S.S.L.C-2019

Mathematics

$$
\begin{gathered}
\text { Question Paper } \\
\text { With }
\end{gathered}
$$

Key Answer.
Key Ans: УК

KARNATAKA STATE SECONDARY EDUCATION EXAMINATION BOARD - 2019
 Subject : MATHEMATICS

Total No. of questions : 40
Time : 3 Hrs.

Subject Code : 81E
Max. marks: 80
I. Four alternatives are given for each of the following questions/incomplete statements. Only one of them is correct or most appropriate. Choose the correct alternative and write the complete answer along with its letter of alphabet.
$8 \times 1=8$

1. If n-th term of an arithmetic progression $a_{n}=24-3 n$, then its $2^{\text {nd }}$ term is
(A) 18
(B) 15
(C) 0
(D) 2
2. The lines represented by $2 x+3 y-9=0$ and $4 x+6 y-18=0$ are
(A) Intersecting lines
(B) Perpendicular lines to each other
(C) Parallel lines
(D) Coincident line.
3. A straight line which passes through two points on a circle is
(A) A chord
(B) A secant
(C) A tangent
(D) the radius
4. If the area of a circle is 49Π sq. units then its perimeter is
(A) 7π units
(B) 9π units
(C) 14π units
(D) 49π units
5. "The product of two consecutive positive integers is 30 . " this can be expressed algebraically as
(A) $x(x+2)=30$
(A) $x(x-2)=30$
(A) $x(x+3)=30$
(A) $x(x+1)=30$
6. If a and b are any two positive integers then $\operatorname{HCF}(\mathrm{a}, \mathrm{b}) \times \operatorname{LCM}(\mathrm{a}, \mathrm{b})$ is equal to
(A) $a+b$
(B) $\mathrm{a}-\mathrm{b}$
(C) $a \times b$
(D) $a \div b$
7. The value of $\cos 48^{\circ}-\sin 42^{\circ}$ is
(A) 0
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) 1
8. If $\mathrm{P}(\mathrm{A})=0.05$ then $\mathrm{P}(\bar{A})$ is
(A) 0.59
(B) 0.95
(C) 1
(D) 1.05
II. Answer the following :
9. The given graph represents a pair of linear equations in two variables. Write how may solutions these pair of equations have.

10. $17=6 \times 2+5$ is compared with Euclid's Division lemma $a=b q+r$, then which number is representing the remainder?
11. Find the zeros of the polynomial $p(x)=x^{2}-3$
12. Write the degree of the polynomial $p(x)=2 x^{2}-x^{3}+5$
13. Find the value of the discriminant of the quadratic equation $2 x^{2}-4 x+3=0$
14. Write the formula to calculate the curved surface area of the frustum of a cone.
III. Answer the following :
$16 \times 2=32$
15. Find the sum of first twenty terms of Arithmetic series $2+7+12+\ldots$.. using suitable formula.
16. In $\triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}$. Prove that $\mathrm{AB}^{2}+\mathrm{AC}^{2}=(\mathrm{BD}+\mathrm{CD})^{2}$

17. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$, If $\mathrm{AD}=5 \mathrm{~cm}, \mathrm{BD}=7 \mathrm{~cm}$ and $\mathrm{AC}=18 \mathrm{~cm}$, find the length of AE .

OR
In the given figure if $\mathrm{PQ} \| \mathrm{RS}$, prove that $\Delta \mathrm{POQ} \sim \Delta \mathrm{SOR}$.

18. Solve the following pair of linear equations by any suitable method :
19. In the figure, ABCD is a square of side $14 \mathrm{~cm} . \mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are the centers of four congruent circle such that each circle touches externally two of the remaining three circles. Find the area of the shaded region.

20. Draw a circle of radius 4 cm and construct pair of tangents such that the angle between them is 60^{0}
21. Find the co-ordinates of point which divides the line segment joining the points $A(4,-3)$ and $B(8,5)$ in the ratio $3: 1$ internally.
22. Prove that $3+\sqrt{5}$ is an irrational number.
23. The sum and product of zeroes of quadratic polynomial $p(x)=a x^{2}+b x+c$ are -3 and 2 respectively. Show that $b+c=5 a$
24. Find the quotient and remainder when $p(x)=3 x^{3}+x^{2}+2 x+5$ is divided by $g(x)=x^{2}+2 x+1$
25. Solve $2 x^{2}-5 x+3=0$ by using formula.
26. The length of a rectangular field is 3 times its breadth. If the area of the field is $147 \mathrm{sq} . \mathrm{m}$, find its length and breadth.
27. If $\sin \theta=\frac{12}{13}$, find the value of $\cos \theta$ and $\tan \theta$

OR

If $\sqrt{3} \tan \theta=1$ and θ is acute, find the value of $\sin 3 \theta+\cos 2 \theta$
28. Prove that $\left(\frac{1+\cos \theta}{1-\cos \theta}\right)=(\operatorname{cosec} \theta+\cot \theta)^{2}$
29. A cubical die numbered from 1 to 6 is rolled twice. Find the probability of getting the sum of numbers on its face is 10 .
30. The radii of two circular ends of a frustum of a cone shaped dustbin are 15 cm and 8 cm . if fits depth is 63 cm , find the volume of the dustbin.

IV. Answer the following :

31. Prove that " The lengths of tangents drawn from an external point to a circle are equal ".

OR
In the given figure $P Q$ and $R S$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting $P Q$ at A and $R S$ at B. prove that $L A O B=90^{\circ}$

32. Calculate the median of tin nunwing nequency unsuivunuin tavie.

Class interval	$1-4$	$4-7$	$7-10$	$10-13$	$13-16$	$16-19$
Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	6	30	40	6	4	4
$\sum \mathrm{f}_{\mathrm{i}}=100$						

OR
Calculate the mode for the following frequency distribution table.

Class interval	$10-25$	$25-40$	$40-55$	$55-70$	$70-85$	$85-100$
Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	2	3	7	6	6	6

33. During the medical check-up 35 students of a class, their weights were recorded as follows. Draw a less than type of ogive for the given data.

Yakub Koyyur

Weight (in kg)	Number of studens
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

34. The seventh term of an Arithmetic progression is four times its second term and twelfth term is 2 more than three times of its fourth term. Find the progression.

OR

A line segment is divided into four parts forming an Arithmetic progression. The sum of the lengths of $3^{\text {rd }}$ and $4^{\text {th }}$ parts is three times the sum of the lengths of first two parts. If the length of fourth part is 14 cm , find the total length of the line segment.
35. The vertices of a $\triangle A B C$ are $A(-3,2), B(-1,-4)$ and $C(5,2)$. If M and N are the mid - points of $A B$ and $A C$ respectively, show that $2 \mathrm{MN}=\mathrm{BC}$.

OR

The vertices of a $\triangle A B C$ are $A(-5,-1), B(3,-5)$ and $C(5,2)$. Show that the area of the $\triangle A B C$ is four times the area of the triangle formed by joining the mid-points of the sides of the triangle $A B C$.
36. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$, and 7 cm and then construct another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.
V. Answer the following :
37. Find the solution of the following pairs of linear equation by the graphical method:
$2 x+y=6$
$2 x-y=2$
38. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complimentary. Find the height of the tower.
39. The bottom of a right cylindrical shaped vessel as shown in the figure. The radius of the circular base of the cylinder and radius of the circular base of the cone are each is equal to 7 cm . if the height of the cylinder is 20 cm and height of cone is 3 cm , calculate the cost of milk to fill completely this vessel at the rate of Rs. 20 per liter.

OR

A hemispherical vessel of radius 14 cm is fully filled with sand. This sand is poured on a level ground. The heap of sand forms a cone shape of height 7 cm . calculate the area of ground occupied by the circular base of the heap of the sand.
40. Prove that " The areas of two similar triangles is equal to the square of the ratio of their corresponding sides".

KARNATAKA STATE SECONDARY EDUCATION EXAMINATION BOARD - 2019
 Subject : MATHEMATICS

Total No. of questions : 40
Time : 3 Hrs.

Subject Code : 81E
Max. marks: 80
I. Four alternatives are given for each of the following questions/incomplete statements. Only one of them is correct or most appropriate. Choose the correct alternative and write the complete answer along with its letter of alphabet.
$8 \times 1=8$
If n-th term of an arithmetic progression $a_{n}=24-3 n$, then its $2^{\text {nd }}$ term is
(A) 18
(B) 15
(C) 0
(D) 2

Ans: A) 18
$\left[\mathrm{a}_{\mathrm{n}}=24-3 \mathrm{n} \Rightarrow a_{2}=24-3 \mathrm{x} 2=24-6=18\right]$
2. The lines represented by $2 x+3 y-9=0$ and $4 x+6 y-18=0$ are
(A) Intersecting lines
(B) Perpendicular lines to each other
(C) Parallel lines
(D) Coincident line.

Ans: (D) Coincident line
$\left\lceil\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=\frac{1}{2}\right]$
3. A straight line which passes through two points on a circle is
(A) A chord
(B) A secant
(C) A tangent
(D) the radius

Ans: (B) A secant
4. If the area of a circle is 49Π sq. units then its perimeter is
(A) 7π units
(B) 9π units
(C) 14π units (D) 49π units

Ans: (C) $\mathbf{1 4} \boldsymbol{\pi}$ units
5. "The product of two consecutive positive integers is 30 . " this can be expressed algebraically as
(A) $x(x+2)=30$
(A) $x(x-2)=30$
(A) $x(x+3)=30$
(A) $x(x+1)=30$

Ans: (D) $\mathbf{x}(\mathbf{x}+\mathbf{1})=\mathbf{3 0}$
6. If a and b are any two positive integers then $\operatorname{HCF}(\mathrm{a}, \mathrm{b}) \times \operatorname{LCM}(\mathrm{a}, \mathrm{b})$ is equal to
(A) $a+b$
(B) $\mathrm{a}-\mathrm{b}$
(C) $\mathrm{a} \times \mathrm{b}$
(D) $a \div b$

Ans: (C) $\mathbf{a x b}$
7. The value of $\cos 48^{\circ}-\sin 42^{\circ}$ is
(A) 0
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) 1

Ans: A) $0 \quad\left[\cos 48^{0}-\sin \left(90-48^{0}\right)=\cos 48^{0}-\cos 48^{0}=0\right]$
8. If $\mathrm{P}(\mathrm{A})=0.05$ then $\mathrm{P}(\bar{A})$ is
(A) 0.59
(B) 0.95
(C) 1
(D) 1.05

Ans: (B) $0.95 \quad[1-\mathrm{P}(\mathrm{A})=\mathrm{P}(\overline{\mathrm{A}}) \Rightarrow 1-0.05=0.95]$
.9. The given graph represents a pair of linear equations in two variables. Write how may solutions these pair of equations have.

Ans: Unique Solution
10. $17=6 \times 2+5$ is compared with Euclid's Division lemma $a=b q+r$, then which number is representing the remainder?
Ans : $\mathrm{r}=5$
11. Find the zeros of the polynomial $p(x)=x^{2}-3$

Ans: $x^{2}=3$
$\Rightarrow \mathrm{x}= \pm \sqrt{3}$
12. Write the degree of the polynomial $p(x)=2 x^{2}-x^{3}+5$

Ans: 3

13. Find the value of the discriminant of the quadratic equation $2 x^{2}-4 x+3=0$

Ans: $\Delta=b^{2}-4 \mathrm{ac}$
$=(-4)^{2}-4(2)(3)$
$=16-24=-8$
14. Write the formula to calculate the curved surface area of the frustum of a cone.

Ans $\boldsymbol{\pi}\left(\boldsymbol{r}_{\boldsymbol{1}}+\boldsymbol{r}_{\mathbf{2}}\right) \boldsymbol{l}$
III. Answer the following :
$16 \times 2=32$
.15. Find the sum of first twe
Ans: $a=2, d=5, n=20$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{20}=\frac{20}{2}[2 \mathrm{x} 2+(20-1) 5]$
$S_{20}=10[4+19 \times 5]$
$\mathrm{S}_{20}=10[4+95]$
$\mathrm{S}_{20}=10$ [99]
$\mathbf{S}_{\mathbf{2 0}}=\mathbf{9 9 0}$
16. In $\triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}$. Prove that $\mathrm{AB}^{2}+\mathrm{AC}^{2}=(\mathrm{BD}+\mathrm{CD})^{2}$

Ans:In $\triangle \mathrm{ABC} \quad \mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{AD}^{2}=\mathrm{BDxCD}$

$$
\begin{align*}
& \Rightarrow \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}----------(1) \tag{1}\\
& \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}----------(2) \tag{2}\\
& (1)+(2)=\mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BD}^{2}+\mathrm{CD}^{2}+2 \mathrm{AD}^{2} \\
& \Rightarrow \mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BD}^{2}+\mathrm{CD}^{2}+2 \mathrm{BDxCD} \\
& \Rightarrow \mathrm{AB}^{2}+\mathrm{AC}^{2}=(\mathrm{BD}+\mathrm{CD})^{2}
\end{align*}
$$

Yakub Koyyur
17. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$, If $\mathrm{AD}=5 \mathrm{~cm}, \mathrm{BD}=7 \mathrm{~cm}$ and $\mathrm{AC}=18 \mathrm{~cm}$, find the length of AE .

In $\triangle \mathrm{ABC}, \mathrm{DEll} \mathrm{BC}$,
Therefore $\frac{A D}{A B}=\frac{A E}{A C}$

$$
\begin{aligned}
& \Rightarrow \frac{5}{12}=\frac{\mathrm{AE}}{18} \\
& \Rightarrow \mathrm{AE}=\frac{5 \times 18}{12} \\
& \Rightarrow \mathrm{AE}=\frac{5 \times 3}{2} \\
& \Rightarrow \mathrm{AE}=\frac{15}{2}=7.5 \mathrm{~cm}
\end{aligned}
$$

OR

In the given figure if PQ $\|$ RS, prove that $\Delta \mathrm{POQ} \sim \Delta$ SOR. $\Delta P Q R$ ముత్తు $\Delta S O R$ గఆల్లి, $P Q \| R S, ఆ ద_{0} ర ం డ$

$$
\begin{aligned}
& \angle \mathrm{OPQ}=\angle \mathrm{OSR} \quad \text { [Alternate angles] } \\
& \angle \mathrm{OPQ}=\angle \mathrm{OSR} \quad \text { [Alternate angles] } \\
& \angle \mathrm{POQ}=\angle \mathrm{ROS} \quad \text { [vertically opposite angles] } \\
& \therefore \triangle \mathrm{PQR} \sim \Delta \mathrm{SOR} \text { [Triangles are equiangular] }
\end{aligned}
$$

18. Solve the following pair of linear equations by any suitable Rethod:

$$
\begin{align*}
& x+y=5 \\
& 2 x-3 y=5 \\
& \text { Ans: } x+y=5 \quad--\cdots------(1) \\
& 2 x-3 y=5 \quad------(2) \tag{1}\\
& (1) x 2 \Rightarrow 2 x+2 y=10------(3) \tag{2}\\
& (2) \Rightarrow 2 x-3 y=5 \tag{3}\\
& \hline(2)-(3) \Rightarrow \quad 5 y=5
\end{align*} \Rightarrow y=1 .
$$

From(1), $x+1=5 \Rightarrow x=5-1 \Rightarrow x=4$
19. In the figure, ABCD is a square of side $14 \mathrm{~cm} . \mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are the centers of four congruent circle such that each circle touches externally two of the remaining three circles. Find the area of the shaded region.
Ans: The side of the square $=14 \mathrm{~cm}$
\therefore The radius of the circle $=\frac{14}{2}=7 \mathrm{~cm}$
Area of the squre $\mathrm{ABCD}=14^{2}=196 \mathrm{~cm}^{2}$
Total area of the quadrants $=4 \times \frac{\pi \mathrm{R}^{2}}{4} \mathrm{~cm}^{2}=\pi \mathrm{R}^{2}=\frac{22}{7} \times 7 \times 7=154 \mathrm{~cm}^{2}$

\therefore The area of the shaded region $=196 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}=\mathbf{4 2} \mathrm{cm}^{2}$
20. Draw a circle of radius 4 cm and construct pair of tangents such that the angle between them is 60°

21. Find the co-ordinates of point which divides the line segment joining the points $\mathrm{A}(4,-3)$ and $\mathrm{B}(8,5)$ in the ratio $3: 1$ internally.
Ans: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(4,-3),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(8,5), \mathrm{m}_{1}: \mathrm{m}_{2}=3: 1$
$x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}=\frac{3(8)+1(4)}{3+1}=\frac{24+4}{4}=\frac{28}{4}=7$
$y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}=\frac{3(5)+1(-3)}{3+1}=\frac{15-3}{4}=\frac{12}{4}=3$

$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{y}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{y}_{\mathbf{2}}$
4	-3	8	5

\therefore The co-ordinates of point $(7,3)$
22. Prove that $3+\sqrt{5}$ is an irrational number.

Ans:Let $3+\sqrt{5}$ be a rational number
$\Rightarrow 3+\sqrt{5}=\frac{p}{q}[\mathrm{p}, \mathrm{q} \in \mathrm{Z}, \mathrm{q} \neq 0$ Шుత్తు $(\mathrm{p}, \mathrm{q})=1]$
$\Rightarrow \sqrt{5}=\frac{p}{q}-3$
$\Rightarrow \sqrt{5}=\frac{p-3 q}{q}$
Here, $\frac{p-3 p^{q}}{q}$ is a rational number but $\sqrt{5}$ is an irrational number
Therefore our assumption is wrong
$\therefore \quad 3+\sqrt{5}$ is an irrational number
.23. The sum and product of zeroes of quadratic polynomial $p(x)=a x^{2}+b x+c$ are -3 and 2 respectively.
Show that $\mathrm{b}+\mathrm{c}=5 \mathrm{a}$
Ans: Sum of the Zeroes $=\frac{-b}{a} \Rightarrow-3=\frac{-b}{a} \Rightarrow-\mathrm{b}=-3 \mathrm{a} \Rightarrow \mathrm{b}=3 \mathrm{a}----$ (1)
The product of the zeroes $=\frac{c}{a} \Rightarrow 2=\frac{c}{a} \Rightarrow \mathrm{c}=2 \mathrm{a}$
From (1) and (2) $b+c=3 a+2 a \Rightarrow b+c=5 a$
24. Find the quotient and remainder when $p(x)=3 x^{3}+x^{2}+2 x+5$ is divided by $g(x)=x^{2}+2 x+1$

$1+2 x+x^{2}$	$3 x^{3}+x^{2}+2 x+5$	$3 x-5$
	$3 x^{3}+6 x^{2}+3 x$	
	$-5 x^{2}-x+5$ $-5 x^{2}-10 x-5$	
	$9 x+10$	

quotient $=3 \mathrm{x}-5$; remainder $=9 \mathrm{x}+10$
25. Solve $2 x^{2}-5 x+3=0$ by using formula.

Ans: $2 x^{2}-5 x+3=0$
$\mathrm{a}=2, \quad \mathrm{~b}=-5, \quad \mathrm{c}=3$
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(3)}}{2(2)}=\frac{5 \pm \sqrt{25-24}}{4}=\frac{5 \pm \sqrt{1}}{4}=\frac{5 \pm 1}{4}$
$x=\frac{5+1}{4}, \quad x=\frac{5-1}{4}$
$\mathrm{x}=\frac{6}{4}, \mathrm{x}=\frac{4}{4} \quad \Rightarrow x=\frac{3}{2} \quad, x=1$
26. The length of a rectangular field is 3 times its breadth. If the area of the field is $147 \mathrm{sq} . \mathrm{m}$, find its length and breadth.
Ans: Let breadth $=\mathrm{x}$. There fore Length $=3 \mathrm{x}$
Area of the field $=x(3 x)$

$$
\Rightarrow 3 \mathrm{x}^{2}=147 \Rightarrow \mathrm{x}^{2}=49 \Rightarrow \mathrm{x}=7 \quad \therefore \text { Breadth }=7 \mathrm{~m} \text { and Length }=\mathbf{3 x} 7=\mathbf{2 1} \mathbf{~ m}
$$

27. If $\sin \theta=\frac{12}{13}$, find the value of $\cos \theta$ and $\tan \theta$

Ans: $\sin \theta=\frac{12}{13} \Rightarrow$ In Right angle triangle $\mathrm{ABC}, \mathrm{AB}=13$ and $\mathrm{AC}=12$
Therefore $\mathrm{BC}^{2}=13^{2}-12^{2}=169-144=25 \Rightarrow \mathrm{BC}=5$
$\operatorname{Cos} \theta=\frac{B C}{A B}=\frac{5}{13}$ Шుత్తు $\tan \theta=\frac{A C}{B C}=\frac{12}{5}$

OR

If $\sqrt{3} \tan \theta=1$ and θ is acute, find the value of $\sin 3 \theta+\cos 2 \theta$
Ans: $\sqrt{3} \tan \theta=1 \Rightarrow \tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=30^{\circ}$

$\therefore \sin 3\left(30^{\circ}\right)+\cos 2\left(30^{\circ}\right) \Rightarrow \sin 90^{\circ}+\cos 60^{\circ}$
$\Rightarrow 1+\frac{1}{2}=\frac{3}{2}$
28. Prove that $\left(\frac{1+\cos \theta}{1-\cos \theta}\right)=(\operatorname{cosec} \theta+\cot \theta)^{2}$

Ans: L.H.S. $=\frac{1+\cos \theta}{1-\cos \theta}$
$=\frac{1+\cos \theta}{1-\cos \theta} \times \frac{1+\cos \theta}{1+\cos \theta}$
$=\frac{(1+\cos \theta)^{2}}{1-\cos ^{2} \theta}=\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}=\frac{1+\cos ^{2} \theta+2 \cos \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{2 \cos \theta}{\sin ^{2} \theta}$
$=\operatorname{cosec}^{2} \theta+\cot ^{2} \theta+2 \cdot \operatorname{cosec} \theta \cdot \cot \theta$
$=(\operatorname{cosec} \theta+\cot \theta)^{2}$
29. A cubical die numbered from 1 to 6 is rolled twice. Find the probability of getting the sum of numbers on its face is 10 .
Ans: S - $\{$ die numbered from 1 to 6 is rolled twice \}
$\mathrm{S}=\{(\mathrm{a}, \mathrm{b}) / \mathrm{a}, \mathrm{b}=1,2,3,4,5,6\}$
$\mathrm{n}(\mathrm{S})=36$
$\mathrm{A}=\{$ getting the sum of numbers on its face is 10.$\}$
$\mathrm{A}=\{(4,6),(5,5),(6,4)\}$
$\mathrm{n}(\mathrm{A})=3$
$\mathrm{P}(\mathrm{A})=\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}=\frac{3}{36} \quad\left[\begin{array}{ll}\text { or } & \frac{1}{12}\end{array}\right]$
,30. The radii of two circular ends of a frustum of a cone shaped dustbin are 15 cm and 8 cm . if fits depth is 63 cm , find the volume of the dustbin.
Ans: Volume of the dust bin $=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
$\pi=\frac{22}{7} ; \mathrm{h}=63 \mathrm{~cm} ; r_{1}=15=2 \mathrm{~cm} ; r_{2}=8 \mathrm{~cm}$
$=\frac{1}{3} \times \frac{22}{7} \times 63\left(15^{2}+8^{2}+15 \times 8\right)$
$=22 \times 3(225+64+120)$
$=66 \times 409$
$=26994 \mathrm{~cm}^{3}$
IV. Answer the following :
.31. Prove that " The lengths of tangents drawn from an external point to a circle are equal ".
Data: O is the center, P is an external point PQ and PR
are the tangents drawn from the point P Join OP, OQ, OR
To Prove: PQ = PR
Proof: In right angle triangle OQP and ORP, $\mathrm{OQ}=\mathrm{OR} \quad$ (Radius of the same circle)

Yakub Koyyur
$\mathrm{OP}=\mathrm{OP} \quad$ (Common side)
$\therefore \Delta \mathrm{OQ} \mathrm{P} \cong \triangle$ ORP (R.H.S)
$\Rightarrow \mathrm{PQ}=\mathrm{PR}(\mathrm{CPST})$
OR
In the given figure PQ and RS are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting PQ at A and RS at B . prove that $\mathrm{LAOB}=90^{\circ}$

The tangent AB touches the circle at point C . Join OC Proof: In Quadrilateral XOCA,

$$
\angle \mathrm{OXA}=\angle \mathrm{OCA}=90^{\circ}[\mathrm{OX} \perp \mathrm{PQ} ; \mathrm{OC} \perp \mathrm{AB}]
$$

$\mathrm{AX}=\mathrm{AC}(\because$ The tangents drawn from the point A$)$
Here, the opposite sides and adjacent angles are equal
\therefore XOCA is a square
$\therefore \angle \mathrm{XOC}=90^{\circ}$ [The diagonals bisects the angles]
$\Rightarrow \angle \mathrm{AOC}=45^{\circ}$
$11^{\text {ly }} \angle \mathrm{BOC}=45^{0}$
$\Rightarrow \angle \mathrm{AOC}+\angle \mathrm{BOC}=90^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=90^{\circ}$

Alternate Method:

The tangent AB touches the circle at point C. Join OC In $\triangle \mathrm{AXO}$ and $\triangle \mathrm{ACO}$,
$\mathrm{OX}=\mathrm{OC}(\because$ radius of the same circle $)$
$\mathrm{AX}=\mathrm{AC}(\because$ The tangents drawn from the point A$)$
$\mathrm{OA}=\mathrm{OA}(\because$ Common side $)$
$\therefore \triangle \mathrm{AXO} \cong \triangle \mathrm{ACO}$ (SSS Axiom)
$\Rightarrow \angle \mathrm{XOA}=\angle \mathrm{CAO}$
$11^{\text {ly }} \angle \mathrm{BOY}=\angle \mathrm{BOC}$
XOY is a diameter $\therefore \angle X O Y=180^{\circ}$
$\Rightarrow \angle \mathrm{XOA}+\angle \mathrm{COA}+\angle \mathrm{BOY}+\angle \mathrm{BOC}=180^{\circ}$
from (1) and (2)
$2 \angle \mathrm{AOC}+2 \angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow \angle \mathrm{AOC}+\angle \mathrm{BOC}=90^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=90^{\circ}$
32. Calculate the median of the following frequency distribution table.

Class interval	$1-4$	$4-7$	$7-10$	$10-13$	$13-16$	$16-19$
Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	6	30	40	6	4	4
$\sum \mathrm{f}_{\mathrm{i}}=100$						

Ans:

C.I.	Freequency $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$	$\left(\boldsymbol{c} \boldsymbol{f}_{\boldsymbol{i}}\right)$
$1-4$	6	6
$4-7$	30	36
$7-10$	40	76
$10-13$	16	92
$13-16$	4	96
$16-19$	4	100

$\mathrm{n}=\sum f_{i}=100$
Now $\mathrm{n}=100, \therefore \frac{n}{2}=50$ this is in a class interval $7-10$
l (Lower limit) $=7$; cf $=36 ; f=40 ; \mathrm{h}=3$
Mediañ $=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times \mathrm{h}$
$=7+\left[\frac{50-36}{40}\right] \times 3$
$=7+\left[\frac{14}{40}\right] \times 3$
$=7+1.05$

Mediant $\mathbf{=} \mathbf{8 . 0 5}$

OR
Calculate the mode for the following frequency distribution table.

Class interval	$10-25$	$25-40$	$40-55$	$55-70$	$70-85$	$85-100$
Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	2	3	7	6	6	6

Ans: Maximum number of students are in the class interval 40-55
Therefore $40-55$ is the modal calss interval
$\therefore l=40 ; \mathrm{h}=15 ; f_{l}=7 ; f_{0}=3 ; f_{2}=6$
Mode $=l+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h$
$=40+\left[\frac{7-3}{2(7)-3-6}\right] \times 15$
$=40+\left[\frac{4}{14-9}\right] \times 15$
$=40+\frac{4}{5} \times 15$
$=40+12$
\therefore The mode of the above data $=52$
33. During the medical check-up 35 students of a class, their weights were recorded as follows. Draw a less than type of ogive for the given data.

Weight (in kg)	Number of studens
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

34. The seventh term of an Arithmetic progression is four times its second term and twelfth term is 2 more than three times of its fourth term. Find the progression.
Ans: $a_{7}=4 a_{2} \Rightarrow \mathrm{a}+6 \mathrm{~d}=4(\mathrm{a}+2 \mathrm{~d}) \Rightarrow \mathrm{a}+6 \mathrm{~d}=4 \mathrm{a}+8 \mathrm{~d}$
$\Rightarrow 3 \mathrm{a}+2 \mathrm{~d}=0$
$a_{12}=3 a_{4}+2 \Rightarrow \mathrm{a}+11 \mathrm{~d}=3(\mathrm{a}+3 \mathrm{~d})+2$
$\Rightarrow \mathrm{a}+11 \mathrm{~d}=3 \mathrm{a}+9 \mathrm{~d}+2 \Rightarrow 2 \mathrm{a}-2 \mathrm{~d}=-2$
$\Rightarrow \mathrm{a}-\mathrm{d}=-1 \Rightarrow \mathrm{a}=\mathrm{d}-1$
(1) $\Rightarrow 3(\mathrm{~d}-1)=2 \mathrm{~d} \Rightarrow 3 \mathrm{~d}-2 \mathrm{~d}=3 \Rightarrow \mathbf{d}=\mathbf{3}$
(2) $\Rightarrow \mathrm{a}=3-1 \Rightarrow \mathbf{a}=\mathbf{2}$

The progression.: $\mathbf{2 , 5} \mathbf{5 , 1 1}$------

OR

A line segment is divided into four parts forming an Arithmetic progression. The sum of the lengths of $3^{\text {rd }}$ and $4^{\text {th }}$ parts is three times the sum of the lengths of first two parts. If the length of fourth part is 14 cm , find the total length of the line segment.
Ans: $a_{3}+a_{4}=3\left(\mathrm{a}+a_{2}\right)$
$\Rightarrow \mathrm{a}+2 \mathrm{~d}+\mathrm{a}+3 \mathrm{~d}=3(\mathrm{a}+\mathrm{a}+\mathrm{d})$
$\Rightarrow 2 \mathrm{a}+5 \mathrm{~d}=3(2 \mathrm{a}+\mathrm{d})$
$\Rightarrow 2 \mathrm{a}+5 \mathrm{~d}=6 \mathrm{a}+3 \mathrm{~d}$
$\Rightarrow 4 \mathrm{a}=2 \mathrm{~d} \Rightarrow 2 \mathrm{a}=\mathrm{d}$
$a_{4}=14 \Rightarrow \mathrm{a}+3 \mathrm{~d}=14 \Rightarrow \mathrm{a}+3(2 \mathrm{a})=14 \Rightarrow \mathrm{a}+6 \mathrm{a}=14 \Rightarrow 7 \mathrm{a}=14 \Rightarrow \mathbf{a}=\mathbf{2}$
$\Rightarrow \mathrm{d}=2 \times 2 \Rightarrow \mathbf{d}=4$
Therefore the length of the line segments: $\mathbf{2 c m}, \mathbf{6} \mathbf{c m}, \mathbf{1 0} \mathbf{c m}, \mathbf{1 4 c m}$
35. The vertices of a $\triangle A B C$ are $A(-3,2), B(-1,-4)$ and $C(5,2)$. If M and N are the mid - points of $A B$ and AC respectively, show that $2 \mathrm{MN}=\mathrm{BC}$.
$\mathrm{M}\left[\frac{-3+-1}{2}, \frac{2+-4}{2}\right] ; \mathrm{N}\left[\frac{-3+5}{2}, \frac{2+2}{2}\right]$
$\mathrm{M}\left[\frac{-4}{2}, \frac{-2}{2}\right] ; \mathrm{N}\left[\frac{2}{2}, \frac{4}{2}\right]$
$\mathrm{M}[-2,-1] ; \mathrm{N}[1,2]$
$\mathrm{MN}=\sqrt{(1+2)^{2}+(2+1)^{2}}$
$=\sqrt{3^{2}+3^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$\mathrm{BC}=\sqrt{(5+1)^{2}+(2+4)^{2}}$
$=\sqrt{6^{2}+6^{2}}=\sqrt{36+36}$
$=\sqrt{72}=6 \sqrt{2}=2 \times 3 \sqrt{2}=2 \mathrm{MN}$
$\therefore \mathbf{B C}=\mathbf{2 M N}$

OR
The vertices of a $\triangle A B C$ are $A(-5,-1), B(3,-5)$ and $C(5,2)$. Show that the area of the $\triangle A B C$ is four times the area of the triangle formed by joining the mid-points of the sides of the triangle ABC.
Ans: $\mathrm{P}\left(\frac{3-5}{2}, \frac{-5-1}{2}\right), \mathrm{Q}\left(\frac{5+3}{2}, \frac{2-5}{2}\right), \mathrm{R}\left(\frac{5-5}{2}, \frac{2-1}{2}\right)$
$\mathrm{P}\left(\frac{-2}{2}, \frac{-6}{2}\right), \mathrm{Q}\left(\frac{8}{2}, \frac{-3}{2}\right), \mathrm{R}\left(\frac{0}{2}, \frac{1}{2}\right)$
$\mathrm{P}(-1,-3), \mathrm{Q}\left(4, \frac{-3}{2}\right), \mathrm{R}\left(0, \frac{1}{2}\right)$
$\Rightarrow \mathrm{P}(-1,-3), \mathrm{Q}(4,-1.5), \mathrm{R}(0,0.5)$
Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

\boldsymbol{x}_{1}	\boldsymbol{y}_{1}	\boldsymbol{x}_{2}	\boldsymbol{y}_{2}	\boldsymbol{x}_{3}	\boldsymbol{y}_{3}
-5	-1	3	-5	5	2

Area of $\triangle \mathrm{ABC},=\frac{1}{2}[-5(-5-2)+3(2+1)+5(-1+5)]$
$\left.=\frac{1}{2}[-5(-7)+3(3)+5(4)]=\frac{1}{2}[35+9+20]==\frac{1}{2}[64)\right]=32$ sq.units
Area of $\triangle \mathrm{PQR}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{y}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{y}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{y}_{\mathbf{3}}$
$\mathbf{- 1}$	$\mathbf{- 3}$	$\mathbf{4}$	-1.5	$\mathbf{0}$	0.5

$\triangle \mathrm{PQR}$ న బిస్తొణఁ $=\frac{1}{2}[-1(-1.5-0.5)+4(0.5+3)+0(-3+1.5)]$
$=\frac{1}{2}[-1(-2)+4(3.5)+0]=\frac{1}{2}[2+14]=\frac{1}{2}[16]=\mathbf{8}$ sq.units
From (1) and (2), Area of $\triangle A B C=4 A$ rea of $\triangle P Q R$
36. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$, and 7 cm and then construct another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.
V. Answer the following :
37. Find the solution of the following pairs of linear equation by the graphical method:
$2 x+y=6$
$2 x-y=2$
Ans: $2 \mathrm{x}+\mathrm{y}=6$

x	0	1	2
y	6	4	2

$2 \mathrm{x}-\mathrm{y}=2$

x	1	2	3
y	0	2	4

జరळార: $x=2 ; y=2$

38. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complimentary. Find the height of the tower.
$A B$ is the height of the tower
C and D are the points 4 m and 9 m from the base of the tower $\tan x=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \tan x=\frac{\mathrm{AB}}{4}$
$\tan \left(90^{\circ}-x\right)=\frac{\mathrm{AB}}{\mathrm{BD}}$
$\Rightarrow \cot x=\frac{\mathrm{AB}}{9} \Rightarrow \tan x=\frac{9}{\mathrm{AB}}-\cdots--(2)$
From eqn (1) and (2)

$$
\begin{aligned}
& \frac{\mathrm{AB}}{4}=\frac{9}{\mathrm{AB}} \Rightarrow \mathrm{AB}^{2}=36 \\
& \Rightarrow \mathrm{AB}=6 \mathrm{~m}
\end{aligned}
$$

39. The bottom of a right cylindrical shaped vessel as shown in the figure. The radius of the circular base of the cylinder and radius of the circular base of the cone are each is equal to 7 cm . if the height of the cylinder is 20 cm and height of cone is 3 cm , calculate the cost of milk to fill completely this vessel at the rate of Rs. 20 per liter.
Ans:The cost of the Milk = The quantity of the milk x Rs 20
The quantity of Milk =
[The Volume of the cylinder - The volume of the Cone]

$$
\begin{aligned}
& =\left[\pi r^{2} \mathrm{H}-\frac{1}{3} \pi r^{2} \mathrm{~h}\right] \times \mathrm{Rs} 20 \\
& =\pi r^{2}\left[\mathrm{H}-\frac{1}{3} h\right] \\
& =\frac{22}{7} \times 7 \times 7\left[20-\frac{1}{3} \times 3\right] \\
& =22 \times 7[20-1] \\
& =154[19] \\
& =2926=2.926 \mathrm{ltr}
\end{aligned}
$$

The total cost $=2.926 \times$ Rs 20

$=R s 58.52$

OR

A hemispherical vessel of radius 14 cm is fully filled with sand. This sand is poured on a level ground. The heap of sand forms a cone shape of height 7 cm . calculate the area of ground occupied by the circular base of the heap of the sand.
Ans: The volume of the hemisphere $=$ The volume of the Cone
$\Rightarrow \frac{2}{3} \pi \mathrm{R}^{3}=\frac{1}{3} \pi r^{2} h$
$\Rightarrow 2 \mathrm{R}^{3}=r^{2} h$
$\Rightarrow 2(14)^{3}=7 r^{2}$
$\Rightarrow 2 \mathrm{x} 2744=7 r^{2}$
$\Rightarrow r^{2}=784 \Rightarrow \mathrm{r}=28 \mathrm{~cm}$
The area of the circular Base $=\pi r^{2}$
$=\frac{22}{7} \times 28 \times 28 \Rightarrow 22 \times 28 \times 4$
$=2464 \mathbf{c m}^{2}$

40．Prove that＂The areas of two similar triangles is equal to the square of the ratio of their corresponding sides＂．

Given：$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
To Prove：$\frac{\operatorname{Area}(\mathrm{ABC})}{\operatorname{Area}(\mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{PR}}\right)^{2}$
Construction：Draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{PN} \perp \mathrm{QR}$
Proof：$\frac{\operatorname{Area}(\mathrm{ABC})}{\operatorname{Area}(\mathrm{PQR})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}}=\frac{\mathrm{BC} \times \mathrm{AM}}{\mathrm{QR} \times \mathrm{PN}}-$－（1）$\quad$［Area of triangle $=\frac{1}{2} \times$ basexheight］
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$ ，
$\angle \mathrm{B}=\angle \mathrm{Q}$［Corresponding angles of the similar triangle］
$\angle \mathrm{M}=\angle \mathrm{N}=90^{\circ}$［Construction］
$\therefore \triangle \mathrm{ABM} \sim \Delta \mathrm{PQN}$［AA similarity criteria］
$\Rightarrow \frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$
But，$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$［Given］
$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{PR}}$
$\Rightarrow \frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{BC}}{\mathrm{QR}}$［From（2）and（3）］
$\therefore \frac{\operatorname{Area}(\mathrm{ABC})}{\operatorname{Area}(\mathrm{PQR})}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{BC}}{\mathrm{QR}}$－－－－－－－＿［From（1）and（3）］
$\Rightarrow \frac{\operatorname{Area}(\mathrm{ABC})}{\operatorname{Area}(\mathrm{PQR})}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}$
$\frac{\operatorname{Area}(\mathrm{ABC})}{\operatorname{Area}(\mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{PR}}\right)^{2} \quad[\operatorname{From}(3)]$

