metamerism arises due to difference in alkyl chain on either side of functional group. Eg; Methoxy propane and Ethoxy Ethane.		
33.	(a)	Hesses' Law if a Reaction takes place in multiple Sleps, the stand- ard Enthalpy of Reaction is the sum of Enthalpy of the intermediate step.	1	
	(b)	Required ean is;		
		$\begin{array}{ccc} C + 2H_{2}O + \frac{1}{2}O_{2} & \longrightarrow & CH_{3}OH(t) \\ \text{(S)} & \text{(g)} & \text{(g)} & \end{array}$		
		This ean can be obtained by;		
		i) Rewrite eqn (2) of Qn paper.		
		22 -5, - > co2 , Z4H 343 J mol .		
		ii) 2 x Equation (3) of Qn paper	3	
		$2H_{2}(g) + O_{2} \longrightarrow 2H_{2}O; \Delta_{7}H^{O}_{=} 2\times(-280)\text{Jmol}^{-1}$		
		= -572 Jmol-1 iii) Reverse eqn (1) of an paper; ArHG = + 726 Jmol-1		
		$\Delta_{\text{f}} H^{\text{0}}_{\text{[CH}_3\text{OH]}} = -393 - 572 + 726 = -965 + 726$		
		= -239 KJ mol-1		
		Standard Enthalpy of formation of methanol is -239 KImol		
		Prepared By, TOTAL SCORE: 60		
		ANOOP CHANDRANS		
		anoop chandrac 17 @ gmail . com		
		7902715940 (whats app)		