MODEL TEST PAPER XII

CHEMISTRY

Q. 1

The R - isomers among the following are

(a) 1 and 2
(b) Only 2
(c) 3 and 4
(d) Only 4

Q. 2

Math the compounds in List I with their nature from List II, as seen in aqueous medium from the combination shown.

List I	List II
1. Acetamide	A. Acidic
2. Benzonitrile	B. Basic
3. Triethylamine	C. Neutral
4. Phenol	

(a) I - C; II - C; III - B; IV - A
(b) I - B; II - C; III - C; IV - A
(c) I - C; II - B; III - B; IV - C
(d) I - A; II - A; III - C; IV - B

Q. 3

The IUPAC name of the following compound is $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(a) 3-Methyl-1-butene
(b) 2-Vinylpropane
(c) 1-Jsopropyl ethylene
(d) 1,1-Dimethyl-2-propane

Q. 4

The organic reaction product from the reaction of mothyl magnesium bromide and ethyl alcohol is
(a) Methane
(b) Ethane
(c) Propane
(d) Butane

Q. 5

Which of the following reagents can distinguish $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ from $\mathrm{CH}_{3} \mathrm{OH}$?
(a) $\mathrm{H}_{2} \mathrm{O}$
(b) NH_{3}
(c) $\mathrm{I}_{2}+\mathrm{KOH}$
(d) HCI

Q. 6

The yellow colour of chromate changes to orange on acidification due to the formation of
(a) Cr^{3+}
(b) $\mathrm{Cr}_{2} \mathrm{O}_{3}$
(c) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
(d) CrO_{4}

Q. 7

An organic compound of molecular formula $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{Br}\right)$ is optically active. Which one of the following represents the above optically active compound?
(a) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{COBr}$
(b) $\mathrm{BrCH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H}$
(c) $\mathrm{BrCH}_{2}-0-\mathrm{CO}-\mathrm{CH}_{3}$
(d) $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{Br})-\mathrm{CO}_{2} \mathrm{H}$

Q. 8

Which among the following reacts with NaNH_{2} in liquid ammonia to furnish the corresponding sodioderivative?
(a) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Br}$
(c) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{2} \mathrm{H}_{5}$
(d) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
Q. 9

Cottrel precipitator works on the principle of
(a) Distribution law
(b) Neutralization of charge
(c) Le-chatelier's principle
(d) Partition law

Q. 10

Which of the following oxides of vanadium is likely to be most basic ?
(a) VO
(b) $\mathrm{V}_{2} \mathrm{O}_{3}$
(c) VO_{2}
(d) $\mathrm{V}_{2} \mathrm{O}_{5}$

Q. 11

Hydrometallurgy is based on :
(a) Calcination
(b) Roasting
(c) Leaching
(d) Oxidation

Q. 12

Of the following metals the one which cannot be obtained by electrolysis of the aqueous solution of its salt?
(a) Ag
(b) Mg
(c) Cu
(d) Au

Q. 13

In analogy to $\mathrm{O}_{2}{ }^{+}\left[\mathrm{PtF}_{6}\right]^{-}$a compound $\mathrm{N}_{2}{ }^{+}\left[\mathrm{PtF}_{6}\right]^{-}$will not be formed because
(a) The ionization enthalpy of N_{2} gas is higher than that of O_{2} gas
(b) The ionization enthalpy of N_{2} gas is lower than that of O_{2} gas
(c) The ionization enthalpy of N_{2} gas is higher than that of N atom
(d) None of these

Q. 14

If ionization rotential for hydrogen atom is 13.6 eV , then ionization potential for He^{+}will be
(a) 54.4 eV
(b) 6.8 eV
(c) 13.6 eV
(d) 24.5 eV

Q. 15

15 which does not exist ?
(a) $\left[\mathrm{CCI}_{6}\right]^{2-}$
(b) $\left[\mathrm{SiCl}_{6}\right]^{2-}$
(c) $\left[\mathrm{GeF}_{6}\right]^{2-}$
(d) $\left[\mathrm{SnCl}_{6}\right]^{2-}$

Q. 16

Amongst $\mathrm{TiF}_{6}{ }^{2-}, \mathrm{CoF}_{6}^{3-}, \mathrm{Cu}_{2} \mathrm{CI}_{2}$ and $\mathrm{NiCl}_{4}{ }^{2-}$ (At. Nos. $\mathrm{Ti}=22, \mathrm{Co}=27, \mathrm{Cu}=29, \mathrm{Ni}=28$) the colourless species are
(a) $\mathrm{CoF}_{6}{ }^{3-}$ and $\mathrm{NiCl}_{4}{ }^{2-}$
(b) CoF_{6} and $\mathrm{TiF}_{6}{ }^{2-}$
(c) $\mathrm{Cu}_{2} \mathrm{CI}$ and $\mathrm{NiCl}_{4}{ }^{2-}$
(d) $\mathrm{TiF}_{6}{ }^{2-}$ and

Q. 17

Which one of the following groups of oxides can be reduced by v carbon to give the respectively metal
(a) $\mathrm{Cu}_{2} \mathrm{O}-\mathrm{SnO}_{2}$
(b) $\mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{ZnO}$
(c) $\mathrm{Pbo},(), \mathrm{Fe}_{3} \mathrm{Zno}$
(d) $\mathrm{CaO}, \mathrm{K}_{2} \mathrm{O}$

Q. 18

The following compounds have been arranged in order of their increasing thermal istanilities. Indentify the correct order $\mathrm{K}_{2} \mathrm{CO}, \mathrm{MgCO}$, (II) BeCO , (IV)
(a) I $<$ II $<$ III $<$ IV
(b) IV $<$ II $<$ III $<$ I
(c) IV $<$ II $<$ I $<$ III
(d) II $<$ IV $<$ III $<$ I

Q. 19

Which of the following compounds liberates iodine when its aqueous solution is treated with KI solution ?
(a) ZnSO_{4}
(b) $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Q. 20

When mercuric iodide is added to the aqueous solution of potassium iodidie
(a) Boiling point does not change
(b) Freezing point is raised
(c) Freezing point is lowered
(d) Freezing point does not change

Q. 21

A 400 mg iron capsule contains 100 mg of ferrous fumarate $(\mathrm{CHCOO})_{2} \mathrm{Fe}$. The percentage of iron present in it is approximately
(a) 33%
(b) 25%
(c) 14%
(d) 8%

Q. 22

The size of the nucleus of an atom is of the order of
(a) $10^{-10} \mathrm{~m}$
(b) $10^{-15} \mathrm{~m}$
(c) $10^{-6} \mathrm{~m}$
(d) $10^{-8} \mathrm{~m}$

Q. 23

The structure of p -aminobenzoic acid at its isoelectric point is:
a)

b)

c)

d)

Q. 24

Chemical name of vitamin C is :
(a) Ascorbic acid
(b) Thiamime
(c) Riboflavin
(d) Calciferol

Q. 25

$\mathrm{Na}_{2} \mathrm{CO}_{2}$ is prepared by Solvay process but $\mathrm{K}_{2} \mathrm{CO}_{3}$ cannot be prepared by the same because
(a) $\mathrm{K}_{2} \mathrm{CO}_{3}$ is highly soluble in water
(b) KHCO_{3} is appreciably soluble
(c) KHCO_{3} is sparingly soluble
(d) KHCO_{3} decomposes

Q. 26

Out of the following halides of sodium, which one has greatest covalent character?
(a) NaCl
(b) NaBr
(c) Na 1
(d) NaF

Q. 27

Assuming the density of water to be $1 \mathrm{~g} / \mathrm{ml}$ the volume occupied by one molecule of water is
(a) $6 \times 10^{23} \mathrm{ml}$
(b) $6 \times 10^{-23} \mathrm{ml}$
(c) $3 \times 10^{-23} \mathrm{ml}$
(d) $3 \times 10^{24} \mathrm{ml}$

Q. 28

Which one of the following exhibits the weakest intermolecular forces ?
(a) NH_{3}
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) He
(d) HCI

Q. 29

The angle between two covalent bonds is maximum in :
(a) NH_{3}
(b) CH_{4}
(c) $\mathrm{H}_{2} \mathrm{O}$
(d) CO_{2}

Q. 30

Which of the following is the strongest acid?
(a) Phenol
(b) p-chlorophenol
(c) p-nitrophenol
(d) 2,4-dinitrophenol

PHYSICS

Q. 1

A cube has a side of length $1.2 \times 10^{-2} \mathrm{~m}$. Its volume will be
(a) $1.7 \times 10^{-6} \mathrm{~m}^{3}$
(b) $1.73 \times 10^{-6} \mathrm{~m}^{3}$
(c) $1.70 \times 10^{-6} \mathrm{~m}^{3}$
(d) $1.732 \times 10^{-6} \mathrm{~m}^{3}$

Q. 2

A string of length 1 m is fixed at one end and carries a mass of 100 g at the other end. The string makes $2 / \pi$ revolutions per second around the vertical axis through the fixed end. If angle of inclination of string with the vertical is $\cos ^{-1}(5 / 8)$, the linear velocity of mass is
(a) $1 \mathrm{~m} / \mathrm{s}$
(b) $2 \mathrm{~m} / \mathrm{s}$
(c) $3 \mathrm{~m} / \mathrm{s}$
(d) $4 \mathrm{~m} / \mathrm{s}$

Q. 3

A block kept on a frictionless inclined surface with angle of inclination φ. The incline is given an acceleration a to keep the block stationary. The acceleration a is equal to
(a) $g / \tan \varphi$
(b) $g \operatorname{cosec} \varphi$
(c) g
(d) $g \tan \varphi$

Q. 4

The kinetic energy of a body becomes four times its initial value. The new linear momentum will be
(a) Twice the initial value
(b) Same as the initial value
(c) Four times the initial value
(d) Thrice the initial value

Q. 5

Moment of inertia of a solid cylinder of mass M and radius R about a line parallel to the axis of cylinder and lying on the surface of the cylinder is
(a) $2 \mathrm{MR}^{2} / 5$
(b) $3 \mathrm{MR}^{2} / 5$
(c) $3 \mathrm{MR}^{2} / 2$
(d) $5 \mathrm{MR}^{2} / 2$

Q. 6

A satellite revolves around a planet in circular orbit of radius R with time period of revolution T . If the satellite is stopped and brought to rest in its orbit, then
(a) It will not fall into the planet
(b) It will fall into the planet so the time of fall of satellite is meaning less
(c) The time of fall of satellite is $\mathrm{T} / \sqrt{ } 8$
(d) The time of fall of satellite into the planet is $\sqrt{ } 2 \mathrm{~T} / 8$

Q. 7

The excess pressure inside a soap bubble is three times that inside another bubble. The ratio of volume of first to second bubble is given by
(a) $3: 1$
(b) $7: 9$
(c) $1: 27$
(d) $27: 1$

Q. 8

Temperature of a cup of tea is decreased by dipping a sppon in it. The most suitable material for same mass is
(a) Aliminium
(b) Steel
(c) Iron
(d) Copper

Q. 9

Real gases obey ideal gas laws more closely at
(a) High pressure and low temperature
(b) Low pressure and high temperature
(c) High pressure and high temperature
(d) Low pressure and low temperature

Q. 10

A particle executes simple harmonic motion with a frequency. The frequency. The frequency of kinetic energy will be
(a) 2 n
(b) N
(c) $n / 2$
(d) $3 n$

Q. 11

A point particle of mass 0.1 kg is executing simple harmonic motion of amplitude 0.1 m . When the particle passes through the mean position, its kinetic energy is $8 \times 10^{-3} \mathrm{~J}$. The equation of motion of the particle at the initial phase of oscillation of 45°, is given by
(a) $0.1 \cos (4 t+\pi / 4)$
(b) $0.1 \sin (4 t+\pi / 4)$
(c) $0.4 \sin (t+\pi / 4)$
(d) $0.2 \sin (\pi / 2+2 t)$

Q. 12

An electron of mass m_{e}, initially at rest, moves through a certain distance in a uniform electric field in time t_{1}. A proton of mass m_{p}, also initially at rest, takes time t_{2} to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio t_{2} / t_{1} is nearly equal to
(a) 1
(b) $\left(\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}\right)^{1 / 2}$
(c) $\left(m_{e} m_{p}\right)^{1 / 2}$
(d) 1.8

Q. 13

A wire of length 100 cm is connected to a cell of 2 V . The resistance of the wire is 3Ω. The additional resistance required to produce a potential difference of $1 \mathrm{mV} / \mathrm{cm}$ is
(a) 60Ω
(b) 47Ω
(c) 57Ω
(d) 35Ω

Q. 14

The strength of the magnetic field at a point distance r near a long straight current carrying wire is B. the field at a distance $\mathrm{r} / 2$ will be
(a) $B / 2$
(b) $B / 4$
(c) 4B
(d) 2 B

Q. 15

A current of 2 A flows in a long, straight wire of radius 2 mm . The intensity of magnetic field at the axis of the wire is
(a) $\frac{\mu_{0}}{\pi} \times 10^{3} \mathrm{Tesla}$
(b) $\frac{\mu^{\circ}}{2 \pi} \times 10^{3} \mathrm{Tesla}$
(c) $\frac{2 \mu \circ}{\pi} \times 10^{3}$ Tesla
(d) Zero

Q. 16

When an altenating potential $\mathrm{V}=\mathrm{V}_{0} \sin (\omega-\pi / 2)$ flows in a given circuit . The electric power consumed in the given circuit per cycle is
(a) $21 . \mathrm{V}$ 。
(b) $\sqrt{2} 1 . \mathrm{V}$ 。
(c) $\mathrm{I} \mathrm{V}_{\mathrm{o}} / 2$
(d) Zero

Q. 17

Large transformers, when used for sometime, become hot and are cooled by circulating oil. The heating of transformer is due to
(a) Heating effect of current alone
(b) Hysteresis loss alone
(c) Both hysteresis loss and heating effect of current
(d) None of the above

Following question consist of two statements printed as Statement 1 and Statement 2. While answering these questions you are required to select any one of the responses indicated as

1. If both Statement 1 and Statement 2 are true and Statement 2 is a correct explanation of Statement 1.
2. If both Statement 1 and Statement 2 are true but the Statement 2 is not correct explanation of Statement 1.
3. If Statement 1 is true but the Statement 2 is false.
4. If Statement 1 is false but Statement 2 is true .

Q. 18

Statement 1: The process of superimposing low frequency audio wave on the high frequency carrier wave is called modulation

Statement 2: The process of separating the audio wave from carrier wave is called demodulation
(a) 1
(b) 2
(c) 3
(d) 4

Q. 19

When light falls on a given plate at an angle of incidence 60°, the reflected and refracted rays are found to be normal to each other. The refractive index of the material of the plate is then
(a) 0.866
(b) 1.5
(c) 1.732
(d) 2

Q. 20

Which of the following can not be used to get a sharp image of the object ?
(a) Using two parallel slits
(b) Using lenses
(c) Using diffraction grating
(d) Using Polaroid sheets

Q. 21

In diffraction grating experiment, the pattern can be enhanced by
(a) Increasing wavelength
(b) Decreasing wavelength
(c) Constant wavelength
(d) None of the above

Q. 22

The penetrating power of X rays can be increased by
(a) Increasing the current in filament
(b) Decreasing the current in filament
(c) Increasing the potential difference between the cathode and the anode
(d) Decreasing the potential difference between the cathode and the anode

Q. 23

The wavelength of maximum energy, released during an atomic explosion, was $2.93 \times 10^{-10} \mathrm{~m}$. If the wein's constant is $2.93 \times 10^{-3} \mathrm{mK}$, the maximum temperature attained must be of the order of
(a) $10^{-7} \mathrm{~K}$
(b) $10^{7} \mathrm{~K}$
(c) $10^{-13} \mathrm{~K}$
(d) $5.86 \times 10^{7} \mathrm{~K}$

Q. 24

The half life of radium is 1600 years. The number of un decayed atoms of radium after 4800 years will be
(a) $1 / 8 \mathrm{~b}$)
(b) $1 / 16$
(c) $7 / 8 \mathrm{~d}$)
(d) $8 / 7$

Following question consist of two statements printed as Statement 1 and Statement 2. While answering these questions you are required to select any one of the responses indicated as

1. if both Statement 1 and Statement 2 are true and Statement 2 is a correct explanation of Statement 1.
2. if both Statement 1 and Statement 2 are true but the Statement 2 is not a correct explanation of Statement 1.
3. if statement 1 is true but the Statement 2 is false. 4. if Statement 1 is false but Statement 2 is true

Q. 25

Statement 1: Forbidden energy gap may be zero in case of a conductor so it conducts electricity, where as in case insulator forbidden energy gap is very large and hence can not conduct electricity.

Statement 2: A substance can conduct electricity if an electron jumps from valence band to conduction band by over- coming the forbidden energy gap.
(a) 1
(b) 2
(c) 3
(d) 4

Sol. 26

If a star can convert all the He nuclei completely into oxygen nuclei, the energy released per oxygen nuclei is
$($ Given mass of the helium nucleus $=4.0026 \mathrm{amu}$ and mass of oxygen nucleus $=15.9994 \mathrm{amu})$
(a) 7.6 MeV
(b) 56.12 MeV
(c) 10.24 MeV
(d) 23.4 MeV

Sol. 27

The magnetic of electric field E in the annular region of a charged cylindrical capacitor
(a) Is same through out
(b) Is higher near the outer cylinder than near the inner cylinder
(c) Varies as $1 / r$ where r is the distance from the axis
(d) Varies as $1 / \mathrm{r}^{2}$ where r is the distance from the axis

Sol. 28

A given quantity of an ideal gas is at pressure p and absolute temperature T . The isothermal bulk modulus of the gas is
(a) $\frac{2}{3} p$
(b) p
(c) $\frac{3}{2} p$
(d) $2 p$

Sol. 29

Steam at $100^{\circ} \mathrm{C}$ is passed into 1.1 kg of water contained in a calorimeter of water equivalent 0.02 kg at $15^{\circ} \mathrm{C}$ till the temperature of the calorimeter and its contents rises to $80^{\circ} \mathrm{C}$. The mass of the steam condensed in kg is
(a) 0.130
(b) 0.065
(c) 0.260
(d) 0.135

Sol. 30

A real image of a distant object is formed by a planoconvex lens on its principle axis. Spherical aberrations
(a) Is absent
(b) Is smaller if the curved surface of the lens faces the object
(c) Is smaller if the plane surface of the lens faces the object
(d) Is the same whichever side of the lens faces the object

MATHEMATICS

Q. 1

Let $f: R \rightarrow R$ be such that $f(x)=2^{x}=2^{x}$. Then the range of f is
(a) $(1, \infty)$
(b) $[1, \infty)$
(c) R
(d) $\mathrm{R}-\{0\}$

Q. 2

If $\sin \theta=-\frac{2 \sqrt{6}}{5}$ and θ lies in third quadrant. Then $\tan \theta$ is equal to
(a) $2 \sqrt{6}$
(b) $\sqrt{6}$
(c) $\frac{2}{5}$
(d) $-\frac{\sqrt{6}}{5}$

Q. 3

$(\cos \alpha+\cos \beta)^{2}+(\sin \alpha+\sin \beta)^{2}$ is equal to
(a) $4 \cos ^{2}\left(\frac{\alpha+\beta}{2}\right)$
(b) $4 \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)$
(c) $4 \sin ^{2}\left(\frac{\alpha+\beta}{2}\right)$
(d) $4 \sin ^{2}\left(\frac{\alpha-\beta}{2}\right)$

Q. 4

In any triangle $\mathrm{ABC}, a \cos A+b \cos B+c \cos C$ is equal to
(a) $2 \mathrm{a} \sin \mathrm{B} \sin \mathrm{C}$
(b) $2 \mathrm{a} \cos \mathrm{B} \cos \mathrm{C}$
(c) $\mathrm{A} \cos \mathrm{B} \sin \mathrm{C}$
(d) $\mathrm{A} \sin \mathrm{B} \cos \mathrm{C}$

Q. 5

If $(1+i) y^{2}+(6+i)=(2+i) x$, then the value of x and y are
(a) $x=5, y= \pm 2$
(b) $x= \pm 5, y=2$
(c) $x=2, y= \pm 5$
(d) $x= \pm 2, y=5$

Q. 6

The roots of $x^{2}-5 i x-6=0$ are
(a) $2 i, 1+2 i$
(b) $3 i, 2 i$
(c) $1+3 i, 1+2 i$
(d) $1+2 i, 1-2 i$

Q. 7

If ${ }^{22} P_{r+1}:{ }^{20} P_{r+2}=11: 52$. then the value of r is
(a) 5
(b) 6
(c) 7
(d) 8

Q. 8

The number of four letter words that can be formed using the letters of the mood 'FAILURE' are
(a) 300
(b) 315
(c) 345
(d) 360

Q. 9

The term which is independent of x is the expansion of $\left(x-\frac{1}{x}\right)^{12}$ is
(a) ${ }^{12} \mathrm{C}_{2}$
(b) ${ }^{12} \mathrm{C}_{3}$
(c) ${ }^{12} \mathrm{C}_{4}$
(d) ${ }^{12} \mathrm{C}_{6}$

Q. 10

If an A.P, $3^{\text {rd }}$ term is 7 and $7^{\text {th }}$ term is two more than thrice of its $3^{\text {rd }}$ term. Then sum of first 20 term is
(a) 700
(b) 740
(c) 760
(d) 800

Q. 11

The sum of an infinite G.P. is 8 and its second term is 2 . Then the first term of G.P. is
(a) 4
(b) 5
(c) -7
(d) -10

Q. 12

A straight line passes through the point $(3,4)$ and the sum of its intercepts on the axes in 14 . The equation of the line is
(a) $2 x+3 y=4$
(b) $x+3 y=5$
(c) $x+y=7$
(d) $3 x+4 y=6$

Q. 13

The number of three digit numbers that can be formed without using the digits $0,2,4,5$ and 6
(a) 24
(b) 30
(c) 56
(d) 64

Q. 14

Ont of 7 consonants and 4 vowels, the number of words that can be formed from 3 consonants and 2 vowels are
(a) 25200
(b) 30500
(c) 32750
(d) 36250

Q. 15

$(99)^{5}$ is equal to
(a) 9509900899
(b) 9509900499
(c) 9509900100
(d) 9509900900

Q. 16

The sum of the series $5+55+555+\ldots$ n terms is equal to
(a) $\frac{5}{81}\left[10^{n+1}-1-9 n\right]$
(b) $\frac{5}{81}\left[10^{n+1}-n-8\right]$
(c) $\frac{5}{81}\left[10^{n+1}-10-9 n\right]$
(d) $\frac{5}{81}\left[10^{n+1}-2 n+1\right]$

Q. 17

The equation of line which is parallel to line $3 x-4 y-5=0$ and at a unit distance from it, is
(a) $3 x-4 y-10=0$
(b) $3 x-4 y+12=0$
(c) $3 x-4 y+15=0$
(d) $3 x-4 y+20=0$

Q. 18

The equation of the circle which passes through $(1,0)(-1,0)$ and $(0,1)$ is
(a) $x^{2}+y^{2}=9$
(b) $x^{2}+y^{2}=1$
(c) $x^{2}+y^{2}=4$
(d) $x^{2}+y^{2}=16$

Q. 19

$L t_{x \rightarrow 4} \frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}$ is equal to
(a) $\frac{1}{3}$
(b) $\frac{1}{2}$
(c) $-\frac{1}{3}$
(d) $\frac{1}{4}$

Q. 20

The probability that in a random arrangement of letters of word 'UNIVERSITY' the tow I's come together is
(a) $\frac{1}{5}$
(b) $\frac{1}{10}$
(c) $\frac{1}{12}$
(d) $\frac{1}{15}$

Q. 21

If $f(x)=\frac{3 x-2}{2 x-3}$ then Range (f) is
(a) R
(b) $-\left\{\frac{3}{2}\right\}$
(c) $(0, \infty)$
(d) $(-\infty, 0)$

Q. 22

If $-\frac{\pi}{4}<x<\frac{\pi}{4}$ then $\sin ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)$ is equal to
(a) $\frac{\pi}{4}$
(b) $x+\frac{\pi}{2}$
(c) $x+\frac{\pi}{4}$
(d) x
Q. 23
$\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ a c & b c & -c^{2}\end{array}\right|$ is equal to
(a) abc
(b) $a^{2} b^{2} c^{2}$
(c) $a b^{2} c$
(d) $4 a^{2} b^{2} c^{2}$

Q. 24

$\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{8}{17}$ is equal to
(a) $\sin ^{-1} \frac{77}{85}$
(b) $\cos ^{-1} \frac{77}{85}$
(c) $\sin ^{-1} \frac{24}{85}$
(d) $\cos ^{-1} \frac{24}{85}$

Q. 25

The function $f(x)=\frac{4+x^{2}}{4 x-x^{3}}$ is discontinuous at
(a) One point
(b) Two points
(c) Three points
(d) None of these
Q. 26

Let $f(x)=|x|$ and $g(x)=\left|x^{3}\right|$, then
(a) $f(x)$ and $g(x)$ both are continuous at $x=0$
(b) $f(x)$ and $g(x)$ both are differentiable at $x=0$
(c) $f(x)$ is differentiable but $g(\mathrm{x})$ is not differentiable at $x=0$
(d) $f(x)$ and $g(x)$ both are not differentiable at $x=0$

Q. 27

The slope of the normal to the curve $x^{2}+3 y+y^{2}=5$ at $(1,1)$ is
(a) $\frac{2}{5}$
(b) $\frac{5}{2}$
(c) 1
(d) 3

Q. 28

The function $f(x)=\frac{x}{x^{2}+1}$ is increasing in interval
(a) $(1, \infty)$
(b) $[1, \infty)$
(c) $[0,1]$
(d) $(-1,1)$

Q. 29

$\int \tan ^{-1}\left\{\sqrt{\frac{1-\sin x}{1+\sin x}}\right\} d x,-\frac{\pi}{2}<x<\frac{\pi}{2}$ is equal to
(a) $\frac{\pi}{4} x+c$
(b) $\frac{\pi}{4} x-\frac{x^{2}}{2}+c$
(c) $\frac{x^{2}}{2}+c$
(d) $\frac{\pi}{4}+\frac{x^{2}}{2}+c$
Q. 30
$\int_{0}^{1} \frac{e^{-x}}{1+x} \mathrm{dx}$ is equal to
a. $\log \frac{1+\mathrm{e}}{2}-\frac{1}{\mathrm{e}}$
b. $\quad \log \frac{\mathrm{e}}{2}-\mathrm{e}$
c. $\log \frac{1+\mathrm{e}}{\mathrm{e}}$
d. $\log \frac{\mathrm{e}}{\mathrm{e}-1}$

