ANSWERS XIII

CHEMISTRY

$\begin{array}{lllllllllllll}\text { 1.a } & \text { 2.a } & \text { 3.c } & \text { 4.a } & \text { 5.c } & \text { 6.b } & \text { 7.c } & \text { 8.a } & \text { 9.b } & \text { 10.a } & \text { 11.c } & \text { 12.b } & \text { 13.d }\end{array}$ 14.c 15.b 16.c 17.c 18.a 19.c 20.a $21 . \mathrm{b}$ 22.d $23 . \mathrm{b}$ 24.c $25 . \mathrm{b}$ 26.b 27.d 28.d 29.b 30.b

PHYSICS

$\begin{array}{llllllllllll}\text { 1.d } & \text { 2.b } & \text { 3.b } & \text { 4.c } & \text { 5.d } & \text { 6.b } & \text { 7.c } & \text { 8.b } & \text { 9.b } & \text { 10.a } & \text { 11.d } & \text { 12.a }\end{array}$

27.d 28.c 29.d 30.d

MATHEMATICS

$\begin{array}{lllllllllllll}\text { 1.a } & \text { 2.c } & \text { 3.c } & \text { 4.c } & \text { 5.b } & \text { 6.a } & \text { 7.c } & \text { 8.d } & \text { 9.a } & \text { 10.b } & \text { 11.a } & \text { 12.b } & \text { 13.c }\end{array}$
14.d 15.a 16.b 17.a 18.b 19.a $20 . \mathrm{d}$ 21.a $22 . \mathrm{c}$ 23.c $24 . \mathrm{a}$ 25.c $\begin{aligned} & \text { 26.c }\end{aligned}$
27.b 28.b 29.d 30.a

HINTS AND EXPLANATIONS XIII

CHEMISTRY

Sol. 1

NaHCO_{3} reacts with NaOH to form $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
$\mathrm{NaHCO}_{3}+\mathrm{NaOH} \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Sol. 2

From the values given in the table, it can be seen that when the conc of Cl_{2} is doubled as in entry 2, the rate of reaction becomes double, so the rate depends upon $\left[\mathrm{Cl}_{2}\right]$. Similarily when conc of NO is doubled (compare entries 2 and 3), the rate of reaction becomes 4 times indicating that rate depends upon $[\mathrm{NO}]^{2}$. Therefore rate expression for the reaction is rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$

Sol. 3

The reaction that occurs at the anode when the electrolysis of CuCl_{2} is done using platinum electrode is : $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}$

Sol. 4

$\mathrm{NaH}_{2} \mathrm{PO}_{2}$ does not contain any -O-H so it not an acid salt.

Sol. 5

$\mathrm{KF}+\mathrm{HF} \rightarrow \mathrm{KHF}_{2} ; \mathrm{K}^{+} \mathrm{HF}_{2}^{-}$

Sol. 6

Solubility of iodine in water $=0.35 \mathrm{~g} / \mathrm{L}=0.35 / 254=0.001378 \mathrm{~mol}$

$$
\mathrm{K}=\frac{\left[\mathrm{I}_{2}\right]_{\mathrm{CCl}}}{\left[\mathrm{I}_{2}\right]_{\text {water }}} \text { or } \quad 600=\frac{\left[\mathrm{I}_{2}\right]_{\mathrm{CCl} 4}}{0.001378}
$$

Solubility of iodine in $\mathrm{CCl}_{4}=600 \times 0.001378=0.8268 \mathrm{~mol}$ or $\mathrm{o} .8268 \times 254=210 \mathrm{gL}^{-1}$.

Sol. 7

$\mathrm{Mn}^{4+}=[\mathrm{Ar}] 3 \mathrm{~d}^{3} ;$ no. of unpaired electrons $=3$
$\mu_{g}=\sqrt{n(n+2)}=\sqrt{3(3+2)}=\sqrt{15}=3.89 \approx 4.0$

Sol. 8

(a)

Sol. 9

Van der walls's constant ' s ' has the dimension of atm $L^{2} \mathrm{~mol}^{-2}$

Sol. 10

Osmotic pressure (π) is given as: $\pi \mathrm{V}=\mathrm{nRT}$

Sol. 11

Isostrucural pairs are

Sol. 12

The value of equilibrium constant remains the same.

Sol. 13

Ca^{2+} plays an important role in muscle contraction. The release of Ca^{2+} after receiving the nerve impulse, liberates the myosin's binding site on actin filaments. This enables a contraction, and a return of the calcium in the sarcoplasmic reticulum allows the muscle to relax.

Sol. 14

Acetylene on heating with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by oxidation of the formed product gives acetic acid.

Sol. 15

Water molecules are associated through hydrogen bonds due to which it has higher boiling point than $\mathrm{H}_{2} \mathrm{~S}$ (having no H -bonding).

Sol. 16

Structure of pyrophosphoric acid is given below. Oxidation number of P in this compound is +5 and basicity is 4 (due to 4 OH groups)

Sol. 17

HS ${ }^{-}$can accept as well as donate a proton
$\mathrm{HS}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}, \mathrm{HS}^{-}-\mathrm{H}^{+} \rightleftharpoons \mathrm{S}^{2-}$

Sol. 18

Since the rate of reaction doubles with doubling the initial concentration of salt, it is a first order reaction.

Sol. 19

$\Delta T_{\mathrm{f}}=i . \mathrm{K}_{\mathrm{f}} . \mathrm{m} ;$ for $\mathrm{NaCl}, i=2$
$\Delta T_{\mathrm{f}}=2 \times 1.86 \times 0.1=0.372$ Therefore, freezing point of solution $=-0.372^{\circ}$

Sol. 20

$\mu_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}} \mu_{\mathrm{SO}_{2}}}=\sqrt{\frac{3 \mathrm{RT}}{64} \mu_{\mathrm{O}_{2}}}=\sqrt{\frac{3 \mathrm{Rx} 300}{32}}$ Root mean square speed of SO_{2} will become the same as that of O_{2} at 300 K , when the temperature is 600 K or $327^{\circ} \mathrm{C}$.
$\mu_{S O_{2}}=\sqrt{\frac{3 \mathrm{R} \times 600}{64}}=\sqrt{\frac{3 \mathrm{R} \times 300}{32} \mu_{o_{2}}}=\sqrt{\frac{3 \mathrm{R} \times 300}{32}}$

Sol. 21

A ketone on reaction with $\mathrm{CH}_{3} \mathrm{MgI}$ forms a tertiary alcohol; formaldehlyde gives a primary alcohol; acetaldehyde gives secondary alcohol and acetic acid does not form an alcohol.

Sol. 22

If the electronegative difference between two atoms is more than 1.7, the bond is predominantly ionic.

Sol. 23

Rolled gold is composed of a solid layer of gold bonded with heat and pressure to a base metal such as brass.

Sol. 24

$\mathrm{CaCO}_{3} \rightleftharpoons \mathrm{CaO}+\mathrm{CO}_{2}$; One mol of $\mathrm{CaCO}_{3}(100 \mathrm{~g})$ gives 22.4 L of $\mathrm{CO}_{2}(\mathrm{~g})$ at STP, 50 g will give 11.2 L of $\mathrm{CO}_{2}(\mathrm{~g})$

Sol. 25

$\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}+$ heat
X 3.175 g 20 J heat evolved for production of $1 \mathrm{~mol}(63.5 \mathrm{~g})$ of $\mathrm{Cu}=\frac{20 \times 63,5}{3.175}=400 \mathrm{~J}$

Sol. 26

In the reaction, $3 \mathrm{Cl}_{2}+60 \mathrm{H} \rightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$ chloride us oxidize as well as reduced.
${ }^{0} \mathrm{Cl}_{2} \rightarrow{ }^{-1} \mathrm{Cl}^{-}$(reduction) ${ }^{0} \mathrm{Cl}_{2} \rightarrow{ }^{-5} \mathrm{ClO}_{3^{-}}$(oxidation)
Sol. 27
BiCl_{5}

Sol. 28

Mg burns in air or oxygen with a dazzling light to from MgO and $\mathrm{Mg}_{3} \mathrm{~N}_{2} .2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} 3 \mathrm{Mg}+$ $\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$

Sol. 29

Bakelite is a polymer of phenol and formaldehyde.

CuS (black), $\mathrm{Na}_{2} \mathrm{~S}$ (white), PbS (black), ZnS (dirty white)

PHYSICS

Sol. 1

Least count $\frac{1}{100}=0.01 \mathrm{~mm}$
Thickness of one paper $=0+25 \times 0.01=0.25 \mathrm{~mm}$
Thickness of pile $=0.25 \times 50=12.5 \mathrm{~mm}$

Sol. 2

As $x=(u \cos \theta) \Rightarrow \frac{x}{t}=u \cos \theta$
Given $x=6 t \therefore \frac{6 t}{t}=u \cos \theta \Rightarrow u \cos \theta=6$
$y=(u \sin \theta) t-\frac{1}{2} g t^{2}$
i.e. $y=(u \sin \theta) t-\frac{10}{2} t^{2}$
or $8 t-5 t^{2}=(u \sin \theta) t-5 t^{2}$
$u \sin \theta=8$
From (a) and (b)
$u^{2} \sin ^{2} \theta+u^{2} \cos ^{2} \theta=64+36=100$ Or $u^{2}=100 \Rightarrow u=10 \mathrm{~m} / \mathrm{s}$

Sol. 3

Momentum, $\mathrm{p}=m v=3.513 \times 5=17.565$
According to rules of significant figures
$\mathrm{P}=17.6 \mathrm{kgm} / \mathrm{s}$

Sol. 4

We know that Potential energy $=m g h \Rightarrow h=\frac{P . E .}{m g}=\frac{100}{5 \times 9.8}=2.04 \mathrm{~m}$

Sol. 5

For bodies (1) and (2)
$m v=\left(m_{1}+m_{2}\right) v_{1}=(, m+m) v_{1}$
$\operatorname{or}_{1}=v / 2$
for bodies (2) and (3)
$2 m \frac{v}{2}=3 m v_{2} \Rightarrow v_{2}=\frac{v}{3}$
Final speed therefore will be $v_{n-1}=\frac{v}{n}$

Sol. 6

Given Gravitational force between star of mass M and planet of mass $m=$ certripetal force
i.e. $\frac{G M m}{R^{5 / 2}}=\frac{m v^{2}}{R} \Rightarrow v^{2}=\frac{G M}{R^{3 / 2}}$

As $\omega=\frac{2 \pi}{T} \Rightarrow \frac{V}{R}=\frac{2 \pi}{T}$ or $V=\frac{2 \pi R}{T}$
$\Rightarrow T=\frac{2 \pi R}{V} o t T^{2}=\frac{4 \pi^{2} R^{2}}{v^{2}}=\frac{4 \pi^{2} R^{2} R^{3 / 2}}{G M}$
Or $T^{2} \propto R^{7 / 2}$

Sol. 7

For solid $P \frac{1}{2} V_{p} \times 1 \times g=V_{p} \delta_{p} g$
For solid $Q \frac{2}{3} V_{Q} \times 1 \times g=V_{Q} \delta_{Q} g$
$\therefore \frac{\delta_{P}}{\delta_{Q}}=\frac{3}{4}$

Sol. 8

As $Y=\frac{F}{A} \cdot \frac{l}{\Delta l} \Rightarrow F=\frac{V A}{l} \Delta l=k \Delta l$
Here k is a force constant.

Sol. 9

Specific heat at constant pressure is greater than the specific heat at constant volume because heat is used by gas for expansion purposes at constant pressure.

Sol. 10
As $d \theta=d U+d W$ we get $d Q=d U+O$
As $d Q<0 \Rightarrow d U<0$
Now because final internal energy is less than initial internal energy the temperature will decrease

Sol. 11

Given $U(x)=k\left[1-\exp \left(-x^{2}\right)\right]$
The restoring Force, $F=\frac{d v}{d x}=2 k x e^{-x^{2}}=\frac{2 k x}{e^{x^{2}}}$
The potential energy will be the least when $x=0$ as it is the state of equilibrium.

Sol. 12

We know that $E_{\text {center }}=0$
$E_{\text {surface }}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{R^{2}}, E_{\text {outside }}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q r}{r^{2}}$
$E_{\text {outside }} \propto \frac{1}{r^{2}}$ and $E_{\text {inside }}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q r}{r^{3}}$

Sol. 13

Using $H=I^{2} R t \Rightarrow I^{2}=\frac{H}{R t}=\frac{15000}{5 \times 30}=100$ i.e. $I=10 \mathrm{~A}$

Sol. 14

When a magnetic needle is kept in a non uniform magnetic field it experiences both force and torque.

Sol. 15

As $B=\frac{\mu_{0} I}{2 a}, I=\frac{2 a B}{\mu_{0}}=\frac{\left(5 \times 10^{5}\right)(2)\left(5 \times 10^{-2}\right)}{4 \pi \times 10^{-7}}=0.4 \mathrm{~A}$

Sol. 16

We know that $E=\frac{1}{2} L I^{2}$
$E=\frac{1}{2} \times 40 \times 10^{-3} \times 4=0.08 J$
Sol. 17
$E=\frac{L d I}{d t}=0.1 \times \frac{20}{0.02}=100 \mathrm{~V}$

Sol. 18

$U=\frac{1}{2} \epsilon_{0} E^{2}=\frac{1}{2}\left(8.85 \times 10^{-12}\right.$ 回 $)(48)^{2}=10^{-8} \mathrm{Jm}^{-3}$
Sol. 19
The apparent wavelength will decrease.

Sol. 20

Given depth $=\frac{d}{\mu}+\frac{d^{\prime}}{\mu^{\prime}}=\frac{d}{1.414}+\frac{d}{\mu}=\frac{d(\mu+1.414)}{1.414 \mu}$

Sol. 21

As angle of deviation $=A(\mu-1)$
And $\mu_{\text {violet }}$ is more than $\mu_{\text {red }}$
Thus blue colour will suffer more deviation than red colour.
Sol. 22
$\frac{h c}{\lambda}=W_{0}+e V$
$\therefore \frac{h}{e}=\frac{\lambda}{c e}\left(W_{0}+e V\right)=\frac{6 \times 10^{-7}}{c e}\left(W_{0}+0.5\right)$
Also $\frac{h}{e}=\frac{4 \times 10^{-7}}{c e}\left(W_{0}+1.5\right)$
Equating we get $\frac{h}{e}=4 \times 10^{-15}$

Sol. 23

$n_{a}=\frac{238-206}{4}=8$
And $n_{\beta}=82-[92-(8 \times 2)]=6$

Sol. 24

$\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}=\frac{\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{\infty}\right)^{2}}{\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{3}\right)^{2}}=\frac{9}{5}$

Sol. 25

Primitives are the intercepts which define the dimensional of a unit cell.

Sol. 26

From conservation of energy
$V_{2}{ }^{2}=V_{1}{ }^{2}+2 g h$
From equation of continuity $A_{1} V_{1}=A_{2} V_{2} \Rightarrow V_{2}=\left(\frac{A_{1}}{A_{2}}\right) V_{1}$
$\Rightarrow \frac{A_{1}{ }^{2}}{A_{1}{ }^{2}} V_{1}{ }^{2}=V_{1}{ }^{2}+2 g h \Rightarrow A_{2}{ }^{2}=\frac{A_{1}{ }^{2} V_{1}{ }^{2}}{V_{1}{ }^{2}+2 g h}$
$\therefore A_{2}=\frac{A_{1} V_{1}}{\sqrt{V_{1}^{2}+2 g h}}=\frac{\left(10^{-4}\right)(1.0)}{\sqrt{(1)^{2}+2(10)(0.15)}}=5 \times 10^{-5} \mathrm{~m}^{2}$

Sol. 27

Bulk modulus $B=-\frac{d p}{(d v / v)}=\frac{(1.165-1.01) \times 10^{5}}{(10 / 100)}=1.55 \times 10^{5} \mathrm{~Pa}$

Sol. 28

The average translational kinetic energy of an ideal molecule of a gas is given by $\frac{3}{2} K T$ which depends on temperature only. For same temperature, the translational kinetic energy of O_{2} and N_{2} will be equal

Sol. 29

The image will be real and between C and O

Sol. 30

As $N=N_{0} e^{-\lambda t}$ and $-\frac{d N}{d t}=\lambda N$
The number of nuclei decreases exponentially. So the decay process remains upto infinite time. A given nucleus may decay at any time after $t=0$

MATHEMATICS

Sol. 1

Let A be the set of people speaking Hindi and B donates the set of people speaking English. Now N(A \cup B) $=50, n(A)=35, n(A \cap B)=25$ We know $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$\Rightarrow 50=35+n(B)-25 \Rightarrow n(B)=40$ Therefore 40 people speak English.

Sol. 2

Let $f(x)=\sqrt{-16 x-x^{2}}$
$f(x)$ isrealif $\sqrt{-16 x-x^{2}}$ isreal
$\therefore-16 x-x^{2} \geq 0 \Rightarrow x^{2}+16 \leq 0$
$\Rightarrow x^{2}+16 x+64 \leq 64 \Rightarrow(x+8)^{2} \leq(8)^{2}$
$\Rightarrow|x+8|^{2} \Rightarrow(8)^{2} \Rightarrow|x+8| \leq 8$
$\Rightarrow-8 \leq x+8 \leq 8 \Rightarrow-16 \leq x \leq 0$
$\Rightarrow x \in[-16,0]$
$\therefore D_{f}=[-16,0]$

Sol. 3

$\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\cos 20^{\circ} \cos 40^{\circ}\left(\frac{1}{2}\right) \cos 80^{\circ}$
$=\frac{1}{2} \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}=\frac{1}{4} \cos 20^{\circ}\left[2 \cos 80^{\circ} \cos 40^{\circ}\right]$
$=\frac{1}{4} \cos 20^{\circ}\left[\cos 120^{\circ}+\cos 40^{\circ}\right]=\frac{1}{4} \cos 20^{\circ}\left[-\frac{1}{2}+\cos 40^{\circ}\right]$
$=-\frac{1}{8} \cos 20^{\circ}+\frac{1}{8}\left[2 \cos 40^{\circ} \cos 20^{\circ}\right]=-\frac{1}{8} \cos 20^{\circ}+\frac{1}{8}\left[\cos 60^{\circ}+\cos 20^{\circ}\right]$
$=-\frac{1}{8} \cos 20^{\circ}+\frac{1}{8}\left[\frac{1}{2}+\cos 20^{\circ}\right]=\frac{1}{16}$

Sol. 4

Let $-2-2 i=r(\cos \theta+i \sin \theta)$
$r \cos \theta=-2, r \sin \theta=-2$
Squaring and adding
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=4+4$
$\Rightarrow r^{2}=8 \Rightarrow r=2 \sqrt{2}$
$\cos \theta=-\frac{1}{\sqrt{2}}, \sin \theta=-\frac{1}{\sqrt{2}}$
Therefore θ lies in third quadrant
$\Rightarrow \theta=-\pi+\frac{\pi}{4}=-\frac{3 \pi}{4}$ Principle value of $-2-2 i$ is $-\frac{3 \pi}{4}$

Sol. 5

$3 x^{2}+8 x<3$
$\Rightarrow 3 x^{2}+8 x-3<0$
$\Rightarrow 3 x^{2}+9 x-x-3<0$
$\Rightarrow 3 x(x+3)-1(x+3)<0$
$\Rightarrow(x+3)(3 x-1)<0$
$\Rightarrow(x+3)\left(x-\frac{1}{3}\right)<0$
$\Rightarrow-3<x<\frac{1}{3}$
$\Rightarrow x \in\left(-3, \frac{1}{3}\right)$
\therefore Solution se is $\left(-3, \frac{1}{3}\right)$

Sol. 6

The given word TRAINGLE
No two vowels comes together, therefore vowels can occupy \square places in $\square \mathrm{T} \square \mathrm{R} \square \mathrm{N} \square \mathrm{G} \square \mathrm{L} \square$.
Three vowels I, A, E can be arranged in \square marked placed in ${ }^{6} P_{3}$ ways.
Also five consonants can be arranged among themselves in 5! ways
\therefore The required number of words $={ }^{6} \mathrm{P}_{3} \times 5!=\frac{6!}{3!3!} \times 5!$
$=120 \times 120=14400$

Sol. 7

Number of subjects $=5$
Candidate will fail if he fail in one or two or three or four or five subjects
\therefore Required number of ways
$={ }^{5} \mathrm{c}_{1}+{ }^{5} \mathrm{c}_{2}+{ }^{5} \mathrm{c}_{3}+{ }^{5} \mathrm{c}_{4}+{ }^{5} \mathrm{c}_{5}$
$=5+10+10+5+1$
$=31$

Sol. 8

Consider $\left(\frac{x^{3}}{2}-\frac{2}{x^{3}}\right)^{9}$
The number of terms in the expansion $=10$
\therefore fourth term from the end means seventh term from the beginning
$T_{7}={ }^{9} \mathrm{c}_{6}\left(\frac{x^{3}}{2}\right)^{3}\left(-\frac{2}{x^{3}}\right)^{6}$
$=\frac{9.87}{3.2 .1} \times \frac{x^{9}}{8} \times \frac{64}{x^{18}}$
$=\frac{672}{x^{9}}$

Sol. 9

Here $\mathrm{a}=1$. Let r be the common ratio of G.P.
From given condition $T_{3}+T_{5}=90$
$\Rightarrow(1) r^{2}+(1) r^{4}=90$
$\Rightarrow r^{4}+r^{2}-90=0$
$\Rightarrow r^{4}+10 r^{2}-9 r^{2}-90=0$
$\Rightarrow r^{2}\left(r^{2}+10\right)-9\left(r^{2}+10\right)=0$
$\Rightarrow\left(r^{2}-9\right)\left(r^{2}+10\right)=0$
$\Rightarrow r^{2}=9,-10$
$\Rightarrow r= \pm 3$

Sol. 10

Given vertices are $P(2,-1), Q(-2,3), R(4,5)$
Let S be the mid point of $P Q$
$\therefore \mathrm{S}$ is $(0,1)$
Equation of medium RS is

$$
\begin{aligned}
& y-5=\frac{1-5}{0-4}(x-4) \\
& \Rightarrow y-5=x-4 \Rightarrow x-y+1=0
\end{aligned}
$$

Sol. 11
Consider the lines
$x-y=4$ and $2 x+3 y=-7$
Solving these lines, we get
$\frac{x}{-7+12}=\frac{y}{-8-7}=\frac{1}{3+2}$
$\therefore x=1$ andy $=-3$
\therefore Centre of circle is $\mathrm{C}(1,-3)$
Also circle passes through $P(2,4)$
\therefore radius of circle $=C P$
$=\sqrt{(2-1)^{2}+(4+3)^{2}}=\sqrt{50}$
\therefore Equation of circle is
$(x-1)^{2}+(y+3)^{2}=(\sqrt{50})^{2}$
$\Rightarrow x^{2}+y^{2}-2 x+6 y-40=0$

Sol. 12

The foci are on y axis. Let $a<b$
\therefore equation of ellipse is of the focus
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Length of major axis $=20$
Foci are $(0, \pm 5)$
$\therefore b e=5$
Now

$$
b^{2} e^{2}=b^{2}-a^{2}
$$

$\Rightarrow 25=100-a^{2} \Rightarrow a^{2}=75$
Put a^{2}, b^{2} in (i), we get
$\frac{x^{2}}{75}+\frac{y^{2}}{100}=1$, which is required equation of ellipse.

Sol. 13

The equation of plane is
$2 x+3 y+5 z=1$
Let plane (i) divide the joining of $A(1,0,-3)$,
$b(1,5-7)$ at P in the ratio $K: 1$
$\therefore \operatorname{Pis}\left(\frac{K+1}{K+1}, \frac{-5 K}{K+1}, \frac{7 K-3}{K+1}\right)$
\therefore P lies on plane (i)
$\therefore 2\left(\frac{K+1}{K+1}\right)+3\left(\frac{-5 K}{K+1}\right)+5\left(\frac{7 K-3}{K+1}\right)=1$
$\Rightarrow 2 K+2-15 K+3 K-15=K+1$
$\Rightarrow 21 \mathrm{~K}=14 \Rightarrow K=\frac{2}{3}$
Required ratio $=\mathrm{K}: 1$
$=\frac{2}{3}: 1=2: 3$

Sol. 14

$L t_{x \rightarrow 0} \frac{3^{x}+3^{-x}-2}{x^{2}}=L t_{x \rightarrow 0} \frac{3 x+\frac{1}{3^{x}-2}}{x^{2}}$
$=L t_{x \rightarrow 0} \frac{3^{2 x}+1-2.3^{x}}{3^{x} \cdot x^{2}}=L t_{x \rightarrow 0}\left[\left(\frac{3 x-1}{x}\right)^{2} \times \frac{1}{3^{x}}\right]$
$=L t_{x \rightarrow 0}\left(\frac{3^{x}-1}{x}\right)^{2} \times L t_{x \rightarrow 0} \frac{1}{3^{x}}=(\log 3)^{2} \times \frac{1}{3^{0}}=(\log 3)^{2} \times 1$
$=(\log 3)^{2}$

Sol. 15

Given digits are $0,1,3,5,7$ Every four digit number freater than 5000 must have either 5 or 7 in the thousand's place.

Four digit numbers having 5 in thousands place $=5 \times 5 \times 5=125$
Four digit numbers having 7 in thousand place $=5 \times 5 \times 5=125$
Total numbers formed $=125+125=250+$ Number divisible by 5 must have 0 or 5 in the unit place. \therefore
Number divisible by $5=5 \times 5+5 \times 5+5 \times 5+5 \times 5=100$ Required probability $=\frac{100}{250}=\frac{2}{5}$

Sol. 16
Let $I=\int \frac{1}{\sqrt{5-4 x-2 x^{2}}} d x$
$=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\frac{5}{2}-2 x-x^{2}}} d x$
$=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\frac{5}{2}-\left(x^{2}+2 x\right)}} d x$
$=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(\frac{5}{2}+1\right)-\left(x^{2}+2 x+1\right)}} d x$
$=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(\frac{\sqrt{7}}{2}\right)^{2}-(x+1)^{2}}} d x$
$=\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{x+1}{\sqrt{\frac{7}{2}}}\right)+c$
$=\frac{1}{\sqrt{2}} \sin ^{-1}\left\{\frac{\sqrt{2}(x+1)}{\sqrt{7}}\right\}+c$
Sol. 17
Let $\Delta=\left|\begin{array}{ccc}a+b+c & -c & -b \\ -a & a+b+c & -a \\ -b & -a & -a\end{array}\right|$
By $C_{1} \rightarrow C_{1}+C_{2}, C_{2} \rightarrow C_{2}+C_{3}$
$=\left|\begin{array}{ccc}a+b & -(b+c) & -b \\ a+b & b+c & -a \\ -(a+b) & b+c & a+b+c\end{array}\right|$
$=(a+b)(b+c)\left|\begin{array}{ccc}1 & -1 & -b \\ 1 & 1 & -a \\ -1 & 1 & a+b+c\end{array}\right|$
$=(a+b)(b+c)\left|\begin{array}{ccc}1 & -1 & -b \\ 0 & 2 & -a+b \\ 0 & 0 & c+a\end{array}\right|$
$=(a+b)(b+c)[(1)(2)(c+a)]$
$=2(a+b)(b+c)(c+a)$

Sol. 18

Let $y=f(x)$
$\therefore y=\frac{4 x+3}{6 x-4}$
$\Rightarrow 6 x y-4 y=4 x+3$
$\Rightarrow 6 x y-4 y=4 y+3$
$\Rightarrow x=\frac{4 y+3}{6 y-3}$
$R f=$ set of all real number except $\frac{2}{3}=R\left\{\frac{2}{3}\right\}$

Sol. 19

Let $y=\sin ^{-1} \frac{1}{2}$ where $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
$\Rightarrow \sin y=\frac{1}{2}$ where $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
$\therefore y=\frac{\pi}{6}$
$\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]=\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right]=\tan ^{-1}\left[2 \cos \frac{\pi}{3}\right]=\tan ^{-1}\left[2 \times \frac{1}{2}\right]=\tan ^{-1}(1)=\frac{\pi}{4}$

Sol. 20

Given that $f(x)=\left\{\begin{array}{cc}\frac{1 \cos a x}{x \sin x} & x \neq 0 \\ \frac{1}{2} & x=0\end{array}\right.$
$L t_{x \rightarrow 0} f(x)=L t_{x \rightarrow 0} \frac{1-\cos a x}{x \sin x}$
$=L t_{x \rightarrow 0} \frac{1 \cos a x}{x^{2} \frac{\sin x}{x}}$
$=L t_{x \rightarrow 0} \frac{1-\cos a x}{x^{2}}=L t_{x \rightarrow 0} \frac{2 \sin ^{2} \frac{2 x}{2}}{x^{2}}$
$=\frac{a^{2}}{2} L t_{x \rightarrow 0}\left(\frac{\sin \frac{a x}{2}}{\frac{a x}{2}}\right)^{2}=\frac{a^{2}}{2}(1)=\frac{a^{2}}{2}$
Since $f(x)$ is continuous at $x=0$
$\therefore L t_{x \rightarrow 0} f(x)=f(0)$
$\Rightarrow \frac{a^{2}}{2}=\frac{1}{2} \Rightarrow a^{2}=1 \quad \therefore a= \pm 1$

Sol. 21

Given $y=a^{x^{a x \ldots \ldots \ldots}}$
$\therefore y=a^{\left(x^{y}\right)}$
$\log \mathrm{y}=\log a^{\left(x^{y}\right)}$
$\Rightarrow \log y=x^{y} \log a$
$\Rightarrow \log (\log y)=\log \left(x^{y} \log a\right)$
$\Rightarrow \log (\log y)=\log x^{y}+\log (\log a)$
$\Rightarrow \log (\log y)=y \log x+\log (\log a)$
Differentiate w.r.t. x , we get

$$
\begin{aligned}
& \frac{1}{\log y} \frac{1}{y} \frac{d y}{d x}=y \cdot \frac{1}{x}+\log x \cdot \frac{d y}{d x} \\
& \Rightarrow\left(\frac{1}{y \log y}-\log x\right) \frac{d y}{d x}=\frac{y}{x} \\
& \Rightarrow\left(\frac{1-y \log x \log y}{y \log y}\right) \frac{d y}{d x}=\frac{y}{z} \\
& \Rightarrow \frac{d y}{d x}=\frac{y^{2} \log y}{x(1-y \log y \log x)}
\end{aligned}
$$

Sol. 22

The equation of the curve is $y=5 x^{2}-2 x^{3}$
$\frac{d y}{d x}=10 x-6 x^{2}$
$m_{1}=10 x-6 x^{2}$, wherem m_{1} is slope of tangent. At (x, y) slope of line $\mathrm{y}=10 x-6 x^{2}$
Let m_{2} be slope of line $\mathrm{y}=4 x+5$
$\therefore m_{2}=4$ Because tangent is parallel to line (ii)
$\therefore m_{1}=m_{2}$
$\Rightarrow 10 x-6 x^{2}=4$
$\Rightarrow 3 x^{2}-5 x+2=0$
$\Rightarrow x=1, \frac{2}{3}$
When $x=1$, from(i) we get $y=3 \therefore$ Required point is $(1,3)$

Sol. 23

Let $f(x)=\sin x+\cos x$
$f^{\prime}(x)=\cos x-\sin x$
$f^{\prime}(x)=0 \Rightarrow \cos x-\sin x=0$
$\Rightarrow \sin x=\cos x \Rightarrow \tan x=1$
$\Rightarrow x=\frac{\pi}{4}, \frac{5 \pi}{4} \because x \in[0,2 \pi]$
Now $f(0)=\sin 0+\cos 0=0+1=1$
$f\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}$
$f\left(\frac{5 \pi}{4}\right)=\sin \frac{5 \pi}{4}+\cos \frac{5 \pi}{4}$
$=\sin \left(\pi+\frac{\pi}{4}\right)+\cos \left(\pi+\frac{\pi}{4}\right)$
$=-\sin \frac{\pi}{4}-\cos \frac{\pi}{4}$
$=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2}$
$f(2 \pi)=\sin 2 \pi+\cos 2 \pi=0+1=1$
\therefore maximum value of $f(x)$ is $\sqrt{2}$

Sol. 24

Let $I=\int \frac{d x}{1+\sin x+\cos x}$
Put $\tan =\frac{x}{2}=t$ or $\frac{x}{2}=\tan ^{-1} t$
Or $x=2 \tan ^{-1} t$
$\therefore d x=\frac{2}{1+t^{2}} d t$
$\operatorname{Sin} x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{1-t^{2}}{1+t^{2}}$
$\cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}=\frac{1-t^{2}}{1+t^{2}}$
$I=\int \frac{\frac{2}{1+t^{2}}}{1+\frac{2}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}} d t=\int \frac{2}{1+t^{2}+2 t+1-t^{2}} d t=2 \int \frac{d t}{2 t+2}=\int \frac{d t}{t+1}=\log |\mathrm{t}+1|+\mathrm{c}=\log \left|\tan \frac{\mathrm{x}}{2}+1\right|+\mathrm{c}$

Sol. 25

Let $I=\int_{0}^{\pi / 4} \sec x \sqrt{\frac{1-\sin x}{1+\sin x} d x}$
$=\int_{0}^{\pi / 4} \sec x \sqrt{\frac{1-\sin x}{1+\sin x} \times \frac{1-\sin x}{1-\sin x} d x}$
$=\int_{0}^{\pi / 4} \frac{1}{\cos x} \sqrt{\frac{(1-\sin x)^{2}}{1-\sin ^{2} x} d x}$
$=\int_{0}^{\pi / 4} \frac{1-\sin x}{\cos ^{2} x} d x$
$=\int_{0}^{\pi / 4}\left(\frac{1}{\cos ^{2} x}-\frac{1}{\cos x} \times \frac{\sin x}{\cos x}\right) d x$
$=\int_{0}^{\pi / 4}\left(\sec ^{2} x-\sec x \tan x\right) d x$
$=[\tan x-\sec x]_{0}^{\pi / 4}$
$=\left(\tan \frac{\pi}{4}-\sec \frac{\pi}{4}\right)-(\tan 0-\sec 0)$
$=(1-\sqrt{2})-(0-1)$
$=1-\sqrt{2}+1=2-\sqrt{2}$

Sol. 26

The given differential equation is

$$
\begin{aligned}
& \frac{d y}{d x}+2 y \tan x=\sin x \\
& P=2 \tan x, Q=\sin x \\
& \text { I.F. }=e^{\mathrm{IP} \mathrm{dx}}=(\cos x)^{-2}=\frac{1}{\cos ^{2} x}
\end{aligned}
$$

Solution of (i) is

$$
\begin{aligned}
& y \frac{1}{\cos ^{2} x}=\int \sin x \frac{1}{\cos ^{2} x} d x+c \\
& y \sec ^{2} x=\int \tan x \sec x d x+c \\
& y \sec ^{2} x=\sec x+c \\
& y=\cos x+c \cos ^{2} x
\end{aligned}
$$

Sol. 27

Here $\vec{a}=\lambda \hat{l}+\hat{\jmath}+4 \hat{k}, \vec{b}=2 \hat{l}+6 \hat{\jmath}+3 \hat{k}$
$\therefore|\vec{b}|=\sqrt{4+36+9}=7$
$\vec{a}, \vec{b}=2 \lambda+6+12=2 \lambda+18$
Scalar projection of \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$\therefore 4=\frac{2 \lambda+18}{7}$
$\Rightarrow 28=2 \lambda+18 \Rightarrow 2 \lambda=10$
$=\lambda=5$

Sol. 28

The equation of given lines are
$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$
Any line through $P(-1,3,-2)$ is
$\frac{x+1}{l}=\frac{y-3}{m}=\frac{z+2}{n}$
Where l, m, n are direction ratios of the line.
Since line (iii) is perpendicular to (i) and (ii)
$\therefore l+2 m+3 n=0(\mathrm{iv})$
And $-3 l+2 m+5 n=0$ (v)
Solving (iv) and (v), we get
$\frac{l}{10-6}=\frac{m}{-9-5}=\frac{n}{2+5}$
$\Rightarrow \frac{l}{4}=\frac{m}{-14}=\frac{n}{8}$
$\Rightarrow \frac{l}{2}=\frac{m}{-7}=\frac{n}{4}$
From (iii), the equation of line is $\frac{x+1}{2}=\frac{y-3}{-7}=\frac{z+2}{4}$

Sol. 29

Let S denotes the success and F denotes the failure.
$\therefore P(S)=\frac{1}{6}, P(F)=\frac{5}{6}$
$\mathrm{P}(\mathrm{A}$ wins in the first throw $)=P(S)=\frac{1}{6}$
$\mathrm{P}(\mathrm{A}$ wind in the third throw $)=P(F F S)$
$=P(F) P(F) P(S)$
$=\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)=\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)$
$\mathrm{P}(\mathrm{A}$ wins in the fifth throw $)=P(F F F F S)$
$=P(F) P(F) P(F) P(F) P(S)$
$=\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)$
$=\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)$
And so on
Therefore P (A wins)
$=\frac{1}{6}+\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{4}\left(\frac{1}{6}\right)+\cdots$
$=\frac{\frac{1}{6}}{1-\frac{25}{36}}=\frac{6}{11}$

Sol. 30

Let p denotes the probability of not getting a head and q the probability of not getting a head. Then
$p=\frac{1}{2}, q=\frac{1}{2}$ Probability of getting at least six heads when 8 coins are thrown simultaneously
$=P(6)+P(7)+P(8)$
${ }^{8} \mathrm{c}_{6}\left(\frac{1}{2}\right)^{6}\left(\frac{1}{2}\right)^{2}+{ }^{8} \mathrm{c}_{7}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right)^{1}+{ }^{8} \mathrm{c}_{8}\left(\frac{1}{2}\right)^{8}\left(\frac{1}{2}\right)^{0}$
$=\left(\frac{1}{2}\right)^{8}\left[{ }^{8} \mathrm{C}_{6}+{ }^{8} \mathrm{c}_{7}+{ }^{8} \mathrm{c}_{8}\right]$
$=\frac{1}{256}\left[\frac{8 \times 7}{1 \times 2}+\frac{8}{1}+1\right]=\frac{1}{256}[28+8+1]=\frac{37}{256}$

