ANNUAL EXAMINATION - ANSWER KEY -2019
 II PUC - PHYSICS

PART - A

I. Answer all the following questions:
$(10 \times 1=10)$

1. State Coulomb's Law.

Columb's inverse square law states that force of attraction or repulsion between two static, point charges is directly proportional to the product of magnitudes of charges and inversely proportional to square of the distance between them.
2. Define electrical resistivity of material of a conductor

Resistance of a conductor per unit length and per unit area of cross section is called resistivity.
3. Write the expression for force acting on a moving charge in a magnetic field.

$$
F=q(\vec{v} \times \vec{B}) \quad \text { or Bqv } \sin \theta
$$

4. What is magnetic susceptibility?

Ratio of magnetization to magnetic intensity is called magnetic susceptibility.
5. How the self inductance of a coil depends on number of turns in the coil?

Directly proportional to square of number of terms $L \alpha n^{2}$
6. For which position of the object magnification of convex lens is $\mathbf{- 1}$ (minus one)? Twice the focal length distance, from the lens.
7. For which angle of incidence reflected ray is completely polarized?

Brewster's angle (polarizing angle)
8. Mention any one type of electron emission.

Thermionic emission (field / photoelectric. Emission)
9. Write the expression for energy of an electron in electron orbit of hydrogen atom.

Energy in nth Bohr orbit, $E_{n}=\frac{-m e^{4}}{8 \varepsilon_{0}^{2} n^{2} h^{2}}$
10. Write the relation between Half-Life and Mean-Life of radio active element.

$$
T_{\underline{1}}=0.6932 \mathbf{T}_{\mathbf{m}}
$$

PART - B

II. Answer any five of the following questions:

$$
(5 \times 2=10)
$$

11. Write any two basic properties of charge
(i) Charge is quantized
(ii) Charge is conserved
(iii) Charge is additive (any two)
12. Write the expression for drift velocity interms of current, explain the terms used.
$V_{d}=\frac{I}{n A c}$
$\mathrm{I}=\mathrm{current}$
$\mathrm{n}=$ no. of electrons per unit volume
A = Area of cross section
c = Charge of electron
13. Define magnetic 'dip' and 'declination' at a place.

The angle between the total magnetic field of earth and horizontal along magnetic meridian Declaration:

Angle between geographic meridian and magnetic meridian at a given place.
14. Write the expression for speed of light interms of " μ_{0} " and " \in_{0} ", explain the terms used.
$C=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
$\mathrm{C}=$ speed of light
$\mu_{0}=$ magnetic permeability of free space
$\varepsilon_{0}=$ electric permittivity of free space
15. Write the ray diagram for formation of image in the simple microscope.

16. What is diffraction of light?

The phenomenon of bending of light around the sharp edges of small obstacles or around the edges of narrow slits.

Eg: Colours seen when compact disc is viewed.
17. Write the expression for de-Broglie wave length of electrons in terms of electric potential and explain the terms used.
$\lambda=\frac{h}{\sqrt{2 m e V}}$
$\lambda=$ de- Broglie wavelength, $h=$ Planck's constant , $m=$ mass of electron $V=$ potential ,
e =chrge of electron
18. Distinguish between n-type and p-type semi conductors.

n - type	p-type
1) majority carriers are electrons	1) majority carries are holes
2) semiconductor is doped with	2) semiconductor is doped
pentavalent atoms	with trivalent atoms

PART - C
II. Answer any five of the following questions: $(5 \times 3=15)$
19. Derive an expression for potential energy of electric - dipole placed in an uniform electric field.

Consider an electric dipole placed in a uniform electric field E at an angle θ. Torque experienced by the dipole is $\tau=\mathrm{pE} \sin \theta$, where p is the electric dipole moment.

Work done in rotating the dipole further through a small angle $\mathrm{d} \theta$ against the torque is $\mathrm{dW}=\tau \mathrm{d} \theta$
\therefore Total work done by external torque in rotating the dipole from angle θ_{1} to θ_{2} is

$$
\begin{gathered}
W=\int_{\theta_{1}}^{\theta_{2}} \tau d \theta=\int_{\theta_{1}}^{\theta_{2}} p E \sin \theta d \theta \\
W=p E[-\cos \theta]_{\theta_{1}}^{\theta_{2}}=-p E[\cos \theta]_{\theta_{1}}^{\theta_{2}} \\
W=-p E\left(\cos \theta_{2}-\cos \theta_{1}\right)=p E\left(\cos \theta_{1}-\cos \theta_{2}\right)
\end{gathered}
$$

This work done is stored as the potential energy of the system.
If the dipole is initially perpendicular to the field (potential energy=0), and then deflects through $\theta \quad\left(\theta_{1}=90^{\circ}\right.$ and $\left.\theta_{2}=\theta\right)$, the work done in deflecting through θ is

$$
\mathrm{W}=-\mathrm{pE} \cos \theta
$$

Hence Potential energy of the dipole in an electric field is $U=-p E \cos [\theta-0]=-p E \cos \theta$
20. Write the expression for force per unit length between two straight parallel current carrying conductors of infinite length. Hence define SI unit of current 'ampere'.
The expression for force between two long straight, parallel conductors carrying currents
is $\frac{F}{L}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi r}$

Force is attractive for currents in same direction and repulsive for currents in opposite directions.

One ampere is defined as the identical currents through two long, straight ,parallel conductors placed in vacuum with a separation of 1 metre, when they attract each other with a force per unit length of $2 \times 10-{ }^{7} \mathrm{~N} / \mathrm{m}$
21. Distinguish between 'dia' and 'ferro' magnetic materials.

Diamagnetic	Ferro
1) Substances which are weakly magnetized in a direction opposite to that of the magnetizing field	1) Substances which are strongly magnetized in the direction of the magnetizing field.
2) Substances are weakly repelled by a strong magnet	2) Substances are strongly attracted by even weak magnet.
3) Susceptibility is low and negative	3) Susceptibility in high and positive

22. Mention the three type's energy loss in a transformer.
23. Loss due to heating of coils
24. Loss due to Eddy currents
25. Hysteresis loss
26. Loss due to flux leakage. (any 3)
27. Write three experimental observations of photoelectric effect.
28. The photoelectric e emission in instantaneous process.
29. Maximum K.E of photoelectron is directly proportional to frequency of incident radiation.
30. For a given metal and frequency of incident radiation saturation current is directly proportional to intensity of incident radiation.

24. Write the three postulates of Bohr's atomic model.

1. An atom has central positively charged nucleus. Electrons revolve round the nucleus in circular orbits called stationary orbits. The necessary centripetal force is provided by the electrostatic force of attraction between the nucleus and the electron.
i.e. $\frac{m v^{2}}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e \times e}{r^{2}}$, where m is the mass and v is the velocity of electron and r is the radius of the orbit. Electrons do not radiate in stationary orbits.
2. In stationary orbit ,angular momentum of the electron is equal to integral multiple of $\frac{h}{2 \pi}$, where h is Planck's constant.

Angular momentum, $m v r=n \frac{h}{2 \pi}$ where $\mathrm{n}=1,2,3 \ldots .$. (Bohr's quantization rule), where n is called principal quantum number.
3. An electron radiates energy only when it jumps from one orbit of higher energy to another of lower energy.
If E_{0} and E_{i} are the energies of an electron in the outer and inner orbits respectively, then frequency of the emitted radiation v is given by $v=\frac{E_{0}-E_{i}}{h}$ (Bohr's frequency condition) where h is Planck's constant.

25. Explain 'Conduction band' 'Valance band' and 'Energy gap', in semi conductors.

In an isolated atom, like Hydrogen atom, electron has definite energy values, corresponding to different orbits.
In the case of solids, atoms are closely packed and interaction takes place between
electrons of outer orbits of different atoms. This results in splitting of energy values.
Valance band is the energy range for valence electrons.
The energy range of conduction or free electrons is called conduction band.
The gap between conduction band and valence band is called forbidden gap or energy gap.
26. What is modulation? Write the block diagram of the receiver. Production of amplitude modulated wave
The Process of mixing low frequency signal with high frequency carrier wave is called modulation.

Y Receiving antenna

(Frequency decreased to W_{m}) (original message

PART-D

IV. Answer any two of the following questions:
($2 \times 5=10$)
27. State Gauss's law. Derive an expression for electric intensity at a point outside the uniformly charged shell.

Gauss law states that electric flux through any surface enclosing charge completely is given by the ratio of charge enclosed to the absolute permittivity of space.

Consider a spherical shell of radius R, carrying charge q., with centre 0 .

Let P be a point at a distance r from centre O. Consider a Gaussian sphere with centre O and radius r. The total electric flux through this surface is
$\phi=\Sigma(E \cos \theta) \Delta \mathrm{S}$, (electric field at all points on the Gaussian surface is same in Magnitude)

$$
\begin{align*}
& =\Sigma \mathrm{E} \Delta \mathrm{~s} \quad\left(\because \theta=00^{\circ} \mathrm{E} \text { is normal to the surface. }\right) \\
\phi & =\mathrm{E}\left(4 \pi r^{2}\right) \ldots \ldots . .(1) \quad\left(\because \Sigma \Delta \mathrm{S}=4 \pi r^{2}, \text { area of the Gaussian sphere }\right)
\end{align*}
$$

By Gauss theorem, the total electric flux through the Gaussian surface is

$$
\begin{equation*}
\phi=\frac{1}{\varepsilon_{0}}(q) \ldots \ldots \tag{2}
\end{equation*}
$$

From (1) \& (2), $\quad E\left(4 \pi r^{2}\right)=\frac{1}{\varepsilon_{0}}(q)$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}
$$

28. Two cells of emf E_{1} and E_{2} and internal resistance r_{1} and r_{2} are connected in parallel such that they send current in same direction. Derive an expression for equivalent resistance and equivalent emf of the combination.

The expression for equivalent emf and equivalent internal resistance for two cells connected in parallel.

Cells are said to be in parallel if negative terminals of all the cells are connected together to one terminal and positive terminals are connected to the other terminal. Consider two cells having emf's E_{1}, E_{2} and internal resistances r_{1}, r_{2} respectively connected in parallel.

Let I_{1} and I_{2} are the currents through the cells respectively, then the main current is

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \ldots \ldots . .(1)
$$

If V is the terminal $p . d$ across each cell then for the first cell, $V=E_{1}-I_{1} r_{1}$

$$
\text { or } I_{1}=\frac{E_{1}-V}{r_{1}}
$$

And for the second cell, $\mathrm{V}=\mathrm{E}_{2}-\mathrm{I}_{2} \mathrm{r}_{2}$ or $I_{2}=\frac{E_{2}-V}{r_{2}}$

Substituting I_{1} and I_{2} in eqn. (1) $I=\frac{E_{1}-V}{r_{1}}+\frac{E_{2}-V}{r_{2}}$

$$
\begin{equation*}
I=\frac{E_{1}}{r_{1}}+\frac{E_{2}}{r_{2}}=V\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)---(2) \tag{2}
\end{equation*}
$$

Let the parallel grouping of cells be replaced with a single cell of emf $\mathrm{E}_{\text {eq }}$ and internal resistance $r_{\text {eq }}$ then, $V=E_{\text {eq }}-I r_{\text {eq }}$
or $I=\frac{E_{e q}}{r_{e q}}=\frac{V}{r_{e q}}$
Comparing (2) and (3), $\frac{E_{e q}}{r_{e q}}=\frac{E_{1}}{r_{1}}+\frac{E_{2}}{r_{2}}$ and $\frac{1}{r_{e q}}=\frac{1}{r_{1}}+\frac{1}{r_{2}}$ or $r_{e q}=\frac{r_{1} r_{2}}{r_{1}+r_{2}}$
$E_{e q}=\left[\frac{E_{1}}{r_{1}}+\frac{E_{2}}{r_{2}}\right] r_{e q}=\left[\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1} r_{2}}\right]\left[\frac{r_{1} r_{2}}{r_{1}+r_{2}}\right]=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}}$.
29. Derive an expression for the intensity of magnetic field at any point on the axis of a circular current loop.

Consider a circular coil having N turns with mean radius r and carrying current I. Let P be a point on the axis, at distance x from the centre O.

The magnetic field at P due to AB is, $d B=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{I d \ell \sin \theta}{a^{2}}$ along PM ...
where ' a ' is the distance between the point and the element $A B$.

$$
d B=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{I d \ell}{a^{2}}
$$

$(\because \theta=90)$. Similarly magnetic field at P due to the element $A^{\prime} B^{\prime}$ is
$d B=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{I d \ell}{a^{2}}$ along PN
The magnetic field dB is resolved into horizontal and vertical components, $\mathrm{dB} \sin \alpha$ and $\mathrm{dB} \operatorname{scos} \alpha$ respectively, where α is the angle between line joining the point to the element and axis of the coil.

The vertical components of magnetic fields being equal and opposite cancel each other and horizontal components add up.
Hence magnetic field at P due to two current elements $=2 \mathrm{~dB} \sin \alpha$
\therefore The resultant magnetic field at P due to one turn of the coil $=\Sigma 2 \mathrm{~dB} \sin \alpha$
$=\sum 2\left(\frac{\mu_{o}}{4 \pi}\right) \frac{I d l}{a^{2}} \sin \alpha \quad$ from (1)
$=\left(\frac{\mu_{o}}{4 \pi}\right) \frac{2 I}{a^{2}} \sum d \ell \sin \alpha$
$=\left(\frac{\mu_{o}}{4 \pi}\right) \frac{2 I}{a^{2}} \pi r \sin \alpha$ Since the field is due to 2 elements, $\sum d l=\frac{\text { Circumference }}{2}=\pi r$
$=\left(\frac{\pi_{o}}{4 \pi}\right) \frac{2 \pi I r^{2}}{a^{3}} \quad$ From $\triangle \mathrm{ROP}, \sin \alpha=\frac{r}{a}$
$=\left(\frac{\pi_{\sigma}}{4 \pi}\right) \frac{2 \pi I r^{2}}{\left(r^{2}+x^{2}\right)^{3 / 2}} \quad$ From $\triangle \mathrm{AOP}, \quad \mathrm{a}=\left(\mathrm{r}^{2}+\mathrm{x}^{2}\right)^{1 / 2}$ or $\mathrm{a}^{3}=\left(\mathrm{r}^{2}+\mathrm{x}^{2}\right)^{3 / 2}$
For N turns of the coil $B=\left(\frac{\pi_{o}}{4 \pi}\right) \frac{2 \pi N I r^{2}}{\left(r^{2}+x^{2}\right)^{3 / 2}}$.
The direction of the magnetic field is along the axis of coil.
V. Answer any two of the following questions:
($2 \times 5=10$)

30. Derive an expression for the impedance of a series LCR circuit, when an AC

 voltage is applied to it.

Consider a wire of resistance ' R^{\prime}, coil of inductance ' L^{\prime} and capacitor of capacitance ' C^{\prime} connected in series with a sinusoidal AC source.
$\mathrm{V}=\mathrm{V}_{0} \sin \omega t$
Let, $\mathrm{I}=\mathrm{I}_{0} \sin (\omega t-\phi)----(2)$ be the current, which is same through the circuit elements at any time.
Where ϕ is the phase difference between the voltage and current in the circuit.
If V_{R}, V_{L} and V_{C} are the p.d across R, L and C respectively, then we have,
$V_{R}=I R, V_{L}=I X_{L}$ and $V_{C}=I X_{C} . V_{R}$ is in phase with current I, V_{L} leads I by $\pi / 2$ and
V_{C} lags behind current I by $\pi / 2$.
If V is the p.d across the combination, (applied voltage) then V is the phasor sum of V_{R}, V_{L} and V_{C} as shown in the figure. V_{R}, V_{L} and V_{C} are represented by the vectors $O A, O B$ and $O C$ respectively. If $V_{L}>V_{C}$, the resultant of these two values is ($V_{L}-V_{C}$) represented by the vector OD.

From the phasor diagram,

$$
\begin{aligned}
& \mathrm{V}^{2}=\mathrm{V}_{\mathrm{R}}{ }^{2}+\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2} \\
& \mathrm{~V}^{2}=(\mathrm{IR})^{2}+\left(\mathrm{I} \mathrm{X}_{\mathrm{L}}-\mathrm{I} \mathrm{X}_{\mathrm{C}}\right)^{2} \\
& V=\sqrt{(I R)^{2}+\left(I X_{L}-I X_{C}\right)^{2}} \\
& V=I \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& \mathrm{~V}=\mathrm{I} \times \mathrm{Z}
\end{aligned}
$$

Impedance $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$ which is the effective opposition offered by the circuit for the flow of AC through it. Also $\tan \phi=\frac{V_{L}-V_{C}}{V_{R}}=\frac{I X_{L}-I X_{L}}{I R}=\frac{X_{L}-X_{C}}{R}$

$$
\phi=\tan ^{-1}\left[\frac{X_{L}-X_{C}}{R}\right] .
$$

31. Derive "Lensmaker's" formula

Consider a thin convex lens of focal length f of refractive index n_{2}, surrounded by medium of R. I n_{1} such that $n_{2}>n_{1}$.
Let R_{1} and R_{2} be the radii of curvature of the surfaces $A B C$ and $A D C$.
O is a luminous point object on the principal axis at a distance u from the optic centre. A ray incident along OB proceeds undeviated.
Another ray OP incident at P after refraction through the lens emerges along QI.
Refraction through a single spherical surface is given by
$-\frac{\text { R.I.of object space }}{\text { object dis } \tan c e}+\frac{\text { R.I of image space }}{\text { image distance }}=\frac{R . I \text { of image space }- \text { R. I.of object space }}{\text { Radius of curvature }}$

The refraction through the lens is considered in two steps.

1. Refraction at the surface ABC :

In the absence of the second surface ADC, the refracted rays from a real image I' at a distance v^{\prime}.

For refraction at this surface, $-\frac{n_{1}}{u}+\frac{n_{2}}{v^{\prime}}=\frac{n_{2}-n_{1}}{R_{1}}$

2. Refraction at the surface ADC:

For refraction at this surface, the image I' acts as a virtual object forming a real image I at a distance V.

For refraction at this surface, $-\frac{n_{2}}{v^{\prime}}+\frac{n_{1}}{v}=\frac{n_{1}-n_{2}}{R_{2}}$ using eqn (1)

$$
\begin{equation*}
-\frac{n_{2}}{v^{\prime}}+\frac{n_{1}}{v}=\frac{n_{2}-n_{1}}{R_{2}} \tag{3}
\end{equation*}
$$

Adding eqn (2) and eqn(3) $=-\frac{n_{1}}{u}+\frac{n_{1}}{v}=\frac{n_{2}-n_{1}}{R_{1}}-\frac{n_{2}-n_{1}}{R_{2}}$

$$
\begin{aligned}
n_{1}\left[-\frac{1}{u}+\frac{1}{v}\right]=\left(n_{2}-n_{1}\right) & {\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right] } \\
-\frac{1}{u}+\frac{1}{v} & =\frac{n_{2}-n_{1}}{n_{1}}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
\end{aligned}
$$

$$
\frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \quad\left(\text { using lens formula } \frac{1}{f}=-\frac{1}{u}+\frac{1}{v}\right)
$$

This is known as lens maker's formula.
32. Explain the working of a n-p-n transistor in CE mode as an amplifier.

Input signal

In CE - amplifier circuit, EB junction is forward biased and CB junction is reversed biased. The input AC signal to be amplified is applied between the base and the emitter. The output is taken across the load resistance R_{C} included in the collector circuit.

When $V_{i}=0$, the output voltage $\quad V_{0}=V_{C E}-I_{C} R_{C} \ldots . .$. (1) (Using KVL)
When V_{i} is not zero and during positive half cycle of ac, the input circuit is forward biased and the base current I_{B} increases. As I_{B} increases, I_{C} increases β times ($\because \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}$).
As I_{C} increases, $I_{C} R_{C}$ increases which makes V_{0} negative. During negative half cycle of ac, the base current I_{B} decreases. As I_{B} decreases, I_{C} decreases β times. As I_{C} decreases, $\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}$ decreases which makes V_{0} becomes positive. Thus input signal is amplified in opposite direction.

In the input region $\quad V_{B B}=V_{B E}+I_{B} R_{B}$
time

In the output region

$$
\begin{equation*}
V_{C C}=V_{C E}+I_{C} R_{L} \tag{2}
\end{equation*}
$$

When input voltage V_{i} is applied $V_{B B}+V_{i}=\left(V_{B E}+\Delta V_{B E}\right)+\left(I_{B}+\Delta I_{B}\right) R_{B}--t(i B) e$
Also

$$
\begin{equation*}
\mathrm{V}_{\mathrm{CC}}=\left(\mathrm{V}_{\mathrm{CE}}+\Delta \mathrm{V}_{\mathrm{CE}}\right)+\left(\mathrm{I}_{\mathrm{c}}+\Delta \mathrm{I}_{\mathrm{c}}\right) \mathrm{R}_{\mathrm{C}} \tag{4}
\end{equation*}
$$

(3) - (1) gives $V_{i}=\left(\Delta V_{B E}\right)+\left(\Delta I_{B}\right) R_{B} \quad\left(\Delta V_{B E}=r_{i} \times \Delta I_{B}\right)$

$$
\begin{equation*}
V_{i}=\Delta I_{B}\left(R_{B}+r_{i}\right)=\Delta I_{B} \times r \quad\left(R_{B}+r_{i}=r\right. \tag{5}
\end{equation*}
$$

(4)-(2)

$$
\begin{equation*}
\text { gives } \quad 0=\Delta \mathrm{V}_{\mathrm{CC}}+\Delta \mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{c}} \Rightarrow \Delta \mathrm{~V}_{\mathrm{ce}}=-\Delta \mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{c}} \tag{6}
\end{equation*}
$$

(6) $/(5) \Rightarrow \quad \frac{\Delta V_{C E}}{V_{i}}=\frac{V_{o}}{V_{i}}=$ voltage gain, $A_{v}=-\frac{\Delta I_{c} R_{c}}{\Delta I_{B} \times r}=-\beta_{A C} \times \frac{R_{C}}{r}$

Output is amplified, but out of phase with input signal
Power gain $=$ Voltage gain \times current gain. $P_{\text {gain }}=A_{V} \times \beta$
VI. Answer any three of the following questions:
33. In a circular parallel plate capacitor radius of each plate is $\mathbf{5 c m}$ and they are separated by a distance of $\mathbf{2} \mathbf{~ m m}$. Calculate the capacitance and the energy stored, when it is charged by connecting the battery of $\mathbf{2 0 0} \mathbf{V}$

$$
\left(\text { given } \epsilon_{0}=8.854 \times 10^{-12} \mathrm{Fm}^{-1}\right)
$$

Solution:

$$
\begin{aligned}
& \text { Radius } \mathrm{r}=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m} \\
& \mathrm{~d}=2 \times 10^{-3} \mathrm{~m} \\
& \varepsilon_{0}=8.8754 \times 10^{-12} \mathrm{Fm}^{-1} \quad \text { voltage applied }=200 \mathrm{v} \\
& \mathrm{~A}=\pi \mathrm{r}^{2} \quad=3.142 \times\left(5 \times 10^{-2}\right)=0.007855 \mathrm{~m}^{2} \\
& C=\frac{\varepsilon_{0} A}{d} \\
& C=\frac{8.854 \times 10^{-12} \times 0.007855}{2 \times 10^{-3}}=34.8 \times 10^{-12} \mathrm{~F} \\
& \mathrm{U}=\frac{1}{2} \times 34.8 \times 10^{-12} \times(200)^{2}=6.96 \times 10^{-7} \mathrm{~J}
\end{aligned}
$$

34. Two resistors are connected in series with 5 V battery of negligible internal resistance. A current of 2A flows through each resistor. If they are connected in parallel with the same battery a current of $\frac{25}{3} \mathrm{~A}$ flows through combination. Calculate the value of each resistance.

Solution:

$\mathrm{E}=5 \mathrm{~V} \quad \mathrm{I}=\frac{E}{R_{s}}$
$I=2 A$ (series)
$I=\frac{25}{3} A($ parallel $)$
$\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2}=\frac{E}{I}=\frac{5}{2}=2.5 \Omega$
$R_{p}=\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right)}=\frac{E}{I}=\frac{5 \times 3}{25}=\frac{15}{25}=0.6 \Omega$
$R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{R_{1} R_{2}}{R_{s}}=0.6 \Omega \quad \quad \mathrm{R}_{1} \mathrm{R}_{2}=1.5 \Omega$
$\left(R_{1}-R\right)^{2}=\left(R_{1}+R_{2}\right)^{2}-4 R_{1} R_{2}$
$\left(R_{1}-R_{2}\right)^{2}=(2.5)^{2}-4 \times 1.5=6.25-6=0.25$
$\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)^{2}=0.25 \quad \mathrm{R}_{1}-\mathrm{R}_{2}=0.5 \Omega$
From (1) and (2)
$R_{1}=\frac{3}{2}=1.5 \Omega$
$R_{1}+R_{2}=2.5$

$$
\begin{aligned}
& 1.5+\mathrm{R}_{2}=2.5 \\
& \mathrm{R}_{2}=1 \Omega
\end{aligned}
$$

35. A conductor of length 3 m moving in a uniform magnetic field of strength $\mathbf{1 0 0} \mathbf{T}$. It covers a distance of $\mathbf{7 0} \mathrm{m}$ in 5 sec . Its plane of motion makes an angle of 30° with direction of magnetic field. Calculate the emf induced in it.

Solution:

$$
\begin{aligned}
& \quad \begin{array}{l}
L=3 \mathrm{~m} \\
\\
B=100 \mathrm{~T} \\
E= \\
=
\end{array} \quad \mathrm{Blv} \sin \theta \\
& =100 \times 3 \times 14 \times \frac{1}{2} \\
& E=2100 \mathrm{~V}
\end{aligned}
$$

36. In a Young's double slit experiment wave length of light used is 5000 Å and distance between the slits is $\mathbf{2} \mathbf{~ m m}$, distance of screen from the slits is $\mathbf{1 m}$. Find fringe width and also calculate the distance of $\mathbf{7}^{\text {th }}$ dark fringe from central bright fringe.

Solution: $\quad \lambda=5000 \times 10^{-10} \mathrm{~m}$

$$
\mathrm{d}=2 \times 10^{-3} \mathrm{~m}
$$

$$
\mathrm{D}=1 \mathrm{~m}
$$

Fringe width $\beta=\frac{\lambda D}{d}=\frac{5000 \times 10^{-10} \times 1}{2 \times 10^{-3}}=2.5 \times 10^{-4} \mathrm{~m}$
Distance of $\mathrm{n}^{\text {th }}$ dark band, $\mathrm{X}_{\mathrm{n}}=(2 \mathrm{n}-1) \frac{\beta}{2}=(14-1) \times \frac{2500 \times 10^{-7}}{2}=13 \times 1250 \times 10^{-7}$

$$
x_{n}=1.625 \times 10^{-3} \mathrm{~m}
$$

37. Half life of U-238 undergoing α - decay is 4.5×10^{9} years. What is the activity of one gram of $\mathbf{U}-238$ sample?

Solution:

$\mathrm{T}_{1 / 2}=4.5 \times 10^{9}$ years
$\mathrm{T}_{1 / 2}=4.5 \times 10^{9} \times 365 \times 24 \times 60 \times 60=1.42 \times 10^{17} \mathrm{~s}$
Mass of sample , m=1g 238 gram contains 6.023×10^{23} nuclei. Hence
no. of nuclei in 1 gram sample $N=\frac{6.023 \times 10^{23} \times 1}{238}=2.53 \times 10^{21}$
Decay rate

$$
\begin{aligned}
R=\frac{d N}{d t}=\lambda N=\frac{0.693}{T_{1 / 2}} & =\frac{0.693 \times 2.53 \times 10^{21}}{1.42 \times 10^{17}} \\
& =1.23 \times 10^{4} \mathrm{~s}^{-1} \text { or } 1.23 \times 10^{4} \text { becquerel }
\end{aligned}
$$

