SHRI VIDHYABHARATHI MATRIC.HR.SEC.SCHOOL SAKKARAMPALAYAM , AGARAM (PO) ELACHIPALAYAM TIRUCHENGODE(TK), NAMAKKAL (DT) PIN-637202 Cell : 99655-31727, 99655-35967 **PUBLIC EXAMINATION 2019 TENTATIVE KEY XI PURESCIENCE** DATE: 12.03.2019 SUBJECT: ZOOLOGY **TYPE - A MARKS : 70** MARKS Q. **ANSWER KEY** NO PART -I 1. a) red muscle fibres 1 2. d) stiffling 1 3. b) EEG 1 a) Sporodic goitre 1 4. 5. a) Ctenophora - Veliger 1 c) Hepato-pancreatic duct 6. 1 7. d) heparin, serotonin and histamines 1 b) 26 8. 1 9. c) Icthyophis 1 10. b) VC+ RV 1 d) (i) and (iii) 11. 1 12. d) i and iii 1 c) P=Acetylcholine, Q=Ca⁺⁺ 13. 1 b) Ornamental breeds - Silkie 14. 1 15. d) Bone 1 PART - II Mules are produced by mating of Male donkey and female horse. 16. 1 Mules are sterile animals because they cannot produce gametes due to 1 problems in pairing up of chromosomes. They have odd number of chromosomes. 17. Waste Products of protein metabolism The major nitrogenous waste products are ammonia, urea and uric acid. 1 Other waste products of protein metabolism are trimethyl amine oxide (TMO) in marine teleosts, guanine in spiders, hippuric acid, allantonin, allantoic acid, 1 ornithuric acid, creatinine, creatine, purines, pyramidines and pterines. 18. **Pseudo** -stratified epithelium Pseudo-stratified epithelial cells are columnar, but unequal in size. Although the epithelium is single layered yet it appears to be multi-layered. 1 because the nuclei lie at different levels in different cells. Hence, it is also called 1 pseudostratified epithelium . 19. Vermiwash Vermiwash is a liquid collected after the passage of water through a column of vermi bed. It is useful as a foliar spray to enhance plant growth and yield. 1 It is obtained from the burrows or **drilospheres** formed by earthworms. Nutrients, plant growth promoter substances and some useful microorganisms are 1 present in vermiwash.

		1
20.	peritonitis	
	• Appendicitis is the inflammation of the vermiform appendix, leading to severe	1
	abdominal pain. The treatment involves the removal of appendix by surgery.	
	• If treatment is delayed the appendix may rupture and results in infection of the	1
	abdomen, called peritonitis.	
21.	Uses of surfactants	
	• The surfactant lowers the surface tension in the alveoli and prevents the lungs	1
	from collapsing.	
	• It also prevents pulmonary oedema.	1
22.	Cross breeding:	
	Breeding between a superior male of one breed with a superior	1
	female of another breed.	
	The cross bred progeny has superior traits (hybrid vigour or heterosis.)	1
23.	Diluting fluid	
	RBC - Hayem's solution	1
	➢ WBC - Turk's solution	1
24.	Cardio pulmonary resuscitation	
	• CPR is a life saving procedure that is done at the time of emergency conditions	
	such as when a person's breath or heart beat has stopped abruptly in case of	
	drowning, electric shock or heart attack.	
	• CPR includes rescue of breath, which is achieved by mouth to mouth breathing,	1
	to deliver oxygen to the victim's lungs by external chest compressions which	
	helps to circulate blood to the vital organs.	
	• CPR must be performed within 4 to 6 minutes after cessation of breath to prevent	1
	brain damage or death. Along with CPR, defibrillation is also done. Defibrillation	
	means a brief electric shock is given to the heart to recover the function of the	
	heart.	
	PART -III	
25.	Rules of nomenclature	
	• The scientific name should be italicized in printed form and if handwritten, it	
	should be underlined separately.	
	• The generic name's (<i>Genus</i>) first alphabet should be in uppercase.	1
	• The specific name (<i>species</i>) should be in lowercase.	
	• The scientific names of any two organisms are not similar.	1
	• The name or abbreviated name of the scientist who first publishes the scientific	
	name may be written after the species name along with the year of publication.	
	For example Lion-Felis leo Linn., 1758 or Felis leo L., 1758.	
	• If the species name is framed after any person's name the name of the species	_
	shall end with i, ii or ae. For example, a new species of a grounddwelling lizard	1
	(Cyrtodactylus) has been discovered and named after Scientist Varad Giri,	
	Cyrtodactylus varadgirii.	
26.	Types of dislocation of joints	
	• Congenital deformities are due to genetic factors or factors operating on the	1
	developing toetus.	_
	• Traumatic dislocation is due to serious violence. It occurs in the shoulder,	1
	elbow and hip.	
	• Pathological dislocation is caused by some diseases like uberculosis. It may	
	cause dislocation of the hip.	4
	• Paralytic dislocation caused by paralysis of one group of muscles of an	
	extremity.	

	Characters	Frog	Toad	
	Family	Ranidae	Bufonidae	1
	Teeth	Maxillary and vomerine teeth.	Teeth absent.	1
	Egg formation	Lays eggs in clusters.	Lays eggs in strings.	1
	succus entericus			
	• The secretions of the Brunner's gland along with the secretions of the intestinal glands constitute the intestinal juice or succus entericus . The enzymes in the intestinal juice such as maltase, lactase, sucrase (invertase), dipeptidases, lipases, nucleosidases act on the breakdown products of bile and pancreatic digestion.			
	Maltose <u>Ma</u>	altase glucose + glucose		
	Sucrose st	glucose + fructose		
	Lactose La	glucose + galactose		
	Tripeptides <u>Pe</u> Nucleotides <u>N</u>	ptidase amino acids Nucleoside + ucleotidase Phosphoric		2
	Nucleoside N	acid ucleosidase Sugar + Nitrogen base		
	Diglycerides an monoglycerides	d Lipases Fatty acids		
	Clinical significat	nce of ultra sound imaging (any	(3)	3x1
	• Ultrasound	waves are used to image the foetu	is at different stages of	
	pregnancy to study the progress of the developing foetus.			
	• They are used to hear foetal heart sound, blood flow, etc.			
	• Used in echocardiography to diagnose the damages in heart.			
	• Used for diagnosis of tumours, gall stones, kidney stones, obstructions in			
	the genital	tracts.		
	Hyperglyca reduced secr	emia is otherwise known as Diabe retion of insulin. As the result, blood	tes mellitus. It is caused due to glucose level is elevated.	1
	 Diabetes me diabetes is a secretion du 	ellitus is of two types, Type I Diabe t lso known Insulin dependent diabet e to illness or viral infections.	tes and Type II Diabetes. Type I es, caused by the lack of insulin	1
	• Type II diab reduced sen diabetes incl	etes is also known as Non- Insulin d sitivity to insulin, often called as in udes, polyurea (excessive urination)	lependent diabetes, caused due to insulin resistance. Symptoms of , polyphagia (excessive intake of	
	food),polydi (breakdown Gluconeoger	psia (excessive consumption lic of fat into glucose results in accumu nesis (Conversion of non- carbohydr	uids due to thirst), ketosis lation of ketone bodies) in blood. ate form like amino acids and fat	
1	into glucose) also occur in diabetes.		1

31.		(any 3)	3x1=3	
	Living Jawless fishes	Cartilaginous fishes		
	Theses belong to class cyclostomata under	These belong to class Chondrichthyes.		
	subphylum vertebrata, Phylum chordate.	under subphylum vertebrata, Phylum		
		chordate.		
	These are Jawless fishes. Mouth is circular and	Mouth is located ventrally and Jaws are		
	suctorial	very powerful		
	They have true tree	Teeth are modified placoid scales which		
		are backwadly directed		
	They have pouch like gills	They have lamelliform gills without		
		operculum		
	Eg: Petromyzon, lamprey	Eg: Trygon (stingray)		
32.	• The Haldane effect, on the other han	nd describes how oxygen concentrations		
	determines hemoglobin's affinity for	carbon dioxide. The amount of carbon		
	dioxide transported in blood is remarkat	bly affected by the degree oxygenation of		
	the blood. The lower the partial pre	essure of 02 lower is the affinity of	1	
	This phenomenon is called Haldane effe	ence more CO2 is carried in the blood.		
	• This effects CO2 exchanges in both the	tissues and lungs. In the lungs the process		
	is reversed as the blood moves through	gh the pulmonary capillaries its PCO2	1	
	declines from 45mm Hg to 40mm Hg.		1	
	• For this to occur carbondioxide is freed	from HCO3- ions and Cl- ions moves in		
	to the plasma and reenters the RBC an	nd binds with H+ to form carbonic acid	1	
	which dissociates in to CO2 and water. This CO2 diffuses along its partial			
	gradient from the blood to the alveoli			
33.	Wearing helmet will protect the head as well as the brain at the same time it prevents it			
	from shock during injury as because the brain conducts vital functions like :			
	• The cerebelium controls and coordinates muscular movements and body equilibrium Any damage to cerebelium often results in uncoordinated voluntary			
	muscle movements.			
	• The respiratory nuclei found in the pons cooperate with the medulla to control			
	• The respiratory nuclei found in the poils cooperate with the medulia to control respiration.			
	 Medulla oblongata receives and integrates signals from spinal cord and sends it 			
	to the cerebellum and thalamus. Medulla	a contains vital centres that control cardio	1	
	vascular reflexes, respiration and gastric secretions.			
	PART-IV			
34	Taxonomic hierarchy			
a)	• In biological classification, the taxon	omical hierarchy includes seven major		
,,	categories namely kingdom, phylum, cl	ass, order, family, genus and species and		
	other intermediate categories such as su	ubkingdom, grade, division, subdivision,		
	subphylum, superclass, subclass, super	order, suborder, superfamily, subfamily		
	and subspecies.			
	• Species Species is the basic unit of cl	assification in the taxonomic hierarchial		
	system. It is a group of animals having s	similar morphological features (traits) and	1	
	is reproductively isolated to produce fer	tile offspring. There are some exceptional		
	related species	spring because of mating with closely		
	• Genus: It is a group of closely relate	ed species which have evolved from a		
	common ancestor. In some genus there	e is only one species which is called as		
	monotypic genus (e.g. Red panda is	the only species in the genus Ailurus :		
	Ailurus fulgens) (Figure 1.3). If there are	e more than one species in the genus it is	1	
	known as polytypic genus, for example	ple 'cats' come under the Genus Felis,		
	which has a number of closely related	species, Felisdomestica (domestic cat),		

	Felis margarita (jungle cat). Felis silvestris (wild cat)	
	• Family: It is a taxonomic category which includes a group of related genera with	1/2
	less similarity as compared to genus and species. For example, the family Felidae	
	includes the genus <i>Felis</i> (cats) and the genus <i>Panthera</i> (lions, tigers, leopards).	
	• Order: This category includes an assemblage of one or more related families	1/2
	which show few common features. One or more similar families are grouped	
	together to form an order. For example, family <i>Canidae</i> and <i>Felidae</i> are placed in	
	the order Carnivora	
	• Class: This estagory includes one or more related orders with some common	16
	• Class. This category includes one of more related orders with some common abaracters. For example order Drimete communicing menkeys, and men is	72
	related in the Class Maximple order Primata comprising monkeys, apes and man is	
	placed in the Class Mammalia, along with the order Carnivora which includes	
	dogs and cats.	
	• Phylum: The group of classes with similar distinctive characteristics constitute a	
	phylum. The classes Pisces, Amphibia, Reptilia, Aves and Mammalia constitute	1
	the next higher category, phylum Chordata. These classes share some common	
	features like presence of a notochord and a dorsal tubular nerve cord hence	
	included in the phylum Chordata.	
	• Kingdom: All living animals belonging to various phyla are included in the	1/2
	Kingdom Animalia and it is the top most of the taxonomic hierarchy.	
B.	Absorption and assimilation	
OR	• Absorption is a process by which the end product of digestion passes through the	
on	intestinal mucosa into the blood and lymph. The villi in the lumen of ileum are	
	the absorbing units, consisting of a lacteal duct in the middle surrounded by fine	
	network of blood capillaries. The process of absorption involves active passive	
	and facilitated transport	1
	Small amounts of shapes aming aside and electrolytes like chloride ions are	1
	• Small amounts of glucose, annuo actus and electrolytes like chiofide folis are	
	generally absorbed by simple diffusion. The passage of these substances into the	
	blood depends upon concentration gradients. However, some of the substances	
	like fructose are absorbed with the help of the carrier ions like Na+. This	
	mechanism is called facilitated transport.	
	• Nutrients like amino acids, glucose and electrolytes like Na+ are absorbed into	
	the blood against the concentration gradient by active transport. The insoluble	
	substances like fatty acids, glycerol and fat soluble vitamins are first incorporated	1
	into small, spherical water soluble droplets called micelles and are absorbed into	
	the intestinal mucosa where they are re-synthesized into protein coated fat	
	globules called chylomicrons which are then transported into the lacteals within	
	the intestinal villi and eventually empty into lymphatic duct.	
	• The lymphatic ducts ultimately release the absorbed substances into the blood	
	stream. While the fatty acids are absorbed by the lymph duct, other materials are	1
	absorbed either actively or passively by the capillaries of the villi Water soluble	-
	vitamins are absorbed by simple diffusion or active transport. Transport of water	
	depends upon the osmotic gradient.	
	• Absorption of substances in the alimentary canal takes place in mouth stomach	
	small intestine and large intestine. However maximum absorption takes place in	
	the small intestine. Absorption of simple sugars alcohol and medicines takes	1
	place in the stomach. Certain drugs are absorbed by blood capillaries in the lower	1
	side of the tongue and mucosa of mouth I arge intestine is also involved in	
	absorption of more amounts of water vitamine some minerals and certain drugs	
	• Absorbed substances are transported through blood and lymph to the line	
	• Ausorbed substances are transported unrough blood and lymph to the liver	
	of the negative of the hole for still stice. All the local differences are transported to all	
	other regions of the body for utilization. All the body tissues utilize the absorbed	1
	substance for their activities and incorporate into their protoplasm, this process is	
	called assimilation.	

SHRI VIDHYABHARATHI MAT.HR.SEC.SCHOOL, SAKKARAMPALAYAM. 99655-31727

b)	Parathyroid hormone			
	• PTH is a hypercalcemic hormone . It is a peptide hormone involved in			
	controlling the calcium and phosphate homeostasis. The secretion of PTH is			
	controlled by calcium level in the blood. It increases the blood calcium level by	1		
	stimulating osteoclasts to dissolve the bone matrix. As a result calcium and			
	phosphate are released into the blood.			
	• PTH enhances the reabsorption of calcium and excretion of phosphates by the	1		
	renal tubules and promotes activation of vitamin D to increase calcium absorption			
	by intestinal mucosal cells.			
	• Tetany is caused due to the hyposecretion of parathyroid hormone (PTH). Due to			
	hyposecretion of PTH serum calcium level decreases (Hypocalcemia), as a result	1		
	serum phosphate level increases. Calcium and phosphate excretion level			
	decreases.			
	• Generalized convulsion, locking of jaws increased heart beat rate, increased body	1		
	temperature, muscular spasm are the major symptoms of tetany.			
	• Hyperparathyroidism is caused due to excess PTH in blood. Demineralisation			
	of bone, cyst formation, softening of bone, loss of muscle tone, general weakness,	1		
	renal disorders are the symptoms of hyperparathyroidism.			
37.	Economic importance of products of apiculture			
(a)	• Honey is the healthier substitute for sugar. The major constituents of honey are:			
. ,	levulose, dextrose, maltose, other sugars, enzymes, pigments, ash and water. It is	1		
	an aromatic sweet material derived from nectar of plants. It is a natural food, the			
	smell and taste depends upon the pollen taken by the honey bee.			
	• It is used as an antiseptic, laxative and as a sedative. It is generally used in			
	Ayurvedic and Unani systems of medicine. It is also used in the preparation of	1		
	cakes, breads and biscuits			
	• Bee wax is secreted by the abdomen of the worker bees at the age of two weeks.			
	The wax is masticated and mixed with the secretions of the cephalic glands to	1		
	convert it into a plastic resinous substance.			
	• The resinous chemical substance present in the wax is called propolis which is			
	derived from pollen grains. The pure wax is white in colour and the yellow colour	1		
	is due to the presence of carotenoid pigments.			
	• It is used for making candles, water proofing materials, polishes for floors,			
	furniture, appliances, leather and taps. It is also used for the roduction of comb	1		
	foundation sheets in bee keeping and used in pharmaceutical industries.			
(h)	Characteristics of cultivable fishes			
(5)	The special characteristic features of cultivable fishes are:			
	i. Fishes should have high growth rate in short period for culture.	1		
	ii. They should accept supplementary diet.	1		
	iii. They should be hardy enough to resist	1		
	some common diseases and infection of parasites.			
	iv. Fishes proposed for polyculture should be able to live together without interfering or	1		
	attacking other fishes.			
	v. They should have high conversion efficiency so that they can effectively	1		
	utilize the food.			
38.	Haemodialysis			
(a)	• Malfunctiong of the kidneys can lead to accumalation of urea and other toxic			
	substances, leading to kidney failure. In such patients toxic urea can be removed			
	from the blood by a process called haemodialysis.			
	• A dialyzing machine or an artificial kidney is connected to the patient's body. A	1		
	dialyzing machine consists of a long cellulose tube surrounded by the dialysing			
	fluid in a water bath.			

	•	The patien dialysing u dialysis tub the water	nt's blood is dr unit after adding be allows small bath, whereas b	awn from a convenient artery and pumped into the g an anticoagulant like heparin. The tiny pores in the molecules such as glucose, salts andurea to enter into blood cells and protein molecules do not enter these	1
	•	This stage liquid in th in order to blood is the	is similar to the water bath con prevent loss of en pumped back	ne filtration process in the glomerulus. The dialysing insists of solution of salt and sugar in correct proportion glucose and essential salts from the blood. The cleared to the body through a vein.	1
	Kidne	y Transpla	ntation		
	•	It is the u transfer of failure.	ltimate method healthy kidney	for correction of acute renal failures. This involves from one person (donor) to another person with kidney	1
	•	The donate dead or fro immune sy to the patie	ed kidney may l om sibling or clo ystem of the hose ont to avoid tissu	be taken from a healthy person who is declared brain se relatives to minimise the chances of rejection by the st. Immunosuppressive drugs are usually administered e rejection.	1
(b)	•	Depending group in in- plasma of A Surface and	on the presence dividual belongs A, B and O indiv tigens are called	or absence of surface antigens on the RBCs, blood s to four different types namely, A, B, AB and O. The viduals have natural antibodies (agglutinins) in them. agglutinogens.	1
	• The antibodies (agglutinin) acting on agglutinogen A is called anti A and the agglutinin acting on agglutinogen B is called anti B. Agglutinogens are absent in O blood group. Agglutinogens A and B are present in AB blood group and do not contain anti A and anti B in them. Distribution of antigens and antibodies in blood groups are shown in the table .A, B and O are major allelic genes in ABO systems				1
	•	All aggluti terminal ar on the gene transferase	nogens contain s nino acids. The e products of A a	sucrose, D-galactose, N-acetyl glucosamine and 11 attachments of the terminal amino acids are dependent and B. The reaction is catalysed by glycosyl	1
	•	Rh factor is majority (8 Rhesus mo surface of t not carry as checked be	s a protein (D an 30%) of humans. onkey, hence the the red blood cel ntigen D, are Rh efore blood trans	ntigen) present on the surface of the red blood cells in This protein is similar to the protein present in term Rh. Individualswho carry the antigen D on the lls are Rh ⁺ (Rh positive) and the individuals who do (Rh negative). Rh factor compatibility is also fusion.	1
	Blood	Agglutinogens	Agglutinin		
	group	(antigens) on	(antibodies)		
		the RBC	in the plasma		1
	Α	A	Anti B		1
	В	В	Anti A		
	AB	AB	No antibodies		
	O	No antigens	Anti A and Anti B		
<u> </u>				****	

DEPARTMENT OF ZOOLOGY SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL, SAKKARAMPALAYAM, AGARAM (PO) ELACHIPALAYAM, TIRUCHENGODE(TK), NAMAKKAL (DT). PIN-637202 Cell No: 99655-31727, 80729-92139.