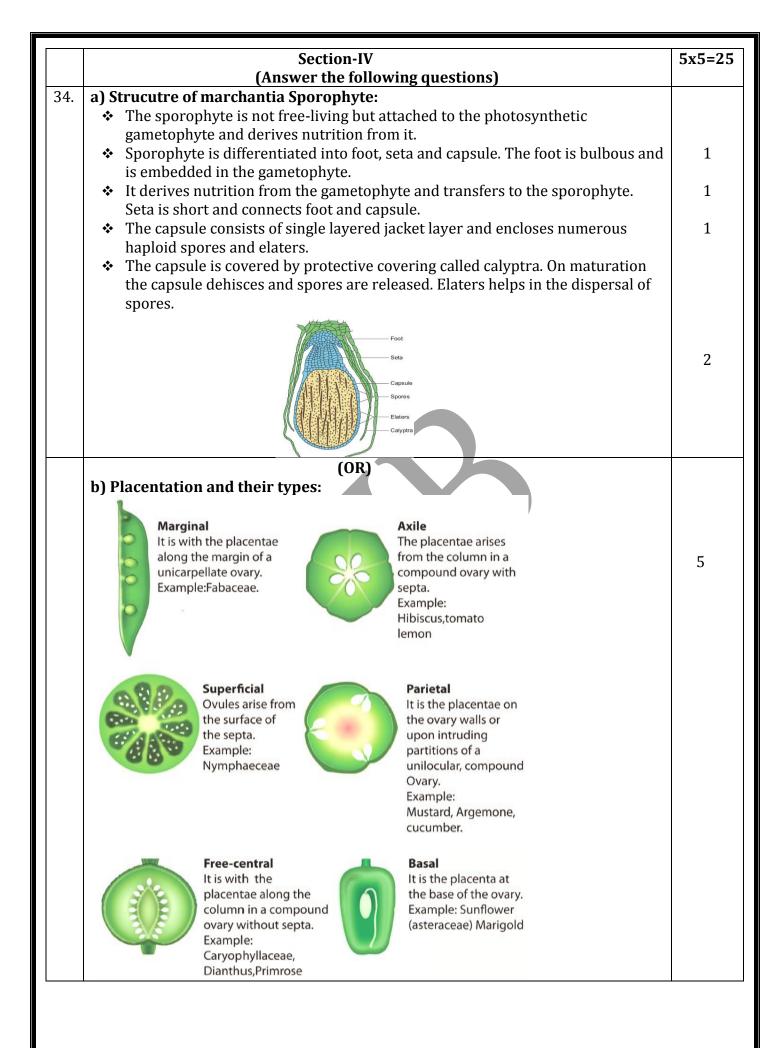
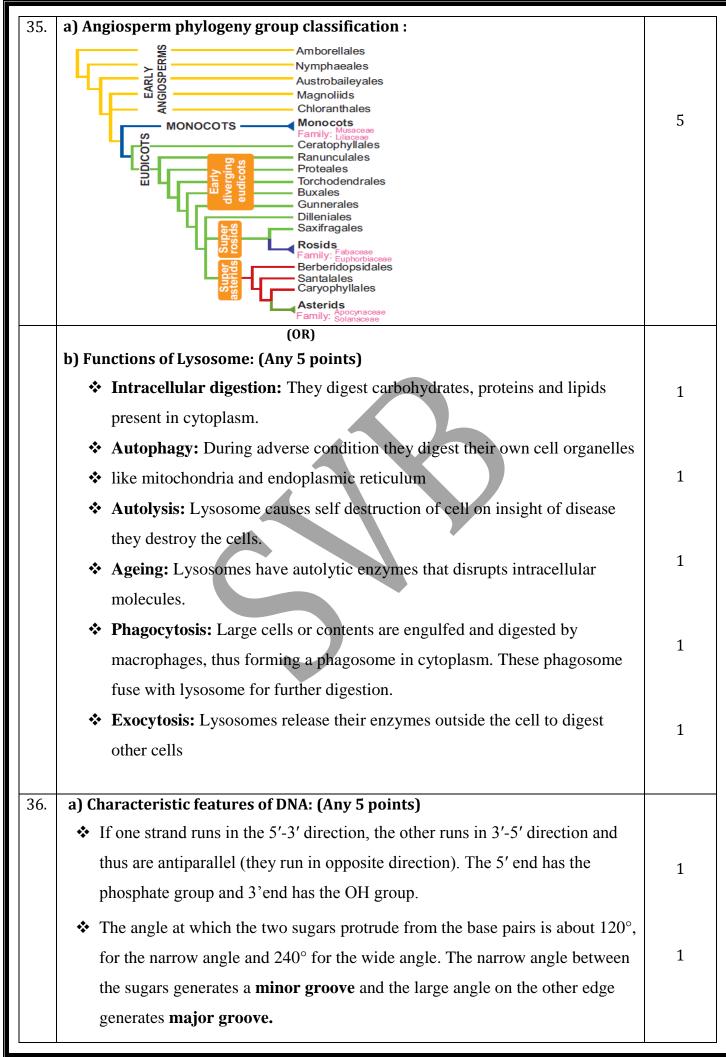
SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL SAKKARAMPALAYAM , AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202 Cell : 99655-31727, 94432-31727

PUBLIC TENTATIVE ANSWER KEY- MAR - 2019

STD: XI-PURE SCIENCE SUBJECT: BOTANY


DATE:18.03.2019 MARKS : 70

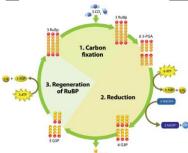
Q. NO	ANSV	WERS	MARKS
	SECTION	-I	15x1=15
	TYPE - A	TYPE - B	
1.	a) Symport	a) Chromosome number is increased	1
2.	b) Alkaloids	a) Acetyl CoA	1
3.	d) Rubber - Hevea brasiliensis	a) Symport	1
4.	a) Acetyl CoA	d) Hans Molisch	1
5.	b) Bast fibres	b) Tamarindus - Palmately compound	1
6.	c) T.S. of Adiantum petiole	a) Br, Ebrl, \bigoplus , $\overset{\frown}{\downarrow}$, $K_{(5)}$, $\overbrace{C_5}^{\bullet}$, A_5 , $\underline{G_2}$	1
7.	d) Zn	c) 3 inches	1
8.	d) Hans Molisch	a) Quantasomes	1
9.	a) Chromosome number is increased	d) Zn	1
10.	b) Tamarindus - Palmately compound	a) Virus	1
11.	a) Virus	d) Rubber - Hevea brasiliensis	1
12.	c) 3 inches	b) Alkaloids	1
13.	a) Br, Ebrl, ⊕, ♀, K ₍₅₎ , C ₅ , A ₅ , <u>G</u> ₂	d) 1-iii, 2-iv, 3-i, 4-ii	1
14.	d) 1-iii, 2-iv, 3-i, 4-ii	c) T.S. of Adiantum petiole	1
15.	a) Quantasomes	b) Bast fibres	1
	SECTION -II	·	6x2=12
		s. Q.No. 24 is compulsory)	
16.	 Types of Bacteria: (Any one) 1. Aerobic respiration 2. Anaerobic respiration 1. Aerobic respiration These bacteria require oxygen asterminic	nal acceptor and will not grow under	1
	anaerobic conditions (i.e. in the absence o 2. Anaerobic respiration These bacteria do not use oxygen for ga irenergy from fermentation reactions. Example: <i>Clostridium</i>		1
17.	 Characteristic features of leaf: (Any 2 p 1. Leaf is a lateral appendage of 2. It is borne at the node of the 3. It is exogenous in origin. 4. It has limited growth. 5. It does not possess apical but 6. It has three main parts name 7. Lamina of the leaf is traverse 	f the stem. stem. d.	2


18.	Differences between Classical and M	lodern Taxonomy: (Any 2 points)	
	Classical Taxonomy	Modern Taxonomy	
	It is called old systematics or Alpha (α) taxonomy or Taxonomy	It is called Neosystematics or Biosystematics or Omega (Ω) taxonomy	
	It is pre Darwinean	It is post Darwinean	
	Species is considered as basic unit and is static	species is considered as dynamic entity and ever changing	2
	Classification is mainly based on morphological characters	Classification is based on morphological, reproductive characters and phylogenetic (evolutionary) relationship of the organism	
	This system is based on the observation of a few samples/ individuals	This system is based on the observation of large number of samples (individuals	
19.	Draw the structure of endoplasmic re	samples/individuals	
	NUCLEAR ENVELO		2
20.	Reasons for arresting of cells in G ₁ ph	ase:	
	1. Nutrient deprivation		2
	2. Lack of growth factors or density	=	2
	3. Undergo metabolic changes and	enter into G0 state.	
21.	active site of enzyme are known as com For Example: the enzyme that catalyse the CO ₂ acceptor molecule in photosynth carboxylase oxygenase (RUBISCO) is o di-oxide in the chloroplast. The compet dehydrogenase	s the reaction between carbon di oxide and hesis, known as ribulose biphosphate competitively inhibited by oxygen/carbon-	2
22.	Select good quality of timber:		
	many methods of sawing. Among them, making timber. Timber is mainly used f to enrich the quality of timber, seasonin	hrough the process of sawing. There are rib sawing is the most common method in for carpentry and building houses. In order ng of wood is done. Timber is the most ospheric carbon and this reduces global	2
23.	Significance of plasmolysis: Plasmolysis is exhibited only by living cell is living or dead.	cells and so it is used to test whether the	2

24.	Identify the mine	ral deficiency of n	lant A and B.	1
24.	-		nows whiptail disease: Mineral deficiency is	
	due to Moly			1
		utrient medium sh	ows little leaf disease : Mineral deficiency i	S
	due to zinc	CE	ECTION -III	6x3=18
			. Q.No. 33 is compulsory)	0x3-10
25.	Bacterial nitroger			
_	Nitrogen fixation	1. Azotobacter 2. Clostridium	(i) Converting atmospheric nitrogen in to organic nitrogen	1
		3. Rhizobium	(ii) The nitrogenous compounds are also oxidized to nitrogen	1
			(iii) All these activities of bacteria increase soil fertility	1
26.	Sorosis :	<u> </u>		
	A fleshy multip	le fruit which dev	velops from a spike or spadix. The flowers	5
			erianth and at the same time the axis	2
	• •	-	y and the whole inflorescence forms a	
	compact mass.	5 , .		1
	Example: Pineapp	ole, Jack fruit, Mul	lberry	
27.	Umbellule :			
	It is a branche	d umbel. Each sm	aller unit is called umbellule .	3
	Example: Daucas	carota, Coriandr	um sativum, Memecylon edule.	
28.			ntal plants in Fabaceae family: (Any 3)	
	Butea frondosa			
	(Flame of the forest) <i>Clitoria ternatea</i> ,	,		2
	Lathyrus odoratus			3
	(Sweet pea) and			
20	Lupinus hirsutus (I			
29.	Significance of me		t number of chromosomos in organisms	
			t number of chromosomes in organisms. change of genetic material leads to variation	1
	-	-		15
	among species. These variations are the raw materials to evolution. Meiosis leads to genetic variability by partitioning different combinations of genes			1
	into gametes through independent assortment.			
	 Adaptation of organisms to various environmental stress. 			1
		organishis to varie	sus environmental suess.	1
30.	Difference between Diffuse Porous Wood and Ring Porous Wood:			
	Diffuse porous w	ood	Ring porous wood	
	This type of wood		This type of wood is formed	1
	the climatic condit	ions are	where the climatic conditions	
	uniform.		are not uniform.	
	The vessels are mo in diameter in any	-	The vessels are wide and narrow within any annual ring.	1
	The vessels are un distributed through	•	The vessels are not uniformly distributed throughout the wood.	1

31.	a) Structure of leaf and its parts:	
	Apex Margin Midrib Lamina Veinlet	1½
	b) Structure of pulvinus leaf base and sheathing leaf base:	1½
32.	a) Significance of photorespiration:	
	1. Glycine and Serine synthesised during this process are precursors of many	
	biomolecules like chlorophyll, proteins, nucleotides.	11⁄2
	2. It consumes excess NADH + H^+ generated.	
	3. Glycolate protects cells from Photo oxidation.	
	b) Carotenes:	
	Orange, Red, Yellow and Brownish pigments, hydrocarbons (Lipids) and	11/
	most of them are tetraterpenes(C40H56). Carotene is the most abundant	1½
	Carotene in plants and it is a precursor of Vitamin A. Lycopene is the red pigment	
	found in the fruits of tomato, red peppers and roses.	
33.	GS / GOGAT Pathway:	
	Glutamate amino acid combines with ammonia to form the amide glutamine.	
	Glutamate + $NH_4^+ \xrightarrow[ATP]{} ADP + Pi$	3
	Glutamine reacts with α ketoglutaric acid to form two molecules of glutamate.	
	Glutamine + α Ketoglutaric acid $\xrightarrow{GOGAT (enzyme)}_{(2- \text{ oxoglutarate})}$ 2 Glutamate NADH+H ⁺ NAD ⁺	
	(GOGAT- Glutamine-2-Oxoglutarate aminotransferase)	

SHRI VIDHYABHARATHI MAT.HR.SEC.SCHOOL, SAKKARAMPALAYAM. 99655-31727



 Each base is 0.34 nm apart and a complete turn of the helix comprises 			
3.4 nm or 10 base pairs per turn in the predominant B form of DNA.	1		
• DNA helical structure has a diameter of 20 A° and a pitch of about 34 A° .			
X-ray crystal study of DNA takes a stack of about 10 bp to go completely			
around the helix (360°) .			
Thermodynamic stability of the helix and specificity of base pairing includes	1		
(i) the hydrogen bonds between the complementary bases of the double helix			
(ii) stacking interaction between bases tend to stack about each other			
perpendicular to the direction of helical axis. Electron cloud interactions			
$(\Pi - \Pi)$ between the bases in the helical stacks contribute to the stability of			
the double helix.	1		
The phosphodiester linkages gives an inherent polarity to the DNA helix.			
They form strong covalent bonds, gives the strength and stability to the			
polynucleotide chain			
Plectonemic coiling - the two strands of the DNA are wrapped around each			
other in a helix, making it impossible to simply move them apart without			
breaking the entire structure. Where as in paranemic coiling the two strands			
simply lie alongside one another, making them easier to pull apart.			
\clubsuit Based on the helix and the distance between each turns, the DNA is of			
three forms – A DNA, B DNA and Z DNA			
(OR)			
b) Types of Collenchyma:1. Angular collenchyma			
It is the most common type of collenchyma with irregular arrangement and thickening at			
the angles where cells meets.			
Example:Hypodermis of <i>Datura</i> and <i>Nicotiana</i>2. Lacunar collenchyma			
The collenchyma cells are irregularly arranged. Cell wall is thickening on the walls			
bordering intercellular spaces. Example :Hypodermis of <i>Ipomoea</i>			
3. Lamellar collenchyma			
The collenchyma cells are arranged compactly in layers(rows). The Cell wall is thickening is at tangential walls These thickening appear as successive tangential layers			
thickening is at tangential walls. These thickening appear as successsive tangential layers. Example : Hypodermis of <i>Helianthus</i>			
Nucleus	2		
Thickened corners Protoplasm	_		
Vacuole Cell wall			

a) Differentiate between Active Absor	rption and Passive Absorption:	
Active absorption	Passive absorption	
Active absorption takes place by the activity of root and root hairs	The pressure for absorption is not developed in roots and hence roots play passive role	1
Transpiration has no effect on active absorption	Absorption regulated by transpiration	1
The root hairs have high DPD as compared to soil solution and therefore water is taken by tension	The absorption occurs due to tension created in xylem sap by transpiration pull, thus water is sucked in by the tension	1
Respiratory energy needed	Respiratory energy not required	1
It involves symplastic movement of	Both symplast and apoplast movement	
water	of water involved	1

b) Photosynthetic Carbon Reduction Cycle:

Biosynthetic phase of photosynthesis utilises assimilatory powers (ATP and NADPH + H^+) produced during light reaction are used to fix and reduce carbon dioxide into carbohydrates. This reaction does not require light. Therefore, it is named Dark reaction. Ribulose 1,5 bisphosphate (RUBP) act as acceptor molecule of carbon dioxide and fix the CO₂ by RUBISCO enzyme. The first product of the pathway is a 3- carbon compound (Phospho Glyceric Acid) and so it is also called as C₃ Cycle. It takes place in the stroma of the chloroplast. **M. Melvin Calvin, A.A. Benson** and their co-workers in the year 1957 found this path way of carbon fixation. Melvin Calvin was awarded Nobel Prize for this in 1961 and this pathway named after the discoverers as **Calvin-Benson** Cycle. Dark reaction is temperature dependent and so it is also called thermo-chemical reaction.

38

a) Significance of pentose phosphate pathway:

- HMP shunt is associated with the generation of two important products, NADPH and pentose sugars, which play a vital role in anabolic reactions.
- Coenzyme NADPH generated is used for reductive biosynthesis and counter damaging the effects of oxygen free radicals
- Ribose-5-phosphate and its derivatives are used in the synthesis of DNA, RNA, ATP, NAD1, FAD and Coenzyme A.
- Erythrose is used for synthesis of anthocyanin, lignin and other aromatic compounds.

5

3

2

1 \ D	(OR)	
	hysiological effects of Auxin and their role in Agriculture:	
	They promote cell elongation in stem and coleoptile.	
•	At higher concentrations auxins inhibit the elongation of roots but induce	
	more lateral roots. Promotes growth of root only at extremely low	
	concentrations.	
•	 Suppression of growth in lateral bud by apical bud due to auxin produced by 	
	apical bud is termed as apical dominance .	21⁄
•	 Auxin prevents abscission. 	
•	 It is responsible for initiation and promotion of cell division in cambium, 	
	which is responsible for the secondary growth and tumor. This property of	
	induction of cell division has been exploited for tissue culture techniques	
	and for the formation of callus.	
	 Auxin stimulates respiration. 	
•	 Auxin induces vascular differentiation. 	
Agr	icultural role	
*]	t is used to eradicate weeds. Example: 2,4-D and 2,4,5-T.	
* 9	Synthetic auxins are used in the formation of seedless fruits (Parthenocarpic	21/
f	fruit).	27
*]	It is used to break the dormancy in seeds.	
*]	Induce flowering in Pineapple by NAA & 2,4-D.	
*	Increase the number of female flowers and fruits in cucurbits.	

Mrs. P.GEETHA M.Sc., B.Ed., DEPARTMENT OF BOTANY SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL, SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM, TIRUCHENGODE(TK), NAMAKKAL (DT). PIN-637202 Cell.No: 8428971051, 9994384395.
