SSLC EXAMINATION , MARCH -2019 CHEMISTRY

(English)

Answer any four from each part

Q No	Answer / Hint	Score	Total Score
1	Propene	1	1
2	Flint glass / Optical glass / Lead glass	1	1
3	14 g Nitrogen	1	1
4	Froth Floatation	1	1
5	Magnesium oxide (MgO)	1	1
6	(a) $1s^2 2s^2 2p^6 3s^2 3p^3$	1	2
U	(b) Period = 3 , Group = 15	½,½	
7	(a) <i>Copper</i> gets deposited <i>on the iron nail</i> / Becomes copper nail	1	2
	(b) Fe \rightarrow Fe ²⁺ + 2ē	1	
	solution in litres Number of moles of NaOH = Mass in grams / GMM = 4g / 40 g = 0.1 Volume = 1 litre Molarity = 0.1mol/1g = 0.1g/L	1	_
8	(b) To prepare 1 molar 1 litre(1000 mL) of NaOH , mass needed = GMM =40g . Here we have 4 g of NaOH. Hence the volume needed 100 ml. <i>Procedure :</i> Take 4 g of NaOH in a beaker .Add a little of water to dissolve it. Then add enough water till the total volume of the solution becomes 100 mL OR Molarity of a solution = Number of moles of Solute / Volume of solution in litres Molarity = 1 , Number of moles = 0.1 Hence volume of the solution = 0.1 litres . <i>Procedure :</i> Take 4 g of NaOH in a beaker .Add a little of water to dissolve it. Then add enough water till the total volume of the solution becomes 0.1 litres (100 mL)	1	2
9	OR Prepare a 100 mL solution with 4 g of NaOH (a)Roasting is the process of <i>heating the concentrated ore at a</i>	1	
	 temperature below its melting point in a current of air. (b)Impurities like sulphur, phosphorus and organic matter becomes their oxides (are oxidised) and expelled 	1	2

10	monoxide in the presence of a suitable catalyst. $CH_3-OH + CO \rightarrow CH_3-COOH$ MethanolEthanoic acid	1	2
	(b) In the manufacture of rayon / In the rubber industry/ In the silk industry/ For making vinegar / For making ester (Perfumes) (Any One)	1	
11	 (a) 2 each Total Number of moles of Reactants = 2 Total Number of moles of Products = 2 (Total Number of moles of reactants and Products = 2+2 = 4) ! 	1	3
	(b) Pressure has <i>no role</i> in this reaction. The total number of moles of gaseous reactants is equal to the total number of moles of gaseous products (2 moles each).	1,1	
	(a) 5 (Five) , Pent	¹ /2 , ¹ /2	3
12	(b) Branch = Methyl (CH_3), Position = 3 (Third carbon)	¹ /2 , ¹ /2	
	(c) 3 – Methyl pentane	1	
	(a) 1 mole N ₂ + <u>3 moles</u> of H ₂ \rightarrow <u>2 moles</u> of NH ₃	1	
13	(b) 3 moles of $H_2 = 3x 2g = 6 g$	1	3
	(c) 1 mole(22.4 L) $N_2 \rightarrow 2$ moles of $NH_3 = 44.8$ L	1	
14	(a) Cu , Mg	1⁄2 , 1⁄2	
	(b) Anode : Mg , Cathode : Cu	¹ /2 , ¹ /2	3
	(c) Mg + $Cu^{2+} \rightarrow Mg^{2+} + Cu$	1	
15	(a) Cryolite is added to alumina <i>to reduce its melting point</i> and <i>to increase its electrical conductivity</i> .	1	3
	(b) Aluminium (Al ³⁺) , Oxide (O ²⁻)	1⁄2 , 1⁄2	
	(c) Al ³⁺ + 3ē → Al	1	
	(a) The test tube which contains <i>Zinc Powder</i>	1	
	(b)When solids are made into small pieces or powder, their surface area		4
16	<i>increases.</i> As a result the <i>number of molecules undergoing effective collisions also increases.</i> Hence the rate of reaction increases.	2	
	(c) Firewood burns faster when cut into small pieces / Powdered solutes (eg: salt , sugar) dissolves faster (or any other relevant one)	1	
17	(a) C ₄ H ₁₀ O	1	4
	(b) Functional isomerism	1	
	(c) <i>Compounds having same molecular formula, but having a difference in their functional groups,</i> are known as Functional Isomers. This phenomenon is called functional isomerism	1	

	(d)CH ₃ -CH ₂ -CH-CH ₃					
	ОН					
	OR	1				
	CH ₃ -CH-CH ₂ -CH ₃					
	ОН					
	(a) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$	1				
	(b) $Group = 1$ $Period = 4$ $Block = s$ $Oxidation State = +1$	1⁄2 1⁄2 1⁄2 1⁄2	4			
18	(c)Low ionization energy/ Low electro negativity/Metallic nature/ Lose electrons in chemical reactions/Compounds are mostly ionic/Oxides and hydroxides are basic in nature/Highest atomic radius in the respective periods/Reactivity increases down the group. (Any One)	1				
	A H (a)H C Cl OR CH ₂ -Cl ₂ OR Dichloro methane	1⁄2				
19	B -[-CH ₂ -CH-]π OR Poly Vinyl Chloride / PVC Cl	1⁄2	4			
	(b) Substitution reaction	1				
	(c) Poly Vinyl Chloride (<i>PVC</i>), for making <i>pipes</i>	1,1				
20	 (a) Anti pyretics - Medicines used to bring down body temperature (in the treatment of fever) Anti biotics - Medicines used to destroy the disease causing micro organisms and prevent their growth 	1,1	4			
	(b)Self treatment / Irregularity in using medicines as per the timings prescribed by the doctors/ Taking medicines even after the prescribed period /Taking medicines prescribed for another person (Any two)	2				
	Prepared by Unmesh B , Govt HSS Kilimanoor : 9946099800					
©Educational Observer						