

SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202

Cell :99655-31727, 94432-31727

PUBLIC TENTATIVE ANSWER KEY- MAR - 2019

STD: XI DATE: 18.03.2019
SUBJECT: BIO-BOTANY MARKS:35

Q. NO			SECTION -I	MARKS
		TYPE - A	TYPE - B	
1.	c) Faba	ceae	a) 3ATP +2NADPH	1
2.	a)1-iii,	2-iv, 3-ii, 4-i	a) 42	1
3.	a) 3ATI	P+2NADPH	c) Fabaceae	1
4.	b) Tino	spora	d)	1
5.	d) Syna	psis	d) Nucleotide	1
6.	a) 42		d) Synapsis	1
7.	d)		b) Tinospora	1
8.	d) Nucl	eotide	a)1-iii, 2-iv, 3-ii, 4-i	1
		ANSWE	SECTION -II R ANY FOUR QUESTIONS	Marks
9.	a) Plec	tostele :	MINI I OOK QUESTIONS	
		em plates alternates wit	h phloem plates.	1
	Exampl			
	b) Gym	nosperms and angios	perms : (Any 1 point)	
	S.No	Gymnosperms	angiosperms	1
	1	Vessels are absent	Vessels are present	
		(except Gnetales)		
	2	Phloem lacks	Companion cells are present	
		companion cells		
	3	Ovules are naked.	Ovules are enclosed within the ovary	

10.	Primary functions of Leaf:		
	1. Photosynthesis		
	2.Transpiration		1/2
	3. Gaseous exchange		½ ½
	4. Protection of buds		1/ ₂
	5. Conduction of water and dissolved solut	es	,2
11.	Cell Cycle diagram:		
	G2 Checkpoint Call growth (approx. 8 hours) S G2 METAPASE M (approx.1-2 hours) AMAHASE TELOPIAGE Crypenty (approx. 18 hours) G1 Checkpoint G3 G+S+G,= INTERPHASE M= Mitosis		2
12.	a) tRNA Transfer RNA (tRNA) b) rRNA		1
	Ribosomal RNA (rRNA)		1
13.	Types of plasmolysis seen in plant cells	<u>c:</u>	
	1. Incipient plasmolysis	~	1/2
	2. Evident plasmolysis		½ 1
	3. Final plasmolysis		1
14.	Two differences between Cyclic and Nor	n cyclic photophosphorylation :	
	(any two points)	Non avalia photophognhogulation	
	S.N Cyclic photophosphorylation	Non cyclic photophosphorylation	
	1 PS I only involved	PS I and PS II involved	
1	2 Reaction centre is P700	Reaction centre is P680	2
	3 Electrons released are cycled back	Electrons released are not cycled back	
	4 Photolysis of water does not take place	Photolysis of water take place	
	5 Phosphorylation takes place at two places	Phosphorylation takes place at one place	

	Section - III Answer any 3 questions:(Question No. 19 is Compulsory)	3x3=9
15.	Different types of placentation :	
	1. Marginal placentation:	
	It is with the placentae along the margin of a unicarpellate ovary.	
	Example :Fabaceae.	1
	2. Axile placentation:	
	The placentae arises from the column in a compound ovary with septa.	1
	Example :Hibicus, tomato, lemon	
	3. Superficial placentation:	
	Ovules arise from the surface of the septa.	1
	Example : Nymphaeceae	
	4. Parietal placentation:	
	It is the placentae on the ovary walls or upon intruding partitions of a	
	unilocular, compound ovary.	
	Example:Mustard, Argemone, Cucumber	
	5. Free-central placentation:	
	It is with the placentae along the column in a compound ovary without septa.	
	Example :Caryophyllaceae, Dianthus, Primrose	
	6. Basal placentation:	
	It is the placenta at the base of the ovary.	
	Example : Sunflower (asteraceae) Marigold	
16.	a) Structure of Mitochondria :	
	DNA Ribosomes Matrix Outer Inner Membrane Membrane	
		1
	F ₀ , F ₁ Complexes	1
	Cristae Junction Intermembrane Space	
	→ F _o	
	b) Mitochondria is called as 'The power house of a cell':	
	Since huge amount of energy is generated in mitochondria in the form of	1
	ATP molecules they are called 'power house of the cell'.	

17.	Significance of growth rings:	
	1. Age of wood can be calculated	1
	2. The quality of timber can be ascertained	1 1
	3. Radio-Carbon dating can be verified	1
	4. Past climate and archaeological dating can be made.	
	5. Provides evidence in forensic investigation	
18.	a) Respiratory Quotient formula:	1
	$RQ = \frac{Volume \ of \ CO_2 \ liberated}{Volume \ of \ O_2 \ consumed}$	1
	b) Significance of Pentose Phosphate Pathway: (Any 2 points)	
	1. HMP shunt is associated with the generation of two important	
	products NADPH and pentose sugars, which play a vital role in anabolic reactions.	
	2. Coenzyme NADPH generated is used for reductive biosynthesis and	
	counter damaging the effects of oxygen free radicals	
	3. Ribose-5-phosphate and its derivatives are used in the synthesis of	
	DNA, RNA, ATP, NAD+, FAD and Coenzyme A.	2
	4. Erythrose is used for synthesis of anthocyanin, lignin and other	
	aromatic compounds	
19.	a) Different stages of Nitrogen cycle:	
	i)Nitrosomonas	
	ii) Nitrobacter	1
	iii)Pseudomonas	
	b) Denitrification :	
	Nitrates in the soil are converted back into atmospheric nitrogen by a	1
	process called denitrification. Bacteria involved in this process are	_
	Pseudomonas, Thiobacillus and Bacillus subtilis.	
	Nitrate <u>Pseudomonas</u> Molecular Nitrogen	
	c) Enzyme is required for Nitrogen fixation :	1
	Nitrate Reductase, Nitrite Reductase	
	SECTION -IV	2x5=10
20.	Answer the following questions a) i) Gram staining Techniques:	
20.	1. Prepare a smear of bacterial culture	
	2. Stain with crystal violet for 30 seconds	
	3. Rinse in distilled water for 2 seconds	3
	4. Grams Iodine for 1 minute	
	5. Rinse in distilled water	
	6. Wash in 95% ethanol or acetone for 10 to 30 seconds	
	7. Rinse in distilled water	
	8. Safranin for 30-60seconds	
	9. Rinse in distilled water and blot	
	10. Observe under microscope	
	20. 0000 to allact microscope	

	150	T
ii) Distinguish between Dexoy viru	ises and Ribo viruses :	
Dexoy viruses	Ribo viruses	
The viruses possessing DNA	Viruses possessing RNA	1
Ex: Majority of animal viruses	Ex: Majority Plant viruses	4
(OR) Cauliflower Mosaic virus	(OR) HIV viruses	1
(OR)	(010) 1111 111 4000	
b) Floral Characters of Allium cepa	7:	
Flower :Small,white, bracteate, ebrct	teolate, pedicellate, complete, trimerous,	
actinomorphic and hypogynous. Flow	ver are protandrous.	2
Perianth :Tepals 6, white, arranged in	n two whorls of three each, syntepalous	3
showing valvate aestivation.		
Androecium:Stamens 6, arranged in	two whorls of three each, epitepalous,	
apostamenous/free and opposite to t	tepals, Anthers dithecous, basifixed,	
introse and dehiscing longitudinally		
	rpous, Ovary superior, trilocular with two)
ovules in each locule on axile placent	tation. Style simple, slender with simple	
stigma		
Fruit: A loculicidal capsule		
Seed : Endospermous		
FloralFormula :		
Br., Ebrl., \oplus , \overrightarrow{Q} , $\overrightarrow{P}_{(3+3)} + \overrightarrow{A}_{3+3}$, $\underline{G}_{(3)}$		1
Floral Diagram :		
Ψ		
	•	1
		_
33		
1. a) i) Internal Structure of Nerium I	Leaf:	
	Cuticle	
	Upper epidermis	
	(Multilayered)	
	Palisade parenchyma	
	Bundle sheath	3
	Xylem	
	Phloem	
	Spongy parenchyma	
	Sunken stoma	
	Hair	
	Hair Lower epidermis (Multilayered)	

ii) Vascular Bundle :	
A) Concentric Amphivasal vascular bundle	1
B) Radial arrangement	1
(OR)	
b) i)Physiological effects of cytokinins: (Any four points)	
1. Cytokinin promotes cell division in the presence of auxin (IAA)	3
2. Induces cell enlargement associated with IAA and gibberellins	
3. Cytokinin can break the dormancy of certain light-sensitive seeds like	
tobacco and induces seed germination	
4. Cytokinin promotes the growth of lateral bud in the presence of apical	
bud	
5. Application of cytokinin delays the process of aging by nutrient	
mobilization. It is known as Richmond Lang effect	
6. Cytokinin (i) increases rate protein synthesis (ii) induces the formation	
of inter-fascicular cambium (iii) overcomes apical dominance (iv) induces	
formation of new leaves, chloroplast and lateral shoots.	
7. Plants accumulate solutes very actively with the help of cytokinins.	1
ii) Vernalization:	
Many species of biennials and perennials are induced to flower by low	
temperature exposure (0 $^{\circ}$ C to 5 $^{\circ}$ C). This process is called vernalization. The	
tern vernalization was first used by T.D. Lysenko (1938). iii) P _r – Phytochrome red (660 nm)	1
P _{fr} - Phytochrome far red(730 nm)	

Mrs. P.GEETHA M.SC., B.Ed.,

DEPARTMENT OF BOTANY

SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL,

SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM, TIRUCHENGODE(TK), NAMAKKAL (DT). PIN-637202 Cell.No: 8428971051, 9786237982.
