
I

REVISED EDITION
2018

Department of Pre-University Education
Malleshwaram, Bengaluru - 560 012

www.pue.kar.nic.in

Revised Edition - 2017

7

2018

 Director’s Message

Dear Students,

We at the Department of Pre-university Education,
Karnataka strive to empower each student to dream big
and equip them with the tools that enable them to reach
new heights and successfully deal with the challenges of
life. As Swami Vivekananda said, "Real education is that
which enables one to stand on one's own legs".

The course contents in this book are designed with
the objective of equipping you well for the next level of
study.

We wish you well on your journey and look forward to
you becoming a responsible citizen of the nation and give
back to the betterment of the society.

With best wishes,

Sd/-
C. Shikha, IAS

Director
Department of Pre University Education

Bengaluru

III

Preface

Dr. P. Nagabhushan
BE,MTech,Phd,FIE,FIETE

Professor, Department of Studies in Computer Science
Chief Nodal Officer,
University of Mysore, Mysore-570 006

I am pleased to understand that Department of Pre-University Education,
Govt. of Karnataka, took up an important academic exercise to revise the
syllabi and accordingly came out with an appropriate text book, which is
jointly authored by a committee of qualified and experienced faculty
members drawn across Karnataka state.

The committee of authors consisted of Sri. Rajappa, Empress Govt. PU
College, Tumkur, as the Chairperson and Sri. Santus Xavio B K, Stracey
Memorial PU College, Bengaluru as the Co-ordinator and Sri Nagaraje Urs,
Maharaja Govt. PU College, Mysore, Smt. M R Nagamani, SBRR Mahajana
PU College Mysore, Sri Ravindra K V, Govt. PU College, Sagara, Smt. Sharon
Mednora, Govt PU College, Malleshwaram, Bengaluru, Sri. Naveen Kumar
B, Govt. PU College for Girls, Malleshwaram, Bangalore and Smt. Padmashree
R, NMKRV PU college, Bengaluru, as the members. When the committee
members met me for seeking my remarks on the draft syllabus proposed, I
felt comfortable to see the balanced distribution of topics to serve the needs
of Commerce as well as Science students of PU Education. The spread and
the organisation of the syllabus is quite good and care has been taken to
see that the contents in Second Year Pre-University Course is properly
placed as an extension to First PUC. The committee has ensured that the
entire syllabus is on par with NCERT.

The committee has put its best effort to provide a comprehensive coverage
of both theoretical and practical aspects and also have paid careful attention
to make the learners to acquire necessary skills, which makes the learners
feel comfortable to work with the machine.

I am happy to understand that the draft book is thoroughly reviewed by
Dr. Somashekara M T, Bengaluru University and also by prof. Mukundappa,
Tumkur University. The exercise problems set by the authors at the end of
every chapter are good enough to keep the interests of the learners alive.

I commend the excellent collective effort put by the committee of authors
and also the two reviewers, and I am confident Second year PUC students
of Karnataka would be greatly benefitted.

IV

Computer Science Syllabus Review and Textbook Development
Committee

Department of Pre-University Education, Govt. of Karnataka

AUTHORS

Rajappa
Chairperson

Empress Govt. Pre-University College
Tumakuru

Co-ordinator:

Santus Xavio B K
Lecturer
Stracey Memorial Pre-University College
#52, St. Marks' Road, Bengaluru

 Members:

Nagaraje Urs
Lecturer
Maharaja Govt. Pre-University College
JLB Road, Mysore

Sharon Mednora
Lecturer
Govt. Pre-University College
18th Cross, Malleshwaram
Bengaluru

Ravindra K V
Lecturer
Govt. Pre-University College
Sagara, Shimoga District

Nagamani M R
Lecturer
SBRR Mahajana Pre-University College
Jayalakshmipuram, Mysore

Padmashree R
Lecturer
NMKRV Pre-University College
Jayanagar, Bengaluru

V

Acknowledgements

I am very fortunate to have esteemed personality Dr. Nagabhushan P,
Professor, Dept. of Computer Science, Manasagangothri, University of
Mysore who guided us in shaping the syllabus. We are also grateful to
our reviewers Dr. Somashekar M T, Associate Professor, Dept. of Com-
puter Science, Bengaluru University and Prof. Mukundappa , HOD, Dept.
of Computer Science, University Science College, Tumkur. I whole
heartedly thank them personally and on behalf of the committee.

I acknowledge Sri. Marulaiah B, Principal, Empress Govt. PU College,
Tumkur for his outstanding encouragement. I also thank A B Jagadish,
P r i n c i p a l , G o v t . P U C o l l e g e , 1 8

th Cross, Malleshwaram, Bengaluru who
helped us by providing the Computer Science laboratory. I also thank the
College Management, SBMM Mahajana PU College, Jayalakshmipuram,
Mysore for their support. We thank Dr. Serkad Arunachalam Kribanandan,
Principal, Stracey Memorial PU College, Bengaluru for his overall support
rendered to us.

I proudly remember the service of Mr. Nagendrakumar K M, Lecturer,
Govt. First Grade College, Tumkur who did fine DTP work amidst his busy
engagements. I also thank Mr. Armstrong .M, former syllabus committee
member, for his valuable suggestions and corrections.

I also recall the support of my wife Shylaja. Last but not least, I acknowl-
edge the support of family and friends of our committee members who
directly or indirectly helped us in bringing out this text book.

 Rajappa
Chairperson

Computer Science Syllabus Review and
 Textbook Development Committee
 Department of Pre-University Education

 Govt. of Karnataka

VI

Government of Karnataka
Computer Science Syllabus Review Committee

Department of Pre-University Education, Bengaluru
Rajappa Santus Xavio B K

 Chairperson Co-ordinator
 Empress Govt. Pre-University College Stracey Memorial PU College

 Tumakuru Bengaluru
 e-mail: rajappatumkur @gmail.com santus03@yahoo.com

Reviewers:

Dr. Nagabhushan P, Dept. of Computer Science, Manasagangothri, Mysore
Dr. Somashekar M T, Dept. Computer Science, Gnanabharathi, Bengaluru
Prof. Mukundappa, HOD, Dept of Computer Science, University Science

 College, Tumkur

 Members:

Nagaraje Urs
Lecturer
Maharaja Govt. Pre-University College
JLB Road, Mysore

Sharon Mednora
Lecturer
Govt. Pre-University College
18th Cross, Malleshwaram, Bengaluru
Ravindra K V
Lecturer
Govt. Pre-University College
Sagara, Shimoga District

Naveen Kumar B
Lecturer
Govt. Pre-University College
13th Cross, Malleshwaram, Bengaluru
Nagamani M R
Lecturer
SBRR Mahajana Pre-University College
Jayalakshmipuram, Mysore

Padmashree R
Lecturer
NMKRV Pre-University College
Jayanagar, Bengaluru

VII

Chapter No Topics Page No.

Chapter 1 1
1.1 Introduction 2
1.2 Motherboard 4
1.2.1 Introduction to Motherboard 4
1.2.2 Types of Motherboards 5
1.2.3 Components of Motherboard 6
1.3 Memory 15
1.4 Power supply to the computer system 18
1.5 Assembling the computer system 19

Chapter 2 24
2.1 Introduction 25
2.2 Binary valued quantities-constants and variables 25
2.3 Logical operations 26
2.3.1 Logical functions or compound statements 26
2.3.2 Logical operators 26
2.4 Evaluation of Boolean expressions using truth table 29
2.4.1 Basic logic gates 34
2.5 Basic postulates of Boolean Algebra (with proof) 36
2.5.1 Properties of 0 and 1 38
2.5.2 Indempotence law 41
2.5.3 Involution law 42
2.5.4 Complementarity law 43
2.5.5 Commutative law 44
2.5.6 Associative law 46
2.5.7 Distributive law-different forms 47
2.5.8 Absorption law 48
2.6 De Morgan’s theorems 50
2.6.1 De Morgan’s I theorem 50
2.6.2 De Morgan’s II theorem 51
2.6.3 Applications of De Morgan’s theorems 53
2.6.4 Basic duality of Boolean algebra 53
2.7 Derivation of Boolean expressions 54
2.7.1 Min terms 54
2.7.2 Max terms 57
2.7.3 Canonical expressions 57
2.7.4 Minimization of Boolean expressions 64
2.8 Simplification using Karnaugh map 65
2.8.1 Sum-of-product reduction using Karnaugh map 66
2.8.2 Product-of-sum reduction using Karnaugh map 76

UNIT A BACKDROP OF COMPUTERS 35 Hrs

Boolean Algebra

Typical configuration of Computer system

VIII

Chapter 3 86
3.1 Introduction 87
3.1.1 Invertor (NOT gate) 87
3.1.2 OR gate 88
3.1.3 AND Gate 89
3.2 Derived Gates 90
3.2.1 NOR Gate 90
3.2.2 NAND Gate 91
3.2.3 XOR Gate 91
3.2.4 XNOR Gate 93
3.2.5 Circuit diagram 94
3.2.6 NAND,NOR as universal Gates 95

Chapter 4 103
4.1 Introduction 104
4.2 Data representation 104
4.3 Classification of Data structures 105
4.3.1 Primitive Data structure 105
4.3.2 Operations on primitive data structures 106
4.3.3 Non-primitive Data structures 106
4.3.4 Linear data structure 107
4.3.5 Non-Linear data structure 107
4.4 Operations on linear data structures 107
4.5 Arrays 107
4.5.1 Types of array Memory representation of data 108
4.5.2 One dimensional array 109
4.5.3 Memory representation one dimensional array 109
4.5.4 Basic operations on one-dimensional array 109
4.5.5 Traversing using one dimension array 110
4.5.6 Searching an element 111
4.5.7 Insertion of an element 114
4.5.8 Deletion of an element 116
4.5.9 Sorting the elements 118
4.5.10 Two dimension Array 119
4.6 Stacks 123
4.6.1 Introduction 123
4.6.2 Representation of stacks in memory 124
4.6.3 Operations on stacks 127
4.6.4 Applications of Stacks 128
4.7 Queues 133
4.7.1 Introduction 133
4.7.2 Types of Queues 134

DATA STRUCTURE

Logic gates

IX

4.7.3 Operations on queues 136
4.7.4 Memory representation of queues 136
4.7.5 Applications of Queues 138
4.8 Linked lists 139
4.8.1 Introduction 139
4.8.2 Types of linked list 139
4.8.3 Operations on single linked lists 141
4.9 Non-Linear data structure 153
4.9.1 Introduction 153
4.9.2 Trees 153
4.9.3 Graphs 155

Chapter 5 Review of C++ 158
5.1 Review of c++ language 158
5.2 Fundementals of c++ 160
5.3 Structure of c++ program 164
5.4 Libraray functions 164
5.5 Data types 165
5.6 Input and output operations 166
5.7 Control statements 167
5.8 Arrays 169
5.9 Functions 172
5.10 User-defined Functions 175
5.11 Structures 180

Chapter 6 181
6.1 Introduction 182
6.2 Basic concepts of OOP 183
6.2.1 Objects 183
6.2.2 classses 183
6.2.3 Data Abstraction 184
6.2.4 Data Encapsulation 184
6.2.5 Inheritance 184
6.2.6 Overloading 185
6.2.7 Polymorphism 185
6.2.8 Dynamic Biding 185
6.2.9 Message passing 185
6.3 Advantages of OOP over earlier programming methods 186
6.4 Limitations of OOP 186
6.5 Applications of OOP 186

UNIT B COMPUTING IN C++ 45 Hrs

Basic concepts of OOP

X

Chapter 7 189
7.1 Introduction 190
7.2 Definition and declaration of classes and objects 191
7.3 Access specifiers (scope of class & its members) 193
7.3.1 Private 193
7.3.2 Public 193
7.3.3 Protected 194
7.4 Members of the class 194
7.5 Member functions 196
7.5.1 Member functions inside class definition 196
7.5.2 Member functions out side class definition 196
7.6 Defining objects of a class 198
7.7 Arrays as members of class 199
7.8 Array of objects 200
7.9 Objects as function arguments 202
7.10 Diffrences between structures and classes in C++ 204

Chapter 8 207
8.1 Introduction 208
8.2 Need for function overloading 208
8.3 Definition and declaration of overloaded function 208
8.4 Restrictions on overloaded function 209
8.4.1 Calling over loaded functions 209
8.5 Other functions in a class 210
8.5.1 Inline function 211
8.5.2 Friend function 212

Chapter 9 216
9.1 Introduction 217
9.2 Declaration and definition of constructor 218
9.3 Types of constructors 219
9.3.1 Default constructor 219
9.3.2 Parameterized constructor 221
9.3.3 Copy constructor 224
9.4 Constructor overloading 227
9.5 Destructor 228

Chapter 10 232
10.1 Introduction 233
10.2 Base class 233
10.3 Derived class 233
10.3.1 Defining derived class 233
10.3.2 Public derived class 234
10.3.3 Private derived class 235

Inheritance(Extending classes)

Constructor and Destructor

Function overloading

Classes and objects

XI

10.3.4 Protected dervied class 235
10.4 Visibility modes 235
10.4.1 Public inheritance 235
10.4.2 Private inheritance 236
10.4.3 Protected inheritance 236
10.5 Levels of inheritance 236
10.5.1 Single level inheritance 237
10.5.2 Multilevel inheritance 237
10.5.3 Multiple inheritance 238
10.5.4 Hierarchical inheritance 238
10.5.5 Hybrid inheritance 238
10.6 Relationship between classes 240
10.6.1 Virtual base classes 240
10.6.2 Abstract classes 242
10.6.3 Constructors in Derived classses 242
10.6.4 Destructors in Dervied classes 243

Chapter 11 247
11.1 Introduction 248
11.2 Memory representation of pointers 248
11.3 Declaration & initialization of pointers 249
11.4 Address operator 249
11.5 Pointer operator(indirection operator) 250
11.6 Pointer arithmetic 250
11.7 Pointer and arrays 251
11.8 Arrays of pointers 252
11.9 Pointers to strings 253
11.10 Pointer as function parameters 253
11.11 Pointer and structures 254
11.12 Memory allocation of pointers(static and dynamic) 254
11.12.1 Static allocation of memory 254
11.12.2 Dynamic allocation of memory-new and delete 254
11.13 Free store (heap memory) 256
11.14 Memory leak 256
11.15 Self Referential Structure 256
11.16 Pointers and functions 257
11.16.1 Invoking functions by passing the references 257
11.16.2 Invoking functions by passing the pointers 258
11.17 Memory comes and memory goes 260
11.18 Pointer and objects 260
11.19 this pointer 261

Pointers

XII

Chapter 12 266
12.1 Introduction 267
12.2 Header files(fstream.h) 268
12.2.1 Classes for file stream operation 269
12.3 Types of data files 270
12.3.1 Text file 270
12.3.2 Binary file 270
12.4 Opening & closing files 270
12.4.1 Opening file using constructor 270
12.4.2 Using open() 271
12.4.3 File modes -In ,out, app modes 272
12.4.4 closing files 273
12.5 Input and output operation in text files 273
12.6 Detecting end of file 275
12.7 File pointers -tellg(), tellp(), seekg(), seekp() functions 275

Chapter 13 282
13.1 Introduction 283
13.2 Appllications of database 284
13.3 Origin of Data : Facts,data,information,features 284
13.4 Evolution of database 285
13.5 Data processing cycle 286
13.6 Data base terms 287
13.7 Data Types in DBMS 288
13.8 DBMS 289
13.9 Data abstraction 291
13.10 Data independence 293
13.11 Database Model 298
13.11.1 Hierarchial data model 299
13.11.2 Network data Model 300
13.11.3 Relational Data model 301
13.12 Codd's Rules 302
13.13 Logical data concepts 304
13.13.1 Normalization 304
13.13.2 Entity-relationship Model 308
13.13.3 Cardinality 313
13.14 KEYS-Primary,Secondary,Candidate,Foreign, Alternate 315
13.15 Relational Algebra 318
13.16 Data warehousing 327
13.17 Data Mining 329

UNIT C LARGE DATA, DATABASE & QUERIES 20 HRs
Database Concepts

Data file handling

XIII

Chapter 14 333
14.1 Introduction 334
14.1.1 SQL Architecture 335
14.2 SQL commands 337
14.2.1 DDL 337
14.2.2 DML 338
14.3 Data types in SQL 339
14.3.1 Exact Numeric data types 339
14.3.2 Floating point Numeric data types 339
14.3.3 Date and time data types 339
14.3.4 Character and string data type 340
14.4 Operators in SQL 340
14.4.1 SQL arithemetic operators 340
14.4.2 Comparison operators 341
14.4.3 Logical operators 341
14.5 SQL expressions 342
14.5.1 SQL Boolean Expression 342
14.5.2 SQL Numeric expression 343
14.5.3 Date expression 343
14.6 SQL constraints 344
14.6.1 Primary key 344
14.6.2 Foreign Key or Referential integrity 346
14.6.3 Not NULL constraint 347
14.6.4 Unique Key 347
14.6.5 Check constraint 348
14.7 Implementation of SQL Commands 348
14.7.1 Create table statement 348
14.7.2 Alter 349
14.7.3 Insert Statement 350
14.7.4 Select statement 351
14.7.5 AND operator 353
14.7.6 OR operator 354
14.7.7 Update statement 354
14.7.8 Delete Statement 356
14.7.9 Order by 357
14.7.10 Group by 357
14.7.11 Distinct statement 359
14.7.12 Join 361
14.7.13 NULL 363
14.8.1 Create View 365
14.9.1 Commit 365

Structured Query Language

XIV

14.10 DCL commands 365
14.10.1 Grant command 365
14.10.2 Revoke command 366
14.11 Built-In Function 368
14.11.1 Single row function 368
14.11.2 Group function 368

Chapter 15 375
15.1 Introduction 376
15.1.1 Networking Goals 376
15.1.2 Need of networking 376
15.2.1 Arpanet 376
15.2.2 OSI reference Model 377
15.2.3 TCP/IP 378
15.3.1 HTTP 380
15.3.2 FTP 381
15.3.3 SLIP 381
15.4.1 Internet 381
15.4.2 Interspace 382
15.4.3 Elementary terminologies of networking 382
15.4.4 Types of services 382
15.4.5 Types of networking 383
15.4.6 Networking Topologies 386
15.4.7 Transmission medium 393
15.4.8 Switching techniques 398
15.4.9 Communication modes 399
15.4.10 Networking devices 400
15.5.1 Gateway 403
15.6.1 SIM 404
15.7.1 GPRS 406
15.8.1 Applications of Networking 410
15.8.2 Wi-fi 411
15.9.1 Network security 411
15.10.1 Cookies 413
15.11.1 Virus 413

Chapter 16 416
16.1 Introduction 416
16.1.2 Free software 417
16.1.3 Open source software 417
16.1.4 OSS and FLOSS 418

Networking Concepts

Internet and Open source concepts

UNIT D ADVANCED CONCEPTS IN COMMUNICATION TECHNOLOGY 20Hrs

XV

16.1.5 GNU 419
16.1.6 FSF 419
16.2.1 OSI 419
16.2.2 W3C 419
16.2.3 Proprietary software 419
16.2.4 www 420
16.2.5 Telnet 420
16.2.6 Web browser 420
16.2.7 Webserver 420
16.2.8 Webpage 421
16.3 URL and domain 421
16.4 E-Commerce 422
16.4.1 Types of E-commerce 424
16.4.2 Advantages of e-commerce 425
16.5 IPR issues 426

Chapter 17 428
17.1 Introduction 429
17.1.1 HTML structure 430
17.2.1 Advanced HTML tags/commands 432
17.2.2 Text formating 432
17.2.3 Resizing text 432
17.2.4 Example for resizing text 433
17.2.5 Text layout 434
17.2.6 Number listing 435
17.2.7 Links 437
17.2.8 Inserting images 438
17.2.9 Background 439
17.2.10 Background color and fixed images 440
17.2.11 Tables 440
17.2.12 Frames 442
17.2.13 Forms 443
17.2.14 Settings and text fields 444
17.3.1 Web Hosting 447
17.3.2 Domain registration 448
17.4.1 Uploading HTML file 449
17.5.1 XML 450
17.6.1 DYNAMIC HTML 451
17.7.1 Web scripting 453

Model Question Paper 455

Web designing

XVI

DESIGN OF QUESTION PAPER

CLASS: SECOND PUC

SUBJECT: COMPUTER SCIENCE (41)

Time : 3Hours 15 Minutes(of which minutes for reading the questions Paper).

Max.Marks:70

The weightage of the distribution of marks over different dimensions of the
question paper shall be as follows:

Weightage to Objectives:

Objective Weightage Marks
Knowledge 30% 31
Understanding 40% 43
Application 20% 21
Skill 10% 10
Total 100% 105

Weight age to Content/Subject units: Computer Science(41)
Unit Description VSA(1

Mark)
SA(2

Marks)
LA(3

Marks)
E(5Marks) Total

Marks
A
35
Hrs

BACKDROP OF COMPUTERS 3 2 3 3 31

B
45Hrs

COMPUTING IN C++ 2 3 2 5 39

C
20Hrs

LARGE DATA, DATABASE &
QUERIES

1 2 1 2 18

D
20Hrs

ADVANCED CONCEPTS IN
COMMUNICATION
TECHNOLOGY

4 1 2 1 17

Total Marks 10 16 24 55 105

120
Hrs

Total No of Questions to be
answered

1X10=10 2X5/8=10 3X5/8=15 5X7/11=35 70/37

XVII

UNIT DESCRIPTION VSA
(1 Mark)

SA
(2 Marks)

LA
(3 Marks)

E
(5 Marks)

Total
Marks

A
35 Hrs

BACKDROP OF
COMPUTERS 3 2 3 3 31

Chapter 1
5 Hrs

Typical
configuration of
Computer system

1 ------ 1 ------- 4

Chapter 2
10 Hrs

Boolean algebra
-------- 2 ----- 1 09

Chapter 3
5 Hrs

Logic Gates 1 ------ 1 ------- 04

Chapter 4
15 Hrs

Data structures 1 ------ 1 2 14

B
45Hrs

COMPUTING IN
C++ 2 3 2 5 39

Chapter 5
3 Hrs

Review of C++
covered in First
PUC

------- ------- ------- ------ ----

Chapter 6
4 Hrs

OOP concepts ---- 1 ---- 1 07

Chapter 7
6 Hrs

Classes and objects 1 ------ ----- 1 06

Chapter 8
3 Hrs

Function
Overloading

------ ------ ------ 1 05

Chapter 9
8 Hrs

Constructors and
Destructors

---- 1 ---- 1 07

Chapter 10
8 Hrs

Inheritance ------ ----- ------ 1 05

Chapter 11
7 Hrs

Pointers 1 ----- 1 ------ 04

Chapter 12
6 Hrs

Data File handling ------- 1 1 ------ 05

C
20Hrs

LARGE DATA,
DATABASE &
QUERIES

1 2 1 2 18

Chapter 13
8 Hrs

Database concepts 1 1 1 1 11

Chapter 14
12 Hrs

SQL commands ------- 1 ----- 1 07

D
20Hrs

ADVANCED
CONCEPTS IN
COMMUNICATIO
N TECHNOLOGY

4 1 2 1 17

Chapter 15
10 Hrs

Networking
Concepts 2 1 ---- 1 9

Chapter 16
5 Hrs

Internet and Open
source concepts 1 ---- 1 ----- 4

Chapter 17
5 Hrs

Web Designing
1 ----- 1 ------ 4

Total Marks
10 16 24 55 105

Total No of
Questions to be
answered

1X10=10 2X5/8=10 3X5/8=15 5X7/11=35 70/37

XVIII

List of programs to be conducted in practical sessions
 Section A C++ and Data structure
1. Write a program to find the frequency of presence an element in an array.
2. Write a program to insert an element into an array at a given position.
3. Write a program to delete an element from an array from a given position
4. Write a program to sort the elements of an array in ascending order using

insertion sort.
5. Write a program to search for a given element in an array using Binary

search method.
6. Write a program to create a class with data members principle, time and

rate. Create member functions to accept data values to compute simple
interest and to display the result.

7. Write a program to create a class with data members a, b, c and member
functions to input data, compute the discriminant based on the following
conditions and print the roots.

 If determinant=0, print the roots that are equal
 If the discriminant is>0, print the real roots
 If the discriminant<0, print that the roots are imaginary

8. Program to find the area of a square/rectangle/triangle using function
overloading.

9. Program to find the cube of a number using inline functions.
10. Write a program to find the sum of the series 1+ x + x2 + … + xn using

constructors.
11. Create a base class containing the data members roll number and name.

Also create a member function to read and display the data using the
concept of single level inheritance. Create a derived class that contains
marks of two subjects and total marks as the data members.

12. Create a class containing the following data members register No., name
and fees. Also create a member function to read and display the data
using the concept of pointers to objects.

13. Write a program to perform push items into the stack.
14. Write a program to pop elements from the stack.
15. Write a program to perform enqueue and dequeue.
16. Write a program t o create a linked list and appending nodes.

Section B SQL
17. Generate the Electricity Bill for one consumer
18. Create a student database and compute the result.
19 Generate the Employee details and compute the salary based on the
 department.
20. Create database for the bank transaction.

Section C HTML
21. Write a HTML program to create a study time-table.
22. Create an HTML program with table and Form.

Typical configuration of computer system 1

Chapter 1

Typical Configuration of Computer system

 Objectives

 To understand various units of a computer system
 To recognize various components of the motherboard
 To analyze the configuration of todays' computer system
 Insight to assemble a computer system

Typical configuration of computer system2

1.1 Introduction:

The computer has evolved as a result of man’s search for fast, accurate
calculating devices. Computers have thus become an integral part of everyone’s
life and useful in many ways by increasing man’s efficiency and enhancing his
abilities.

Computers are used to perform various tasks in different fields like science,
engineering, business, education, training, entertainment. The computer works
at high speed, can handle large volumes of data with greater accuracy and have
the ability to carry out a specified sequence of operations without human
intervention.

The term computer basically includes a series of electrical and electronic
circuits together to form a single unit to perform the required operations for the
user. The computer has no intelligence of its own and thus cannot perform any
task by itself. Thus it requires the hardware, software, data and users which
form the computer system to perform the different operations.

The related terms and definitions in the study of computer systems are:

 Hardware consists of physical devices of the computer such as
keyboard, monitor, printer, processor and motherboard.

 Software consists of set of instructions called programs that instructs
the computer the tasks to be performed and how it should be
performed.

 Data are values or raw facts which are provided as input to the
computer, then processed to generate some meaningful information.

 Users are people who write computer programs or interact with the
computer.

 Review of block diagram of Computer system

The computer system comprises of four main units which can be seen in
the block diagram given below. They are,

1. Input Unit,
2. Central Processing Unit (CPU),

i. Control Unit (CU),
ii. Arithmetic Logic Unit (ALU),
iii. Registers,

3. Storage Unit, and
4. Output Unit

Arithmetic and
 logic unit

Central processing unit

Control unit

Registers

 Central processing unit

Typical configuration of computer system 3

1. Input Unit

The user interacts with the computer via the input unit. The Input unit
accepts data from the user and converts it into a form that is understandable by
the computer. The input data can be characters, word, text, sound, images,
document, etc. The input is provided to the computer using input devices like
keyboard, mouse, joystick, trackball, microphone, scanner etc.

2. Central Processing Unit (CPU)

CPU controls, coordinates and supervises the operations of the computer. It is
also responsible for processing of the input data. CPU consists of Arithmetic
Logic Unit (ALU) and Control Unit (CU).CPU also has a set of registers for
temporary storage of data, instructions addresses and intermediate results of
calculation.

a. ALU performs all the arithmetic and logic operations on the input data.

b. CU controls the overall operations of the computer i.e. it checks the
sequence of execution of instructions, controls and co-ordinates the overall
functioning of the units of computer.

c. Registers are high speed storage units within the CPU, but have least
storage capacity. Registers are not referenced by their address, but are directly
accessed and manipulated by the CPU during instruction execution. They are
referred to as the CPU’s working memory as they are used to store data,
instructions, addresses and intermediate results of processing.

Typical configuration of computer system4

3. Storage Unit

There are two types of memory associated with storage unit. They are:
primary memory and secondary memory.

The primary memory also called as the main memory of the computer,
consists of RAM (Random Access Memory) and ROM (Read Only Memory)
memories. Main memory stores the data, instructions, intermediate results and
output, temporarily, during the processing of data. The input data that is to be
processed is brought into the main memory before processing. The instructions
required for processing of data, any intermediate results are also stored in the
main memory. The output is stored in main memory before being transferred to
the output device. CPU can work with the information stored in the main memory.

The secondary memory also called as the external memory of the computer
stores permanently the data, programs and the output. Magnetic disks, magnetic
tapes, optical disks and flash drives are examples of secondary memory.

4. Output Unit

The output unit provides the processed data i.e. the result generated after
processing of data. The output may be in the form of text, sound, image, document,
etc. The computer may display the output on a monitor, sends output to the
printer or plotter for printing, and also sends sound output to the speaker, etc.

1.2 Motherboard

The computer is built up around a motherboard. The motherboard is the
most important part of any computer. It is a large Printed Circuit Board (PCB)
having many chips, ports, controllers and other electronic components mounted
on it.

1.2.1 Introduction to Motherboard

The motherboard or the system board is the main circuit board inside a
computer. Every component inside the computer has to communicate through
the motherboard, either by directly plugging into it or by communicating through
one of the motherboard ports. The motherboard provides a platform for all the
components and peripherals to communicate with each other.

The electronic components mounted on the motherboard are processor,
memory chips, interfaces, various ports and all expansion cards. The motherboard
is the hub, which is used to connect all the necessary components of a computer.
The RAM, hard drive, disk drives and optical drives are all plugged into interfaces
on the motherboard.

The motherboard may be characterized by the form factor, chipset and
type of processor socket used.

Typical configuration of computer system 5

 Form factor refers to the motherboard’s geometry, dimensions,
arrangement and electrical requirements. Different standards have
been developed to build motherboards, which can be used in different
brands. Advanced Technology Extended (ATX)) is the most common
design of motherboard for desktop computers.

 Chipset controls the majority of resources of the computer. The
function of chipset is to coordinate data transfer between the various
components of the computer. As the chipset is integrated into the
motherboard, it is important to choose a motherboard, which includes
a recent chipset, in order to maximize the computer’s upgradeability.

 The processor socket may be a rectangular connector into which
the processor is mounted vertically, or a square shaped connector
with many small connectors into which the processor is directly
inserted.

1.2.2 Types of Motherboard

There are various types of motherboards available depending on the
processors that are used. Some of them are XT, AT, Baby AT and ATX
motherboards.

XT Motherboard:

XT stands for eXtended Technology. These are all old model motherboard.
In these motherboards, we find old model processor socket LIF (Low Insertion
Force) sockets, ram slots DIMM and ISA (Industry Standards Architecture) slots,
12 pin power connector and no ports.

They have slot type processors, DIMM memory modules, ISA slots for add-
on card, and no ports. There are connectors and add-on cards for ports.

Example: Pentium-I, Pentium-MMX, Pentium -II and Pentium-II Processors.

AT Motherboard:

AT stands for Advanced Technology. Advanced Technology Motherboards
have PGA (Pin Grid Array) Socket, SDRAM slots, 20 pin power connector PCI
slots and ISA slots. We find the above components on AT motherboards.

Example: Pentium III Processors

Baby AT Motherboard:

Baby AT Motherboards have the combination of XT and AT. They have slot
type processor sockets and PGA processor sockets, SDRAM slots and DDRRAM
slots, PCI slots and ISA slots, 12 pin power connector and 20 pin power connector
and ports.

Example: Pentium-III and Pentium-IV

Typical configuration of computer system6

ATX Motherboard:

ATX stands for Advanced Technology eXtended. Latest motherboards all are
called as ATX motherboards, designed by ATX form factor. In this motherboard,
we find MPGA processor sockets, DDRRAM slots, PCI slots, AGP slots, Primary
and secondary IDE interfaces, SATA connectors, 20 pin and 24 pin ATX power
connector and ports.

Example: Pentium-IV, Dual Core, Core 2 Duo, Quad Core, i3, i5 and i7 processors.

1.2.3 Components of Motherboard

The motherboard components are:

 Processor (CPU)
 BIOS
 CMOS
 Slots
 Disk Controllers
 I/O Ports and Interfaces
 BUS

Figure 1.2 Motherboard components

Processor (CPU)

The processor or CPU is the main component on the motherboard and is
called the brain of the computer. The CPU consists of Arithmetic Logic Unit
(ALU) and Control Unit (CU). CPU also has a set of registers which are temporary
storage areas for holding data, and instructions. ALU performs the arithmetic
and logic operations on the data. CU is responsible for organizing the processing

Typical configuration of computer system 7

of data and instructions. CU controls and coordinates the activity of the other
units of computer.

During processing the CPU gets data and instructions from the memory
and interprets the program instructions and performs the arithmetic and logic
operations required for the processing of data. It then sends the processed data
to the memory.

The clock speed of a CPU is defined as the frequency with which a
processor executes instructions or the data that is processed. Higher clock
frequencies mean more clock ticks per second. The computer’s operating speed
is linked to the speed of the system clock. The clock frequency is measured in
millions of cycles per second or megahertz (MHz) or gigahertz (GHz) which is
billions of cycles per second. A CPU’s performance is measured by the number
of instructions executed per second, i.e. MIPS or BIPS. PCs presently come with
a clock speed of more than1GHz.

In Windows OS, the System Properties dialog box is selected to see
the processor name and clock frequency.

The diagram of the CPU is given in

The CPU is fabricated as a single Integrated Circuit (IC) chip and is also known
as the microprocessor. This tiny chip contains the entire computation engine.
The microprocessor is plugged into the motherboard of the computer. Intel is
one of the leading processor manufacturers in the world today.

General Structure of motherboard

The primary function of the processor is to execute the instructions given
to it and to produce the results. It fetches instructions and data from the primary
memory and performs the required operations. This movement of data between

Figure 1.3 CPU with Buses and Controllers

Typical configuration of computer system8

the processor and memory is established by a communication path called bus.
The processor contains number of special purpose registers in addition to ALU
which is responsible for doing calculations. The different components inside the
processor can be seen in the figure 1.4.

Figure 1.4 Schematic diagram of Motherboard

CPU

Northbridge
(Memory

controller hub)

Clock
Generator

Graphics
card slot

High speed
graphics bus
(AGP or PCI

Express)

PCI Bus

PCI Slots

Southbridge
(I/O controller

hub) IDE
SATA
USB

Ethernet
Audio Codec

CMOS Memory

Internal
Bus PCI

Bus

Memory
Bus

Memory
Slots

Cables and
ports leading

off-board

Onboard
graphics
controller

Flash ROM
(BIOS)

Super I/O
Serial Port

Parallel Port
Floppy Disk

Keyboard
Mouse

LPC Bus

Typical configuration of computer system 9

Figure 1.5 is the replica of the motherboard structure, except that it
displays the actual devices connected to the CPU.

Figure 1.5 Overview of the motherboard structure

The north bridge or host bridge is one of the two chips in the core
logic chipset on a PC motherboard, used to manage data communications
between the CPU and motherboard. It is supposed to be paired with a second
support chip known as a south bridge.

North Bridge or north Chipset is responsible for control of high speed
components like CPU, RAM, and Video Card. Chipset BUS speed control and
switch control data, ensuring data back and forth between the components is a
smooth and continuous, fully exploit the speed of the CPU and RAM. It can be a
chipset like the traffic in an intersection, as drivers switch traffic lights to allow
each data stream passes through a period of time, while speed control is a BUS
different directions of the intersection, the vehicle must run on a specified speed.

South Bridge or south Chipset is similar as north chipset, but the south
bridge driver chipset components slower as: Sound Card, Net Card, hard disk,
CD ROM drive, USB port, SIO and BIOS IC etc.

BIOS (Basic Input Output System)

BIOS is a small chip on the motherboard that holds a set of instructions to
load the hardware settings required to activate various devices like keyboards,
monitors or disk drives. The BIOS runs when the computer is switched ON. It
performs a Power On Self Test (POST) that checks if the hardware devices are
present and functioning properly. BIOS invoke the bootstrap loader to load the

Typical configuration of computer system10

operating system into memory. Most new PCs come with Flash BIOS-these BIOS
can be software upgraded to support new devices.

CMOS (Complementary Metal Oxide Semiconductor)

CMOS is a type of memory chip
to store the date, time and system
setup parameters. These
parameters are loaded every time
the computer is started. That is
why we observe, when the
computer is turned ON, the system
still displays the correct clock time.
BIOS as well as CMOS are kept
powered by a small lithium Ion
battery located on the motherboard
It can be seen in the figure 1.6
below.

Figure 1.6 CMOS battery

Slots

A slot is an opening in a computer where you can insert a printed circuit
board. Slots are often called expansion slots because they allow you to
expand the capabilities of a computer.

 Expansion Slots These slots are located on the motherboard. The
expansion cards are inserted in the expansion slots. These cards
give the computer new features or increased performance. There
are several types of slots:

 ISA (Industry Standard Architecture) slot – ISA slot is used to
connect modem and input devices.

 PCI (Peripheral Component Inter Connect) slot – PCI slots are
used to connect graphics accelerator cards, sound cards, internal
modems or SCSI cards. They are much faster than ISA cards.

 AGP (Accelerated Graphic Port) slot – AGP slot is meant to provide
faster access to a graphics accelerator card, thus enhancing the
visual experience for the user. All Celeron and Pentium-III
motherboards come with an AGP slot.

 RAM slot – RAM slot is used to install memory and is of two types.
They are SIMM (Single Inline Memory Module) slot and DIMM (Dual
Inline Memory Module) slot. The original Pentium systems typically
have either four 72-pin SIMM slots, or two 168-pin DIMM slot to
install memory.

Typical configuration of computer system 11

 Processor slot – Processor slot is used to insert the processor chip
which is the largest chip on the motherboard. It can be identified,
as a heat sink or fan is located on top of it.

 PCI Express slot – It has faster bus architecture than AGP and PCI
buses.

 PC Card – It is used in laptop computers. It includes Wi-Fi card,
network card and external modem.

Disk Controllers

Disk controller is the circuit that enables the CPU to communicate with
a hard disk, floppy disk or other kind of disk drive. Modern disk controllers are
integrated into the disk drive.

Hard disk controller (HDC)

The hard disk controller is the interface that enables the computer to read
and write information to the hard drive. Today, hard drives have the controller
built on to them.

The first standard hard disk controller developed is the IDE standard drive
also known as Advanced Technology Attachment (ATA). This drive is attached to
the motherboard by means of 40-wire ribbon cable. The IDE standard also allows
two drives to connect in a daisy-chain fashion. The enhanced IDE (EIDE) standard
followed shortly. The EIDE standard is a specification that allows four drives to
be connected to a dual channel controller.

Floppy disk controller (FDC)

A floppy-disk controller is the interface that directs and controls reading
from and writing to a computer’s floppy disk drive (FDD). The floppy disk
controller usually performs data transmission in direct memory access (DMA)
mode.

A single floppy-disk controller board supports a 33-wire ribbon cable and
can connect up to four floppy disk drives to the motherboard. The controller is
linked to the system bus of the computer and appears as a set of I/O ports to
the CPU.

I/O Ports and Interfaces

The ports and interfaces are used to connect external devices like printers,
keyboards or scanners to the computer, which gets connected to the computer’s
motherboard. These ports and interfaces are found on the rear side of a computer.
There are several types of ports like serial port, parallel port, USB port, and AGP
port etc. which is given in figure 1.7.

Typical configuration of computer system12

Serial port
Serial port is also known as

communication (COM) ports or RS-
232-c ports. They are used for
connecting communication devices
like mouse and modem. This port
transfers data serially one bit at a
time. It needs a single wire to transmit
1 bit of data. Hence it takes 8 times
longer to transfer a byte. There are
two varieties of Com ports, the 9-pin
ports and 25-pin ports.

Parallel port:

Parallel ports are used to
connect external input/output
devices like printers or scanners. This
port facilitates the parallel transfer of data, usually one byte (8-bits) at a time.
Parallel ports come in the form of 25-pin connector.

IDE (Integrated Digital Electronics) port

IDE devices like CD-ROM drives or hard disk drives are connected to the
motherboard through the IDE port.

USB (Universal Serial Bus) port

USB port gives a single, standardized, easy-to-use
way to connect a variety of newer peripherals to a
computer. These devices include printers, scanners,
digital cameras, web cameras, speakers etc. USB
supports a data speed of 12 megabits per second,
supporting up to 127 devices. USB is a plug- and-play
interface between a computer and add-on devices. i.e. a
new device can be added to the computer without adding
an adapter card or even turning the computer off. The
figure 1.8 shows the symbol used to represent a USB
port.

PS-2 port (Personal System-2 port)

The PS-2 port was developed by IBM to interface keyboards and pointing
devices like mouse, trackballs and touch pads. This port is also called as mouse
port as most computers now have a PS-2 port to connect a mouse. This port uses
synchronous serial signals to communicate between the keyboard and a mouse
to the computer.

Figure 1.7 Types of ports in the motherboard

Figure 1.8 USB port

Typical configuration of computer system 13

AGP (Accelerated Graphics Port) port

The AGP port is used to connect to graphic card that provides high-speed
video performance typically required in games and other multimedia applications.

SCSI (Small Computer System Interface) port

This port is used for adding external devices such as high-speed hard-
disks, high-end scanners and CD-ROM drives. It does fast data transfers and
I-O operations. These ports are expensive, as they provide faster access at very
high speeds and need separate dedicated adapters to function.

VGA (Visual Graphics Adaptor) port connects monitor to a computer’s video
card. It has 15 holes and is similar to serial port connector, but serial port
connector has pins, this has holes.

Power Connector has three-pronged plug. It connects to the computer’s power
cable that plugs into a power bar or wall socket.

Firewire Port transfer large amounts of data at very fast speed. It connects
camcorders and video equipment’s to the computer. The data travels at 400 to
800 megabits per second. It is invented by Apple. The three variants of firewire
port are 4-Pin firewire 400 connector, 6-Pin firewire 400 connector and 9-Pin
firewire 800 connector

Modem (Modulator demodulator) connects a PC’s modem to the telephone
network.

Ethernet Port connects to a network and high speed Internet. It connects
network cable to a computer. This port resides on an Ethernet Card. Data travels
at 10 megabits to 1000 megabits per second depending upon the network
bandwidth.

Game Port connects a PC to a joystick. It is now replaced by USB.

DVI (Digital Video Interface) port connects a Flat panel LCD monitor to the
computer’s high-end video graphic cards. It is very popular among video card

manufacturers.

Sockets are used to connect microphone, speakers
to sound card of the computer.

MIDI (Musical Instrument Digital Interface) port is
a system designed to transmit information between
electronic musical instruments. A MIDI musical

keyboard can be attached to a computer and allow a performer to play music
that is captured by the computer system as a sequence of musical notes with

Figure 1.9 MIDI port

Typical configuration of computer system14

the associated timing (instead of recording digitized sound waves). The port
and interface are required for connectivity.

BUS

The different components of computer, i.e. CPU, I/O unit, and memory
unit are connected to each other by a bus. The data, instructions and the signals
are carried between the different components via a bus.

The functional features of a bus are:

 A bus is a set of wires and each wire can carry one bit of data.

 A bus width is defined by the number of wires in the bus.

A computer bus can be divided into two types: Internal bus and External
bus.

CPU Memory Input and
Output

Control bus

Address bus

S
ys

te
m

 b
u

s

Data bus

 A bus is a collection of parallel wires that form a pathway to carry
address, data and control siagnals

Figure 1.10 MIDI interface

Figure 1.11 Bus structure

Typical configuration of computer system 15

 The Internal bus connects major computer components like,
processor, memory and I/O. It is also called as System bus.

 The External bus connects the different external devices,
peripherals, expansion slots, I/O ports and drive connections to the
rest of computer. The external bus allows various devices to be
attached to the computer, thus expanding the computer’s
capabilities. It is also called as Expansion bus and is slower than
the system bus.

A system bus or expansion bus comprise of three kinds of buses: data
bus, address bus and control bus shown ins figure 1.11.

 Data bus provides a path to transfer
data between CPU and memory. The data
bus may consist of 32, 64, 128 lines of wire.
The number of lines is referred to as the
width of the data bus. The data bus width
affects the speed of computer. In a 16-bit
line bus can transfer 16 bits of data. The
bus speed is measured in MHz and higher
the bus speed, faster the processer speed.

 Address bus connects CPU and RAM
with a set of lines of wire similar to data
bus. The address bus width determines the
maximum number of memory locations the

computer can address. Pentium Pro, II, III, IV have 36-bit address
bus that can address 236 bytes or 64 GB of memory. PCs presently
have a bus speed varying from 100 MHz to 400 MHz.

 Control bus is used to control the access to and the use of the data
and address lines.

1.3 Memory

A computer memory refers to the electronic storing space for instructions
and data where the computer’s processor can reach quickly. The computer storage
refers to permanent computer memory that stores all the data files and
instructions even after the computer system is turned off.

A computer processor has very limited memory. Thus it has to rely on
other kinds of memories to store data, instructions and results.

The memory in a computer can be of two basic types: Internal memory
and Secondary memory shown in figure 1.13

 Internal memory
Internal memory includes registers, cache memory and primary memory

which can be directly accessed by the processor. It is used for temporary storage

Figure 1.12 I-O Buses

Typical configuration of computer system16

of data and instructions on which
the processor is currently working.
This memory is the fastest among
all other memories and is expensive.
Therefore a very small part of
internal memory is used in the
computer system. The features of
internal memory are:
 Temporary storage
 Limited storage capacity
 Fast access
 High cost

 Figure 1.13 Memory accessing levels of the processor

Registers

The registers are high speed temporary storage areas located inside the
CPU. After the CPU gets the data and instructions from the cache or RAM, the
data and instructions are moved to registers for processing. These registers work
under the direction of the control unit (CU) to accept, store and transfer
instructions or data, and perform arithmetic or logical comparisons at high speed.
Since CPU uses registers for the processing of data, the number of registers in a
CPU and the size of each register affect the power and speed of a CPU.

Cache memory

The cache memory is a very high speed memory placed in between RAM
and CPU. Cache memory stores data that is used more often, temporarily and
makes it available to CPU at a fast rate. Hence it is used to increase the speed of
processing. During processing, the CPU first checks cache for the required data.
If data is not found in cache, then it looks in the RAM for data.

Regs L1 cache L2 cache

Processor

Memory Disk

Figure 1.14 Illustration of cache memory

The Cache memory is a high speed memory available inside CPU
to speed up access of data and instructions stored in RAM memory.

Typical configuration of computer system 17

Cache memory is very expensive, so it is smaller in size. Generally,
computers have cache memory of sizes 256 KB to 2MB.

Cache memory is built into the processor, and may also be located next to
it on a separate chip between CPU and RAM. Cache built into the CPU is faster
than separate cache, almost at the speed of the microprocessor itself. However,
separate cache is roughly twice as fast as RAM.

The CPU has a built-in Level1 (L1) cache and Level2 (L2) cache, as shown
in figure 1.14 below. In addition to the built-in L1 and L2 cache, some CPUs
have a separate cache chip on the motherboard called Level3 (L3) cache. These
days, high-end processor comes with built-in L3 cache, like in Intel core i7. The
L1, L2 and L3 cache store the most recently executable instructions, the next
ones and the possible ones, respectively. Typically, CPUs have cache size varying
from 256KB (L1), 6MB (L2), to 12MB (L3) cache.

Primary memory

Primary memory is also known as main memory. This memory is of two
types: Random Access Memory (RAM) and Read Only Memory (ROM)

 RAM temporarily stores the computer’s operating system, application
programs and current data so that the processor can reach them quickly. RAM
is a faster memory and volatile in nature. i.e. when the power is switched off, the
data in this memory is lost.

 ROM is a small memory, which stores the boot firmware (called BIOS).
BIOS hold enough information to enable the computer to check its hardware
and load its operating system into its RAM at the time of system booting. ROM is
non-volatile in nature. i.e. even when the computer is switched off, the contents
of ROM remains available.

Types of RAM

There are different types of RAM, depending on the technology used to
construct a RAM. Some of the common types are:

DRAM or Dynamic RAM is the most common type of memory chip. DRAM
is mostly used as main memory, since it is small and cheap. It uses transistors
and capacitors. The transistors are arranged in a matrix of rows and columns.
The capacitor holds the bits of information 0 and 1. The transistor and capacitor
are paired to make a memory cell. The transistor acts as a switch that lets the
control circuitry on the memory chip read the capacitor or change its state.

DRAM must be refreshed continually to store information; otherwise it
will lose what it is holding. The refresh operation occurs automatically thousands
of times per second. DRAM is slow because the refreshing takes time. Access
speed of DRAM ranges from 50 to 150 ns.

Typical configuration of computer system18

SRAM or Static Random Access memory chip is usually used in cache
memory due to its high speed. SRAM uses multiple transistors (4 to 6), for each
memory cell. It does not have a capacitor in each cell. A SRAM memory cell has
more parts, so it takes more space on a chip than DRAM cell. It does not need
constant refreshing and therefore is faster than DRAM. SRAM is more expensive
than DRAM, and it takes up more space. It stores information as long as it is
supplied with power. SRAM is very fast and easier to use. The access speed of
SRAM ranges from 2 to 10ns.

SDRAM or Synchronous Dynamic Random Access Memory is a special
type of DRAM that is synchronized to the system clock. Since it is synchronized
to the CPU, it knows when the next cycle is coming, and has the data ready
when the CPU requests it. This increases efficiency by reducing CPU waiting
time.

DDR-SDRAM or Double-Data Rate SDRAM works the same way as does
ordinary SDRAM. Data transfer rate is double when compared to SDRAM.

1.4 Power Supply to a Computer System
Electric power is the main source of supply for the operation of electronic

components of a computer. Therefore continuous power supply is essential for
the computer to prevent them from failures, breakdown or shutdown. All
computers come with a power supply.

There are two types of power supply connected to a computer system.
They are, Switch Mode Power Supply (SMPS) and Uninterruptable Power Supply
(UPS).
 SMPS

An SMPS converts AC power from an electrical outlet to the DC power
needed by system components. An SMPS is a metal box in the rear of the system
that is attached to the computer chassis and to the system board. The power
supply contains the power card plug and a fan for cooling, because it generates
a lot of heat. An SMPS with a rating of more than 300 watts is needed; any less
will not reliably power modern components. In a PC the SMPS converts 230 volts
of AC to 5 to 12 DC volts and the wattage is around 180 to 300 watts, 450 watts
and 500 watts.
 UPS

An UPS is a power supply that includes a battery to maintain power in the
event of a power failure. Typically, an UPS keeps a computer running for several
minutes to few hours after a power failure, enabling us to save data that is in
RAM and then shut down the computer gracefully.

Many UPS now offer a software component that enables us to automatically
backup and shut down procedures in case there is a power failure while we are
away from the computer.
 Types of UPS
There are two types of UPS: Online UPS and Standby UPS

Typical configuration of computer system 19

Online UPS – An online UPS avoids those momentary power lapses by
continuously providing power from its own inverter, even when the power line is
functioning properly. Online UPS is more costly than Standby UPS. For a PC
with color monitor 15", requires an UPS of 500VA and for a PC with color monitor
17", requires an UPS of 600VA.
Standby UPS – A Standby UPS (or off-line UPS) monitors the power line and
switches to battery power as soon as it detects a problem. The switch over to
battery, however, can require several milliseconds, during which time the
computer is not receiving any power.

1.5 Assembling the Computer System

Computer configuration is the process of setting up your hardware
devices and assigning resources to them so that they work together without
problems. A properly-configured system will allow you to avoid nasty
resource conflict problems, and make it easier for you to upgrade your
system with new equipment in the future. An improperly-configured system
will lead to strange errors and problems, and make upgrading a nightmare.

Figure 1.15 Types of UPS

Offline UPS

Online UPS

Typical configuration of computer system20

 Activity

Basic components for assembling a new computer system

Figure 1.16 Components of Computer System

Typical configuration of computer system 21

Points to remember
 The motherboard is the main circuit board inside a computer which

provides a platform for all the components and peripherals to communicate
with each other.

 The motherboard may be characterized by the form factor, chipset and
type of processor socket used.

 The motherboard types are XT, AT, Baby AT and ATX motherboards.
 The motherboard components are Processor (CPU), BIOS, CMOS, Slots,

Disk Controllers, I-O Ports/Interfaces and BUS

 The processor is the main component on the motherboard and is called
the brain of the computer.

 The clock speed of a CPU is defined as the frequency with which a
processor executes instructions or the data is processed.

 The north-bridge and south bridge are the two chips in the core
logic chipset on a PC motherboard, used to manage data communications
between a CPU and a motherboard.

 BIOS is a small chip on the motherboard that holds a set of instructions
to load the hardware settings required to activate various devices like
keyboards, monitors or disk drives.

 CMOS is a type of memory chip to store the date, time and system setup
parameters.

 A slot also called as expansion slots, allows expanding the capabilities of a
computer to give the computer new features or increased performance.

 The disk controller is the circuit which enables the CPU to
communicate with a hard disk, floppy disk or other kind of disk drive.

 The ports and interfaces are used to connect external devices like
printers, keyboards or scanners to the computer, which gets connected
to the computer’s motherboard.

 A bus is a collection of parallel wires that form a pathway to carry
address, data, and control signals.

 A system bus or expansion bus comprises of data bus, address bus and
control bus

 A computer memory refers to the electronic storing space for
instructions and data where the computer’s processor can reach quickly.

 The parts of internal memory are registers, cache and primary memory-
RAM and ROM.

 Cache memory is a high speed memory available inside CPU in order to
speed up access to data and instructions stored in RAM memory.

 The types of RAM are DRAM, SRAM, SDRAM and DDR-SDRAM.
 Power supply is essential for the computer to prevent computers from

failures, breakdown or shutdown.
 Types of power supply connected to a computer system are SMPS or

UPS

Typical configuration of computer system22

Review questions
One marks questions:

1. What is a motherboard?
2. What is microprocessor?
3. What is the purpose of registers in the CPU?
4. How does the computer communicate with other devices?
5. What is system bus?
6. What is the function of control bus?
7. What is a data bus?
8. What is a port?
9. What is an interface?
10. Expand PCI.
11. How many bits of data are sent in a serial port?
12. Expand USB.
13. Give one feature of USB port.
14. What is meant by plug and play device?
15. Name any one USB device.
16. Is device controller a hardware or software?
17. What is cache memory?
18. Where is L1 cache located?
19. Where is L2 cache located?
20. Expand SDRAM.
21. Give the expansion of DDRRAM.
22. Expand SMPS.
23. What is the use of SMPS?
24. What is the approximate power consumed by a PC?
25. Expand UPS.
26. What is the use of UPS?
27. List the types of UPS.

Two marks questions:

28. Name any two types of motherboard.
29. Mention any two characteristics of motherboard.
30. Mention the components of motherboard.
31. Explain system bus.
32. What is data bus and address bus?
33. What is the purpose of expansion slot?
34. What is the purpose of AGP slot?
35. Name the different types of I/O ports.
36. Explain serial port.

Typical configuration of computer system 23

37. Explain parallel port.
38. Explain USB port.
39. What is meant by plug and play card?
40. What is the purpose of ports and buses?

Three marks question questions:

41. Explain the different components of motherboard.
42. Explain the characteristics of motherboard.
43. Explain the Schematic diagram of Motherboard.
44. Explain different types of I/O ports.
45. Give the features of USB port.
46. Explain cache memory.
47. Explain the types of power supply.
48. What is the purpose of ports, buses and controllers in the I/O system?
49. What is a Slot? mention any two types.
50. Name the different components of North bridge.

Boolean Algebra24

Chatpter 2

Boolean Algebra

Objectives:

 To understand the concept of boolean algebra

 To understand the concept of simplifications of boolean expressions

Boolean Algebra 25

2.1 Introducton to Boolean Algebra

In the previous course, we have seen that computers normally use binary
numbers. In this chapter, you will learn about an algebra that deals with the
binary number system. This algebra, known as Boolean algebra, is very useful
in designing logic circuits used by the processors of computer systems. In addition
to this, you will also learn about the elementary logic gates that are used to
build up circuits of different types to perform the necessary arithmetic operations.
These logic gates are the building blocks of all the circuits in a computer. Finally,
in this chapter, we will also learn how to use Boolean Algebra to design simple
logic circuits frequently used by the arithmetic logic unit of almost all computers.

Long ago Aristotle constructed a complete system of formal logic and wrote
six famous works on the subject, contributing greatly to the organization of
man’s reasoning. For centuries afterward, mathematicians kept on trying to
solve these logic problems using conventional algebra but only George Boole
could manipulate these symbols successfully to arrive at a solution with his own
mathematical system of logic. Boole’s revolutionary paper ‘An Investigation of
the laws of the thought’ was published in 1854 which led to the development of
new system, the algebra of logic, ‘BOOLEAN ALGEBRA’.

Boole’s work remained confined to papers only until 1938 when Claude
E. Shannon wrote a paper titled A Symbolic Analysis of Relay Switching Circuits.
In this paper he applied Boolean Algebra to solve relay problems. As logic problems
are binary decisions and Boolean Algebra effectively deals with these binary
values. Thus it is also called ‘Switching Algebra’.

2.2 Binary Valued Quantities - Variable and Constants

Everyday we have to make logic decisions. For example, consider the
following questions:

“Should I carry the book or not?”

“Should I use calculator or not?”

“should I miss TV programme or not?”

 Each of these questions requires the answer YES or NO. These are the
only two possible answers.

Therefore, each of the above mentioned is a binary decision. Binary decision
making also applies to formal logic.

A variable used in an algebraic formula is generally assumed that the
variable may take any numerical value through the entire field of real numbers.
However a variable used in Boolean Algebra or Boolean equation can have only
one of two possible values. The two values are FALSE (or 0) and TRUE (or 1).
Thus, sentences which can be determined to be TRUE or FALSE are called logical
statements or truth functions and the results TRUE or FALSE are called truth

Boolean Algebra26

values. The truth values are depicted by logical constants TRUE and FALSE or 1
and 0 respectively. 1 means TRUE and 0 means FALSE. The variables which can
store these truth values are called logical variables or binary valued variables as
these can store one of the two values 1 or 0 (TRUE or FALSE).

The decision which results into either YES (TRUE or 1) or NO (FALSE or 0)
is called a Binary Decision.

Also, if an equation describing logical circuitry has several variables, it is
still understood that each of the variables can assume only the values 0 and 1. For
instance, in the equation A + B = C , each of the variables A , B and C may have
only the values 0 or 1.

2.3.0 LOGICAL OPERATIONS

There are some specific operations that can be applied on truth functions.
Before learning about these operations, you must know about compound logical
functions and logical operations.

2.3.1 Logical Function or Compound Statement

Algebraic variables like a, b, c or x, y, z etc. are combined with the help of
mathematical operators like +, -, x, / to form algebraic expressions.

For example, 2 x A + 3 x B – 6 = (10 x Z) /2 x Y i.e., 2A + 3B – 6C = 10Z/2Y

Similarly, logic statements or truth functions are combined with the help of
Logical Operators like AND, OR and NOT to form a compound statement or logical
function.

These logical operators are also used to combine logical variables and logical
constants to form logical expressions.

For example, assuming that x, y and z are logical variables, the logical
expressions are

X NOT Y OR Z

Y AND X OR Z

2.3.2 Logical Operators

Truth Table is a table which represents all the possible values of logical
variables/statements along with all the possible results for the given combinations
of values.

Boolean Algebra 27

Before we start discussion about logical operators, let us first understand
what a Truth Table is ?. Logical statements can have only one of the two values
TRUE (YES or 1) or FALSE (NO or 1).

For example, if X and Y are the logical statements and R is the result,
then the truth table can be written as follows:

X Y R

0 0 0
0 1 0
1 0 0
1 1 1

 Table 1.1

Now let us proceed with our discussion about logical operators. There are
three logical operators: NOT, OR and AND Operators.

NOT Operator

This operator operates on single variable and operation performed by NOT
operator is called complementation and the symbol we use for it is (bar). Thus
X means complement of X and YZ means complement of YZ. As we know, the
variables used in Boolean equations have a unique characteristic that they may
assume only one of two possible values 0 and 1, where 0 denotes FALSE and 1
denotes TRUE value. Thus the complement operation can be defined quite simply.

0 = 1 or NOT (FALSE) = TRUE and

1 = 0 or NOT (TRUE) = FALSE and

The truth table for the NOT operator is

X X

0 1
1 0

Table 1.2 Truth Table for NOT operator

Figure 1.3. Venn diagram for x

If result of any logical statement or expression
is always TRUE or 1, it is called Tautology and if the
result is always FALSE or 0 it is called Fallacy.

1 represents TRUE value and 0 represents
FALSE value.

This is a truth table i.e., table of truth values of
truth functions.

Several other symbols like ‘~’ are also used for the
complementation symbol. If ~ is used then ~X is read as ‘negation
of X’ and if symbol ’ is used then X’ is read as complement of X.

NOT operation is singular or unary operation as it operates
on single variable.

Venn diagram for x is given above where shaded area
depicts x.

x x

Boolean Algebra28

OR operator

A second important operator in Boolean algebra is OR operator which
denotes operation called logical addition and the symbol we use for it is +. The
+ symbol, therefore, does not mean arithmetic addition, but is a logical addition
or logical OR symbol. Thus, X + Y can be read as X OR Y. For OR operation,
the possible input and output combinations are as follows :

0 + 0 = 1

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

The truth table of OR operator is given below:

X Y X+Y

0 0 0
0 1 1 and both X and Y is 0, X+Y is 0
1 0 1
1 1 1

Table 1.4 : Truth Table for OR operator

To avoid ambiguity, there are other symbols e.g., and have been
recommended as replacements for the + sign. Computer people still use the + sign,
however, which was the symbol originally proposed by Boole.

Venn diagram for X + Y is given below where the shaded area depicts X + Y.

Shaded portion shows X + Y

Figure 1.2 : Venn diagram for X+Y

AND Operator

AND operator performs another important operation of Boolean Algebra
called logical multiplication and the symbol for AND operation is ‘.’ (dot). Thus
X.Y will be read as X AND Y. The rules for AND operation are :

0.0 = 0
0.1 = 0
1.0 = 0
1.1 = 1

Note that when any one or both X and Y is 1, X + Y is 1.

Boolean Algebra 29

And the truth table for AND is as follows :

X Y X.Y

0 0 0
0 1 0
1 0 0
1 1 1

Table 1.10 : Truth Table for AND operator FIGURE 1.3 : Venn Diagram for (X.Y)

Note that only when both X and Y are 1’s, X.Y has the result 1. If any one
of X and Y is 0, XY result 0. Venn diagram for X.Y is given in the figure above where
the shaded area depicts X.Y

2.4.0 Evaluation of Boolean Expressions Using Truth Table

Logical variables are combined by means of logical operators AND, OR
and NOT to form a Boolean expression. For example, X+Y.Z+Z is a Boolean
expression.

It is often convenient to shorten X.Y.Z to XYZ and using this convention,
above expression can be written as X+YZ+Z

To study a Boolean expression, it is very useful to construct a table of values
for the variables and then to evaluate the expression for each of the possible
combinations of variables in turn. Consider the expression X+YZ. Here three
variables X, Y, Z are forming the expression. Each variable can assume the value
0 or 1. The possible combinations of values may be arranged in ascending order
as in Table 1.11

Table 1.11 Possible Combinations of X, Y and Z

Since X, Y, and Z are the three (3) variables in total. A truth
table involving 3 input variables will have 23 = 8 rows or
combinations in total. The left most column will have half of
total entries (4 entries) as zeroes and half as 1’s (in total 8).
The next column will have number of 0’s and 1’s halved than
first column completing 8 rows and so on. That is why, first
column has four 0’s and four 1’s, next column has two 0’s
followed by two 1’s completing 8 rows in total and the last
column has one 0 followed by one 1 completing 8 rows in
total.

X Y Z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

X Y

Boolean Algebra30

So a column is added to list Y.Z (Table 1.12)

Table 1.12 Truth Table for (Y.Z)

One more column is now added to list the values of YZ (Table 1.13)

Table 1.13 truth table for Y Z and YZ

Now values of X are ORed (logical addition) to the values of YZ and the
resultant values are contained in the last column (Table 1.14).

 Table 1.14 Truth Table for X + YZ.

 AND operation is applied only on columns Y and Z.

Note that YZ contains complemented values of YZ.

Now observe the expression X+YZ, after
ANDing Y and Z, the result has been
complemented and then ORed with X. Here
the result is 0 only when both the columns
X and YZ have 0, otherwise if there is 1 in
any of the two columns X and YZ , the result
is 1.

X Y Z Y.Z

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

X Y Z Y.Z YZ

0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 0

X Y Z Y.Z YZ X+YZ

0 0 0 0 1 1
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 0 1

Boolean Algebra 31

Example 1.13: In the Boolean algebra, verify using truth table that X+XY = X for
each X, Y in 0 and 1.

As the expression X+XY=X is a two variable expression, so we require
four possible combinations of values of X, Y. Truth Table will be as follows:

X Y XY X+XY

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

Comparing the columns X+XY and X, we find, contents of both the columns
are identical, hence verified.

Example 1.14: In the Boolean Algebra, verify using truth table that

X+Y = X . Y in 0 and 1.

Solution: As it is a 2-variable expression, truth table will be as follows:

X Y X+Y X+Y X Y X.Y

0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

Comparing the columns X+Y and X . Y both the columns are identical, hence
verified.

Example 1.15: Prepare a table of combinations for the following Boolean algebra
expressions:

(a) X Y + X Y (b) XY Z + X Y Z (c) X Y Z + X Y

A Boolean expression will be evaluated using precedence rules. The order of
evaluation of an expression is called as precedence. The precedence is, firstly
NOT, then AND and then OR. If there is parenthesis, then the expression in
parenthesis is evaluated first.

Boolean Algebra32

Solution: (a) As X Y + XY is a 2-variable expression, its truth table is as
follows:

X Y X Y XY XY XY+XY

0 0 1 1 1 0 1
0 1 1 0 0 1 1
1 0 0 1 0 0 0
1 1 0 0 0 0 0

(b) Truth table for this 3 variable expression is as follows :

X Y Z X Y Z XYZ X YZ XYZ+XYZ

0 0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 1 1
0 1 0 1 0 1 0 0 0
0 1 1 1 0 0 0 0 0
1 0 0 0 1 1 0 0 0
1 0 1 0 1 0 0 0 0
1 1 0 0 0 1 1 0 1
1 1 1 0 0 0 0 0 0

(a) Truth table for XYZ + XY is as follows:

X Y Z X Y Z XYZ XY XYZ+XY

0 0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0 0
0 1 0 1 0 1 1 0 1
0 1 1 1 0 0 0 0 0
1 0 0 0 1 1 0 1 1
1 0 1 0 1 0 0 1 1
1 1 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0

Example 1.16 Prepare truth table for the following Boolean algebra
expressions:

(a) X(Y+Z) +XY (b) XY (Z+YZ)+Z (c) A[(B+C)+C]

Boolean Algebra 33

Solution (a) Truth table for X(+) +X is as follows :

X Y Z Y Z (Y+Z) X(Y+Z) XY X(Y+Z)+XY

0 0 0 1 1 1 0 0 0
0 0 1 1 0 1 0 0 0
0 1 0 0 1 1 0 0 0
0 1 1 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1
1 0 1 1 0 1 1 1 1
1 1 0 0 1 1 1 0 1
1 1 1 0 0 0 0 0 0

(b) Truth table for XY (Z+Y)+ is as follows:

X Y Z Y Z YZ Z+YZ XY XY(Z+YZ) XY(Z+YZ)+Z

0 0 0 1 1 0 0 0 0 1
0 0 1 1 0 0 1 0 0 0
0 1 0 0 1 1 1 0 0 1
0 1 1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 1 0 1
1 0 1 1 0 0 1 1 1 1
1 1 0 0 1 1 1 0 0 1
1 1 1 0 0 0 1 0 0 0

(c) Truth table for A[(B+C)+C] is as follows :

A B C B C (B+C) (B+C)+C A[(B+C)+C]

0 0 0 1 1 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 1 0 1 0
0 1 1 0 0 1 1 0
1 0 0 1 1 1 1 1
1 0 1 1 0 1 1 1
1 1 0 0 1 0 1 1
1 1 1 0 0 1 1 1

Boolean Algebra34

2.4.1 BASIC LOGIC GATES

After Shannon applied Boolean algebra in telephone switching circuits,
engineers realized that Boolean algebra could be applied to computer electronics
as well.

In the computers, these Boolean operations are performed by logic gates.

What is a Logic Gate?

Gates are digital (two-state) circuits because the input and output signals
are either low voltage (denotes 0) or high voltage (denotes 1). Gates are often
called logic circuits because they can be analyzed with Boolean algebra.

A Gate is simply an electronic circuit which operates on one or more input
signals to produce an output signal.

There are three types of logic gates:

 NOT gate or Inverter

 OR gate

 AND gate

Inverter (NOT Gate)

An inverter (NOT Gate) is a gate with only one input signal and one output
signal. The output state is always the opposite of the input state.

An inverter is also called a NOT gate because the output is not the same
as the input. The output is complement (opposite) of the input. Following tables
summarizes the operation:

 X X X X
Low High 0 1
High Low 1 0

Table 1.15 Truth Table for NOT gate Table 1.16 Alternative truth table for NOT gate

A low input or 0 produces high output or 1 and vice versa. The symbol for inverter
is given in adjacent Fig. 1.4.

 X X

 Fig. 1.4. Not gate symbol

Boolean Algebra 35

NOT Gate is a gate or an electronic circuit that accepts only one input and
produces one output signal. The output state is always the complement of
the input state.

OR Gate

The OR Gate has two or more input signals, but only one output signal. This
gate gives the logical addition of the inputs. If any of the input signals or both is 1
(high), the output signal is 1 (high). The output will be low if all the inputs are low.

An OR gate can have as many inputs as desired. No matter how many
inputs are there, the action of OR gate is the same.

The OR gate has two or more input signals, but only one output signal. The
out will be the logical addition of the inputs.

Following tables show OR action

X Y F X Y Z F

0 0 0 0 0 0 0
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 0 1 1 1

1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

The symbol for OR gate is given below:

a) 2 input OR gate b) 3 input OR gate c) 4 input OR
gate Figure 1.5

AND gate
The AND Gate can have two or more than two input signals and produce

an output signal. When all the inputs are 1 or high only then the output is 1,
otherwise output is 0 only.

If any one or all the inputs is 0, the output is 0. To obtain output as 1, all
inputs must be 1.

An AND gate can have as many inputs as desired.

A

B
F

A
B
C

A
B
C
D

F

Table : F=X+Y

Table : F=X+Y+Z

The AND Gate has two or more input signals, but only one output signal.
The out will be the logical multiplication of the inputs.

F

Boolean Algebra36

Following tables illustrate AND action.

Table 1.19 Two input AND gate

 Table 1.20Three input AND gate

The symbol for AND is

Figure 1.6 (a) 2-input AND gate (b) 3-input AND gate (c) 4 input AND gate

2.5 BASIC POSTULATES OF BOOLEAN ALGEBRA

Boolean algebra is a system of mathematics and consists of fundamental
laws. These fundamental laws are used to build a workable, cohesive framework
upon which are based the theorems of Boolean algebra. These fundamental laws
are known as Basic Postulates of Boolean algebra. These postulates state the
basic relations in Boolean algebra:

The Boolean postulates are:

I. If X 0 then X = 1; and If X 1 then X = 0

II. OR Relations (Logical Addition)

0+0=0

0+1=1

1+0=1

1+1=1

X Y A.B
0 0 0
0 1 0
1 0 0
1 1 1

X Y Z X.Y.Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

A

B

F
A

B

C

A
B
C
D

F F

The fundamental laws of the Boolean algebra are called as the postulates
of Boolean algebra

OR0
0

0

OR0
1

1

OR1
0

1

OR1
1

1

Boolean Algebra 37

III AND Relations (Logical Multiplication)

0.0 = 0

0.1 = 0

1.0 = 0

1.1 = 1

IV Complement Rules

0 = 1 0 1

1 = 0 1 0

PRINCIPLE OF DUALITY

This is a very important principle used in Boolean algebra. This states
that starting with a Boolean relation another Boolean relation can be derived by

i. Changing each OR sign (+) to an AND sign (.)

ii. Changing each AND sign (.) to an OR sign (+)

iii. Changing each 0 by 1 and each 1 by 0.

The derived relation using duality principle is called dual of original
expression.

For instance, we take postulates of OR relation, which states that

(a) 0 + 0 = 0 (b) 0 + 1 = 1 (c) 1 + 0 = 1 (d) 1 + 1 = 1

Now working according to above guidelines, '+' is changed to '.' 0's are replaced by
1’s and 1’s are replaced by 0’s, these equations become

(i) 1.1=1 (ii) 1.0=0 (iii) 0.1=0 (iv) 0.0=0

These are nothing but postulate III related to AND relations. We’ll be applying
this duality principle in the theorems of Boolean algebra.

Boolean Algebra38

Basic theorems of Boolean algebra

Basic postulates of Boolean algebra are used to define basic theorems of
Boolean algebra that provide all the tools necessary for manipulating Boolean
expressions. Although simple in appearance, these theorems may be used to
construct the Boolean algebra expressions.

Boolean theorems can be proved by substituting all possible values of the
variables that are 0 and 1. This technique of proving theorems is called as proof
by perfect induction. Boolean theorems can also be proved using truth table
also.

2.5.1 Properties of 0 and 1

a) 0+X=X (gate representation of (a))

b) 1+X=1 (gate representation of (b))

c) 0.X=0 (gate representation of (c))

d) 1.X=X (gate representation of (d))

Proof a) 0+x = x

If x = 0, then LHS = 0 + x

= 0 + 0

= 0 { By OR relation }

 = x

= RHS

If x = 1, then LHS = 0 + x

= 0 + 1

= 1 { By OR relation }

= x

= RHS

OR0
X

X

OR1
X

1

AND
0

X
0

1

X
XAND

Proof by perfect induction is a method of proving Boolean theorems by
substituting all possible values of the variables.

Boolean Algebra 39

Thus, for every value of x, 0 + x = x always.

 O x R=0+x Truth table for above expression is given in table 1.21,

 0 0 0 where R signifies the output.
 0 1 1

Table 1.21 Truth Table for 0 + x = x

As X can have values either 0 or 1 (postulate 1) both the values ORed with
0 produce the same output as that of X. hence proved.

(a) 1 + x = 1

Proof: If x = 0, LHS = 1 + x

= 1 + 0

= 1 { By OR relation }

If x = 1, LHS = 1 + x

 = 1 + 1

= 1 { By OR relation }

Thus, for every value of x, 1 + x = 1 always.

Truth table for above expression is given below in Table 1.21, where R signifies
the output or result.

1 x 1 + x

1 0 1
1 1 1

Table 1.22 Truth Table for 1 + x = 1

Again x can have values 0 or 1. Both the values (0 and 1) ORed with 1
produce the output as 1. Therefore 1+X=1 is a tautology.

(a) 0.X = 0
Proof: If x = 0, LHS = 0.x

= 0.0

= 0 { By AND relation }

= RHS

(

Boolean Algebra40

If x = 1, LHS = 0.x

 = 0.1

 = 0 { By AND relation }

= RHS

Thus, for every value of x, 0.x = 0 always.

As both the possible values of X (0 and 1) are to be ANDed with 0,
produce the output as 0. The truth table for this expression is as follows:

0 X R=0.X

0 0 0

0 1 0

Table 1.23 Truth Table for 0.X = 0

Both the values of X(0 and 1), when ANDed with, produce the output as
0. Hence proved. Therefore, 0.X=0 is a fallacy.

(d) 1.X = X

Proof: If x = 0, LHS = 1.x

= 1.0

= 0 { By AND relation }

= x

=RHS

If x = 1, LHS = 1.x

 = 1.1

 = 1 { By AND relation }

 = y

=RHS

Thus, for every value of x, 1.x = x always.

Now both the possible values of X (0 and 1) are to be ANDed with 1 to
produce the output R. Thus the truth table for it will be as follows :

Boolean Algebra 41

1 X 1.X

1 0 0
1 1 1

Table 1.24 : Truth Table for 1.X=X

Now observe both the values (0 and 1) when ANDed with 1 produce the
same output as that of X. Hence proved.

2.5.2 Indempotence Law

This law states that when a variable is combines with itself using OR or
AND operator, the output is the same variable.

a) X + X = X (gate representation for (a))

b) X . X = X (gate representation for (b))

Proof :

(a) X + X = X

If x = 0, consider LHS = x + x

= 0 + 0

= 0 { By OR relation }

= x

=RHS

If x = 1, consider LHS = x + x

= 1 + 1

= 1 { By OR relation }

= x

=RHS

Thus, for every value of x, x + x = x always.

To prove this law, we will make truth table for above expression. As X is to
be ORed with itself only, we will prepare truth table with the two possible values
of X (0 and 1).

X

X
XAND

X

X
XOR

Boolean Algebra42

X X X+X
0 0 0
1 1 1

Table 1.25 Truth Table for x + x = x

(b) X.X = X

Here X if ANDed with itself.

Proof: If x = 0, consider LHS = x.x

= 0.0

= 0 { By AND relation }

= x

=RHS

If x = 1, LHS = x.x

= 1.1

= 1 { By AND relation }

= x

=RHS

Thus, for every value of x, x + x = x always.

x x x.x

0 0 0

1 1 1

Table 1.26 Truth Table for X.X = X

2.5.3 Involution

This law states that the complement of a variable is complemented again,
we get the same variable.

(X) = X ie., X X=X

Proof: If x = 0, then x =1 and (x) = 1 = 0 = x

If x = 1, then x = 0 and (x) = 0 = 1 = x

Thus, if a variable is complemented twice, we get the same variable.

We’ll prepare truth table which is given below:

X

Boolean Algebra 43

X X X

0 1 0
1 0 1

Table 1.27 Truth Table for X=X

First column represents possible values of X, second column represents

complement of X (i.e., X) and the third column represents complement of X (i.e.,X)

which is same as that of X. Hence proved.

This law is also called double-inversion rule.

2.5.4 Complementarity Laws

Here, we will combine a variable with its complement.

i. These laws states that

a) X + X = 1 (gate representation of (a))

b) X.X = 0

Proof: If x = 0, LHS = x + x

= 0 + 1 (x = 1)

= 1 { By OR relation }
= RHS

If x = 1, LHS = x + x

= 1 + 0

= 1 { By OR relation }

= RHS

Thus, for every value of x, x + x = 1 always.

We will prove x + x=1 with the help of truth table which is given below :

X
X

X
X

OR

AND

X+X=1

X.X=0

Boolean Algebra44

X X X+X

0 1 1
1 0 1

Table 1.28 Truth Table for X + X =1

Here, in the first column possible values of X have been taken, second column
consists of X values (complement values of X), X and X values are ORed and the
output is shown in third column. As the equation holds true for both possible
values of X, it is a tautology.

(b) X.X = 0

Proof: If x = 0, LHS = x . x

= 0 . 1 (x = 1)

= 0 { By AND relation }
If x = 1, LHS = x . x

= 1 . 0 (x = 0)

= 0 { By AND relation }

Thus, for every value of x, x . x = 0 always.

Truth table for the expression is as follows:

X X X.X

0 1 0
1 0 0

Table 1.29 Truth table for X . X = 0

2.5.5 Commutative Law

These laws state that a) x + y = y + x and b) x . y = y .x

X

Y

R
=

Y

X

Y

X

X

Y
R =

R R

(R signifies the output)

OR OR AND AND

The equations X.X = 0 as it holds true for both the values of X. Hence
proved. Observe that X.X=0. It is a fallacy. It is the dual of X+X=1.

Boolean Algebra 45

If x = 0 then LHS = x + y

 = 0 + y

 = y

 RHS = y + x

 = y + 0

 = y

Therefore, for x = 0, x + y = y + x

If x = 1 then LHS = x + y

 = 1 + y

 = 1

 RHS = y + x

 = y + 1

 = 1

Therefore, for x = 1, x + y = y + x. Hence the proof.

X Y X+Y Y+X

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

Table 1.30 Truth Table for X + Y = Y +X

Compare the columns X + Y and Y +X, both of these are identical. Hence also
proved by truth table.

(b) Truth Table for X . Y = Y . X is given below:

Proof: If x = 0 then LHS = x . y

 = 0 . y

 = 0

 RHS = y . x

 = y . 0

 = 0

Therefore, for x = 0, x + y = y + x

If x = 1 then LHS = x . y

Boolean Algebra46

 = 1 . y

 = y

Therefore, for x = 1, x + y = y + x. Hence the proof.

X Y X.Y Y.X

0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Table 1.31 Truth Table for X . Y = Y . X

Both of the columns X . Y and Y . X are identical, hence proved.

2.5.6 Associative Law

These laws state that

(a) X + (Y + Z) = (X + Y) + Z (associative Law of addition)

(b) X (Y Z) = (X Y) . Z (associative Law of multiplication)

a) X+(Y+Z) = (X+Y)+Z

Proof: If X = 0 the LHS = X + (Y + Z)
= 0 + (Y+ Z)
= Y+Z

RHS = (X+Y)+Z
= (0+Y)+Z
= Y+Z

Therefore for X=0, X+(Y+Z) = (X+Y)+Z
If X=1, then LHS =X+(Y+Z) RHS = (X+Y)+Z

=1+(Y+Z) =1+(Y+Z)
= 1 =1+Z

Therefore X=1, X+(Y+Z) = (X+Y)+Z = 1

Y
Z Y+Z

X R =
X
Y

X+Y

Z
R

Y
Z YZ

X R =
X
Y

XY

Z
R

Boolean Algebra 47

Proof. (a) Truth table for X + (Y + Z) = (X + Y) + Z is given below :

X Y Z Y+Z X+Y X+(Y+Z) (X+Y)+Z

0 0 0 0 0 0 0

0 0 1 1 0 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

(a) Table 1.32 Truth Table for X + (Y + Z) = (X + Y) + Z

Compare the columns X+(Y+Z) and (X+Y)+Z, both of these are identical.
Hence proved. Note : Give proof with table for rule (b). Since rule (b) is a dual of
rule (a), hence it is also proved.

2.5.7 Distributive Law

This law states that

(a) X (Y + Z) = XY+XZ

(a) X + YZ = (X+Y) (X+Z)

Proof: a) X(Y+Z) = XY + XZ
If X=0, LHS = X(Y+Z) RHS = XY + XZ

 = 0(Y+Z) = 0.Y + 0.Z
 = 0 = 0 + 0

= 0
If X=1, LHS = X(Y+Z) RHS = XY + XZ

 = 1(Y+Z) = 1.Y + 1.Z
 = Y+Z = Y + Z

Y
Z

AND OR
RX

YZ
=

X
Y

AND

X+Y

Z R

Y
Z

OR AND RX

Y+Z
=

X
Y

OR

X+Y

Z

R
X

X+Z

Z
X

Boolean Algebra48

Therefore, for every value of x, LHS = RHS. i.e., x(y+z) = xz + yz

Truth Table for X (Y + Z) = XY+XZ is given below:

Table 1.33 Truth table for X (Y + Z) = XY+XZ

X Y Z Y+Z XY XZ X(Y+Z) XY+XZ

0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1

Both the columns X(Y+Z) and XY+XZ are identical, hence proved.

Note : Since rule (b) is dual of rule (a), hence it is also proved

(b) X + YZ = (X+Y) (X+Z)

Proof: RHS = (X+Y) (X+Z)

 = XX + XZ +XY + YZ

 = X+XZ+XY+YZ (XX=X)

 = X(1 + Z + Y) + YZ

 = X + YZ (1 + z + y = 1)

 = LHS Hence the proof

Truth table for X+YZ = (X+Y)(X+Z) is given below

2.5.8 Absorption Law

According to this law

Logic diagram (a) Logic diagram (b)

Proof: a) X+XY = X
LHS = x + xy

= x(1 + y)
= x.1 (1+Y=1)
= x (X.1=X)
= RHS

a) X+XY=X b) X(X+Y)=X

X X

XY
X

Y
X+Y

AND OR AND
ORY

Boolean Algebra 49

Truth Table for X+XY = X is given below:

X Y XY X+XY

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

Table 1.34 : Truth Table for X+XY = X

Column X and X+XY are identical. Hence proved

(b) Since rule (b) is dual of rule (a), it is also proved. However, we are giving the
algebraic proof of this law.

L.H.S.= X(X+Y) = X.X + XY
= X.X + XY
= X + XY (X.X = X Indempotence Law)
= X(1+Y)
= X.1 (using 1 + Y = 1 properties of 0, 1)
= X (X . 1 = X using property of 0, 1)
= RHS

Truth table for X(X+Y)=X

X Y X+Y X(X+Y)

0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

Some Other Rules of Boolean Algebra

There are some more rules of Boolean algebra which are given below:

X+XY=X+Y (This is the third distributive law)

This rule can easily be proved by truth tables. As you are quite familiar with
truth tables now, truth table proof is left for you as exercise, the other proofs of
these rules are being given here:
X+XY=X+Y

X

Y

X

XY
R =

X
Y

R=X+Y

Boolean Algebra50

Proof : LHS = X + XY
= (x+x)(x+y) { x+x= 1}
= 1.(x+y)
= x+y
= RHS

All the theorems of Boolean algebra, which we have been covered so far, are
summarized in the following table:
Table 1.35 Boolean algebra rules

1 0+X=X Properties of 0
2 0.X = 0
3 1+X=1 Properties of 1
4 1.X = X
5 X + X = X Indempotence law
6 X . X = X
7 X = X Involution
8 X + X = 1 Complementarity law
9 X. X = 0
10 X + Y = Y + X Commutative law
11 X . Y = Y. X
12 X + (Y + Z) = (X+Y)+Z Associative law
13 X(YZ) = (XY) Z
14 X (Y+Z) = XY+XZ Distributive law
15 X+YZ=(X+Y) (X+Z)
16 X+XY=X Absorption law
17 X . (X+Y) = X
18 X+XY=X+Y

2.6 De Morgan’s theorems

One of the most powerful identities used in Boolean algebra is De Morgan’s
theorem. Augustus De Morgan had paved the way to Boolean algebra by
discovering these two important theorems. This section introduces these two
theorems of De Morgan.

De Morgan’s First Theorem

It states that X+Y = XY

X
Y

R
X

Y

X

Y
R=

Boolean Algebra 51

Proof: To prove this theorem, we need to recall complementarity laws, which
state that X+X=1 and X . X = 0 i.e., a logical variable/expression when added with
its complement produces the output 1 and when multiplied with its complement
produces the output 0.

Now to prove De Morgan’s first theorem, we will use complementarity laws.

Let us assume that P=X+Y where, P, X, Y are logical variables. Then, according
to complementation law P + P = 1 and P.P = 0.

That means, if P, X, Y are Boolean variables then this complementarity law must
hold for variable P. i.e., P = X+Y = XY

Therefore P+P=(X+Y)+XY

(X+Y) + X Y must be equal to 1. (As X+X = 1)
And, (X+Y). must be equal to 0 (As X. = 0)
Let us first prove the first part, i.e.,

Now, let us prove the second part. i.e., (X + Y) . (XY) = 0

2.6.2 De Morgan’s Second Theorem

This theorem states that: (X.Y) = X + Y

Proof: Again to prove this theorem, we will make use of complementarity law i.e.,

 X + X = 1 and X.X = 0

If XY’s complement is X + Y then it must be true that(a) X Y + (X + Y)=1 and (b) X Y (X + Y) = 0

X Y X
(X + Y) + (XY) = 1

(X + Y) + (XY) = ((X + Y) + X) . ((X + Y)+Y) (ref. X+YZ=(X+Y)(X+Z))

 = (X + X + Y) . (X + Y + Y)

 = (1 + Y) . (X + 1)

 = 1.1 (ref. X + X = 1)
 = 1 (ref. 1 + X = 1)

X
Y

R
X

Y

X

Y
RX.Y

=

(X + Y) . (XY) = XY. (X + Y) (ref. X(YZ)=((XY)Z)

 = XXY + XYY

 = 0.Y + X.0

 = 0+0=0 (ref. X . X = 0)

Boolean Algebra52

Although the identities above represent De Morgan’s theorem, the transformation
is more easily performed by following these steps:

(i) Complement the entire function

(ii) Change all the ANDs (.) to ORs (+) and all the ORs (+) to ANDs (.)

(iii) Complement each of the individual variables.

This process is called De Morganization.

‘Break the line, change the sign’ to De Morganize a Boolean expression.

L.H.S. = XY + (X + Y)

 = (X + Y) + XY

 = (X + Y + X) . (X + Y + Y)

 = (X + X + Y) . (X + Y + Y)

 = (1 + Y) . (X + 1) (ref. X + X = 1)

 = 1.1 (ref. 1 + X = 1)

 = 1 = R.H.S.

To prove the first part

Now, the second part. i.e., XY . (X + Y) = 0

L.H.S. = XY. (X + Y) (ref. X(Y+Z)=XY+XZ)

 = XYX + XYY

 = XXY + XYY

 = 0.Y + X.0 (ref. X . X = 0)

 = 0+0

 = 0

 = RHS

XY.(X + Y) = 0 and XY(X + Y) = 1

Thus, X.Y = X+Y Hence the theorem.

Boolean Algebra 53

2.6.3 Applications of De Morgan's Theorem

1. De Morgan's theorem useful in the implementation of the basic gate
operations with alternative gates, particularly with NAND and NOR gates which
are readily available in IC form.

2. De Morgan's theorem is used in the simplification of Boolean expressions.

3. De Morgan's laws commonly apply to text searching using Boolean
operators AND, OR and NOT. Consider a set of documents containing the words
"cars" or "trucks". De Morgan's laws hold that these two searches will return the
same set of documents.

4. De Morgan's laws are an example of a more general concept of mathematical
duality.

2.6.4 Basic Duality of Boolean algebra

We already have talked about duality principle. If you observe all the theorems
and rules covered so far, you’ll find a basic duality which underlines all
Boolean algebra. The postulates and theorems which have been presented can
all be divided into pairs.

For example, X+X.Y = X

Its dual will be X.(X+Y) = X

(Remember, change . to + and vice versa; complement 0 and 1.)

Similarly, (X+Y)+Z = X+(Y+Z) is the dual of (X.Y).Z=X.(Y.Z)

and X+0 = X is dual of X.1 = X

AB+A+AB = AB + A + AB (AB=A+B; Demorgan's 2nd theorem)
 =
 = AB . A . AB ((X+Y=X.Y) Demorgan's law)

 = ABA(A+B)

 = ABAA + ABAB

 = AB(AA+AB)

 = AB(0+AB)

 =AB.0+ABAB

 =0+0

 =0

a) Solve using De Morgan's Theorem

Boolean Algebra54

In proving the theorems or rules of Boolean algebra, it is then necessary to prove
only one theorem, and the dual of the theorem follows necessarily.

In effect, all Boolean algebra is predicated on this two-for-one basis.

Example 1.17: Give the dual of following result in Boolean algebra:

XX = 0 for each X.

Solution: Using duality principle, dual of X.X=0 is X+X=1 (By changing (.) to
(+) and vice versa and by replacing 1’s by 0’s and vice versa).

Example 1.18: Give the dual of X+0=X for each X.

Solution: Using duality principle, dual of X+0=X is X.1=X

Example 1.19: State the principle of duality in Boolean algebra and give the
dual of the Boolean expression: (X+Y).(X+Z).(Y+Z)

Solution: Principle of duality states that from every Boolean relation, another
Boolean relation can be derived by

(i) Changing each OR sign (+) to an AND (.) sign
(ii) Changing each AND (.) sign to an OR (+) sign
(iii) Replacing each 1 by 0 each 0 by 1
The new derived relation is known as the dual of the original relation.
Dual of (X+Y).(X+Z).(Y+Z) will be

(X.Y) + (X.Z) + (Y.Z) = XY +XZ + YZ

2.7 DERIVATION OF BOOLEAN EXPRESSION

Boolean expressions which consist of a single variable or its complement
e.g., X or Y or Z are known as literals.

Now before starting derivation of Boolean expression, first we will talk about
two very important terms. These are (i) Minterms (ii)Maxterms

2.7.1 Minterms
Minterm is a product of all the literals (with or without the bar) within the

logic system.
One of the most powerful theorems within Boolean algebra states that any Boolean
function can be expressed as the sum of products of all the variables within the
system. For example, X+Y can be expressed as the sum of several products, each
of the product containing letters X and Y. These products are called Minterms and
each product contains all the literals with or without the bar.

Also when values are given for different variables, minterm can easily be
formed. E.g., if X=0, Y=1, Z=0 then minterm will be XYZ i.e., for variable with a
value 0, take its complement and the one with value 1, multiply it as it is. Similarly
for X=1, Y=0, Z=0, minterm will be XYZ.

Boolean Algebra 55

Steps involved in minterm expansion of expression

1. First convert the given expression in sum of products form.
2. In each term, if any variable is missing (e.g., in the following example Y is

missing in first term and X is missing in second term), multiply that term with
(missing term+missing term) factor, (e.g., if Y is missing multiply with Y+Y).

3. Expand the expression.
4. Remove all duplicate terms and we will have minterm form of an expression.
Example 1.20: Convert X+Y to minterms.
Solution:

Note that each term in the above example contains all the letters used: X
and Y. The terms XY, X and Y are therefore minterms. This process is called
expansion of expression.

Other procedure for expansion could be
1. Write down all the terms
2. Put X’s where letters much be inserted to convert the term to a product

term.
3. Use all combinations of X’s in each term to generate minterms.
4. Drop out duplicate terms.
Example 1.21: Find the minterms for AB+C.
Solution: It is a 3 variable expression, so a product term must have all three
letters, A, B and C.
1. Write down all terms AB+C

2. Insert X’s where letters are missing ABX+XXC

3. Write all the combinations of X’s in first term ABC, ABC

Write all the combinations of X’s in second term ABC, ABC, ABC, ABC

4. Add all of them. Therefore, AB+C= ABC+ABC+ABC+ABC+ABC+ABC

5. Now remove all duplicate terms. ABC+ABC+ABC+ABC+ABC

Now to verify, we will prove vice versa

ABC+ABC+ABC+ABC = AB + C
LHS = ABC+ABC+ABC+ABC+ABC

= ABC+ABC+ABC+ABC+ABC
= AC(B + B) +ABC+AB(C + C)
= AC.1 + ABC+ AB.1

X+Y=X.1+Y.1

=X.(Y+Y)+Y(X+X) (X+X=1 complementary law)

=XY+XY+XY+XY

=XY+XY+XY+XY

=XY + XY + XY (XY + XY = XY Indempotent law)

Boolean Algebra56

= AC.1 + ABC+ AB.1

= AC + AB + ABC

= AC + A(B + BC)

= AC + A(B + C) (B+BC=B+C Absorption law)

= AC + AB + AC

= AC + AC + AB

= C(A+A) + AB

= C.1 + AB

= C + AB

= AB + C

= RHS

Shorthand minterm Notation

Since all the letters (2 in case of 2 variable expression, 3 in case of 3
variable expressions) must appear in every product, a shorthand notation has
been developed that saves actually writing down the letters themselves. To form
this notation, following steps are to be followed:

1. First of all, copy original terms.

2. Substitute 0’s for barred letters and 1’s for non-barred letters

3. Express the decimal equivalent of binary word as a subscript of m.

Example 1.22: To find the minterm designation of XYZ

Solution: 1. Copy original form = XYZ

2. Substitute 1’s for non-barred and 0’s for barred letters.

 Binary equivalent = 100

3. Decimal equivalent of 100 = 1x22 + 0x21 + 0x20 = 4 + 0 + 0 = 4

4. Express as decimal subscript of

Thus XYZ = m4

Similarly, minterm designation of ABCD would be

Copy Original Term ABCD

Binary equivalent = 1010

Decimal equivalent = 1x23 + 0x22 + 1x21 + 0x20 = 8 + 0 + 2 + 0 = 10

Express as subscript of m = m10

Boolean Algebra 57

2.7.2 Maxterms

A maxterm is a sum of all the literals (with or without the bar) within the
logic system.

Trying to be logical about logic, if there is something called minterm, there
surely must be one called maxterm and there is.

If the value of a variable is 1, then its complement is added otherwise the
variable is added as it is.

Example: If the values of variables are X=0, Y=1 and Z=1 then its Maxterm will
be X + Y + Z(Y and Z are 1’s, so their complements are taken; X= 0, so it is taken
as it is).

Similarly if the given values are X=1, Y=0, Z =0 and W=1 then its Maxterm is

X + Y + Z + W.

Maxterms can also be written as M (Capital M) with a subscript which is
decimal equivalent of given input combination e.g., above mentioned Maxterm
X+Y+Z+W whose input combination is 1001 can be written as M9 as decimal
equivalent of 1001 is 9.

2.7.3 Canonical Expression

Canonical expression can be represented in following two forms:

(i) Sum-of-Products (SOP)

(ii) Product-of-sums (POS)

Sum-of-Products (SOP)

A logical expression is derived from two sets of known values:

 Various possible input values

 The desired output values for each of the input combinations.

Let us consider a specific problem.

A logical network has two inputs X and Y and an output Z. The relationship
between inputs and outputs is to be as follows:

(i) When X=0 and Y=0 then Z=1

(ii) When X =0 and Y=1 then Z=0

(iii) When X =1 and Y=0, then Z=1

Boolean Expression composed entirely either of minterms or maxterms is
referred to as Canonical Expression.

Boolean Algebra58

(iv) When X=1 and Y=1, then Z=1

We can prepare a truth table from the above relations as follows:

X Y Z Product Terms

0 0 1 XY
0 1 0 XY
1 0 1 XY
1 1 1 XY

Table 1.36 truth table for product terms (2-input)

Here, we have added one more column to the table consisting list of product
terms or minterms. Adding all the terms for which the output is 1. i.e., Z=1 we get
following expression:

XY + XY + XY = Z

Now see, it is an expression containing only minterms. This type of expression
is called minterm canonical form of Boolean expression or canonical sum-of-
products form of expression.

Example 1.23: A Boolean function F defined on three input variables X, Y and Z
is 1 if and only if number of 1(one) inputs is odd (e.g., F is 1 if X=1, Y=0,Z=0), Draw
the truth table for the above function and express it in canonical sum of products
from.

Solution: The output is 1, only if one of the inputs is odd. All the possible
combinations when one of inputs is odd are

X=1. Y=0, Z=0

X=0, Y=1, Z=0

X=0, Y=0, Z=1

X=1, Y=1, Z=1

For these combinations output is 1, otherwise output is 0. Preparing the truth
table for it we get the following truth table.

When a Boolean expression is represented purely as sum of minterms, it
said to be in canonical SOP form.

Boolean Algebra 59

X Y Z F Product Terms/
 Minterms

0 0 0 0 XYZ

0 0 1 1 XYZ
0 1 0 1 XYZ
0 1 1 0 XYZ
1 0 0 1 XYZ
1 0 1 0 XYZ
1 1 0 0 XYZ
1 1 1 1 XYZ

Table 1.37 truth table for product terms (3-input)

Adding all the minterms (product terms) for which output is 1, get

XYZ + XYZ + XYZ + XYZ

This is the desired Canonical SOP from

So, deriving SOP expression from truth table can be summarized as follows:

1. For a given expression, prepare a truth table for all possible combinations
of inputs.

2. Add a new column for minterms and list the minterms for all the combinations.

3. Add all the minterms for which there is output as 1. This gives you the
desired canonical S-O-P expression.

Another method of deriving canonical SOP expression is algebraic method.
This is just the same as above. We will take another example here.

Example 1.24: Convert XY + XZ into canonical SOP from.

Solution: Rule 1: Simplify the given expression using appropriate theorems/
rules.

 (XY) + (XZ) = (X + Y) (X + Z) using demorgan's law

 = X + YZ (Using Distributive law)

Since it is a 3 variable expression, a product term must have all 3 variables.

Rule 2: Wherever a literal is missing, multiply that term with

missing variable + missing variable

X + YZ = X(Y + Y) (Z + Z) + (X + X) YZ

Boolean Algebra60

(Y, Z are missing in first term, x is missing in second term)

= (XY + XY)(Z + Z) + XYZ + XYZ

= Z(XY + XY) + Z(XY + XY) + XYZ + XYZ

= XYZ + XYZ + XYZ + XYZ + XYZ + XYZ

Rule 3: By removing the duplicate terms, we get XYZ + XYZ + XYZ + XYZ + XYZ
This is the desired Canonical SOP from.

Above Canonical SOP expression can also be represented by following
shorthand notation. Here F is a variable function and m is a notation for minterm.
This specifies that output F is sum of 1st, 4th, 5th, 6th and 7th minterms.

i.e., F = m1 + m4 + m5 + m6 + m7 or F=(1,4,5,6,7)

Converting Shorthand notation to minterms

We already have learnt how to represent minterm into shorthand notation.
Now we will learn how to convert vice versa.

Rule1: Find binary equivalent of decimal subscript e.g., for m6 subscript is
6, binary equivalent of 6 is 110.

Rule2: For every 1’s write the variable as it is and for 0’s write variable’s
complemented form i.e., for 110 it is XYZ . XYZ is the required minterm for m6.

Example 1.25: Convert the following three input function F denoted by the
expression into its canonical SOP form.

Solution: If three inputs are X, Y and Z then

F = m0 + m1 + m2 + m5

m0=000 XYZ

m1=001 XYZ

m2=010 XYZ

m5=101 XYZ

Canonical SOP form of the expression is

X Y Z + X Y Z +X Y Z +X Y Z

Product-of-sum form (POS)

When a Boolean expression is represented purely as product of Maxterms,
it is said to be in canonical Product-of-Sum form.

This form of expression is also referred to as Maxterm canonical form of
Boolean expression.

Boolean Algebra 61

Just as any Boolean expression can be transformed into a sum of minterms, it
can also be represented as a product of Maxterms.

(a) Truth table method

The truth Table method for arriving at the desired expression is as follows:

1. Prepare a table of inputs and outputs

2. Add one additional column of sum terms. For each row of the table,
a sum term is formed by adding all the variables in complemented
or uncomplemented form. i.e., if input value for a given variable is 1,
variable is complemented and if 0, not complemented.

Example: If X=0, Y=1, Z=1 then Sum term will be X + Y + Z

Now the desired expression is product of the sums from the rows in which the
output is 0.

Example 1.26: Express in the product of sums from the Boolean function F(X,
Y, Z) and the truth table for which is given below:

X Y Z F

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Solution: Add a new column containing Maxterms. Now the table is as follow:

X Y Z F Maxterms

0 0 0 1 X + Y + Z
0 0 1 0 X + Y + Z
0 1 0 1 X + Y + Z
0 1 1 0 X + Y + Z
1 0 0 1 X + Y + Z
1 0 1 0 X + Y + Z
1 1 0 1 X + Y + Z
1 1 1 1 X + Y + Z

Boolean Algebra62

Now by multiplying maxterms for the output 0’s, we get the desired product
of sums expression which is (X + Y + Z) (X + Y + Z) (X + Y + Z)

(b) Algebraic Method

We will explain this method with the help of an example.

Example 1.27 Express X Y + Y(Z (Z + Y)) into canonical product-of-sums form.

Solution: Rule 1: Simplify the given expression using appropriate theorems/rules:

X Y + Y (Z (Z + Y)) = XY + Y(Z Z + Y Z) { X(Y+Z) = XY+XZ }

= XY + Y (Z + YZ) (Z . Z = Z as X . X = X)

= XY + Y.Z(1 + Y)

= X Y + Y Z . 1 {1 + Y = 1}

= X Y + Y Z

Rule 2: To convert into product of sums form, apply the Boolean algebra rule
which states that X + YZ = (X + Y) (X + Z)

XY + YZ = (X Y + Y) (X Y + Z) (X + Y = Y + X)

 = (Y + X Y) (Z + X Y)

 = (Y + X) (Y + Y) (Z + X) (Z + Y)
 = (X + Y) Y (X + Z) (Y + Z) (X + Y = Y)

Now, this is in product of sums form but not in canonical product of sums
form (In Canonical expression all the sum terms are Maxterms.)

Rule 3: After converting into product of sum terms, in a sum term for a missing
variable add (Missing variable . missing variable.) e.g., if variable Y is missing add
YY.

(X + Y) (Y)(X + Z)(Y + Z) = (X + Y + ZZ) (X X + Y + ZZ) (X + Y Y + Z) (X X + Y + Z)

Rule 4: Keep on simplifying the expression (using the rule, X+YZ=(X+Y)(X+Z))
until you get product of sum terms which are maxterms.

 (X + Y + ZZ) = (X + Y + Z) (X + Y + Z) = M4. M5

(X X + Y + ZZ) = (XX + Y + Z) (XX + Y + Z)

 = (X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z) =M0.M4.M1.M5

(X + YY + Z) = (X + Y + Z) (X + Y + Z)= M5.M7

(X X + Y + Z) = (X + Y + Z) (X + Y + Z) =M1.M5

(X + Y) (Y) (X+Z) (Y+Z) = (X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z)
(X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z)

Boolean Algebra 63

Short hand = M4, M5, M0
, M4, M1, M5, M5, M7, M1, M5 = M(0, 4, 5, 7)

Rule 5: Removing all the duplicate terms, we get

(X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z)

This is the desired canonical product of sums form of expression.

Shorthand maxterm notation

Shorthand notation of the above given canonical product of sums expression is

F= (0,1,4,5,7) or F = M(0,1,4,5,7)

This specifies that output F is product 0th, 1st, 4th and 7th Maxterms

i.e., F = M0.M1.M5.M5.M7

Here, M
0
 means Maxterm for Binary equivalent of 0 i.e., 000 ie., X=0, Y=0, Z=0

And, Maxterm will be (X+Y+Z) (Complemented variable is 1 and uncomplemented
variable is 0)

Similarly, M1 Means 0 0 1 X+Y+ Z

AS F = M0 .M1 .M4.M5 .M7

and M0 = 000 X + Y + Z
M1 = 001 X + Y + Z
M4 =100 X + Y + Z
M5 = 101 X + Y + Z
M7 = 111 X + Y + Z

F = (X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z)

Example 1.28: Convert the following function into canonical product of sums
form: F(X, Y, Z) = M(0, 2, 4, 5)

Note: To convert an expression from shorthand SOP form to shorthand POS
form, just create truth table from given expression. From the created truth table,
derive other form of expression. For example, from truth table, you can convert
an expression F(X, Y,Z)= (0,1,3,5) to M(2,4,6,7)

Solution: F (X, Y, Z) = M(0, 2,4,5) = M
0
 . M2 .M4 .M5

M0 = 000 X + Y + Z

M2 = 010 X + Y + Z

M4 = 100 X + Y + Z

M5 = 101 X + Y + Z

F = (X + Y + Z) (X + Y + Z) (X + Y + Z) (X + Y + Z)

Boolean Algebra64

Sum term V/s Maxterm and product term V/s minterm

Sum term means sum of the variables. It does not necessarily mean that
all the variables must be included whereas Maxterm means a sum-term having
the entire variables.

For Example, for 3 Variables F(X, Y, Z) functions X + Y, X + Z, Y + Z etc. are
sum terms whereas X + Y + Z, X + Y + Z, X + Y + Z etc. are Maxterms.

Similarly, product term means product of the variables, not necessarily all
the variables, whereas minterm means product of all the variables.

For A 3 variable (a, b, c) function abc, abc, abc etc. are minterms whereas
ab, bc, bc, ac etc. are product terms only.

Same is the difference between Canonical SOP or POS expression. A
Canonical SOP or POS expression must have all the Minterms or Maxterms
respectively, whereas a simple SOP or POS expression can just have product
terms or sum terms respectively.
2.7.4 Minimization of Boolean expression

After obtaining an SOP or POS expression, the next thing to do is to
simplify the Boolean expression, because Boolean operations are practically
implemented in the form of gates. A minimized Boolean expression means less
number of gates which means simplified circuitry. This section deals with two
methods simplification of Boolean expression.
Algebraic Method

This method makes use of Boolean postulates, rules and theorems to
simplify the expressions.
Example 1.29 simplify

Solution: ABCD + ABCD + ABCD + ABCD

 ABC(D + D) + ABC(D + D) = ABC.1 + ABC.1 (D + D = 1)

 = AC(B+B) = AC

Example 1.30: Reduce the expression XY + X + XY

Solution: XY + X + XY

(using Demorgan’s 2nd theorem i.e.,)

ABCD + ABCD + ABCD + ABCD

= (X + Y) + X + XY

= X + X + XY + Y

= X + XY + Y {X + X = X as X + X = X}

= (X + X) (X + Y) + Y (Putting X + X = 1

= X + Y + Y {Y + Y = 1}

= X + 1 {Putting Y + Y = 1)

= 1 {putting X + 1 = 1 as 1 + X =1}

Boolean Algebra 65

Example 1.31: Minimize AB + AC + ABC (AB + C)

Solution

Example 1.32: Reduce X Y Z + X Y Z + X Y Z + X Y Z

Solution. X Y Z + X Y Z + X Y Z + X Y Z = X (Y Z + Y Z) + X (Y Z + Y Z)

= (X + X) (YZ + YZ)

= Z(Y+Y)

= Z

2.8 Simplification using Karnaugh Maps

Truth tables provide a nice, natural way to list all values of a function.
There are several other ways to represent function values. One of the way is
Karnaugh Map (in short K-Map) named after its originator Maurice Karnaugh.
These maps are sometimes also called Veitch diagrams.

AB + AC + ABC (AB + C) = AB + AC + ABCAB + ABCC

= AB + AC + AABBC + ABCC

= AB + AC + ABC {BB = 0 and CC = C}

= AB + A + C + ABC {AC = A + C}

= A + AB + C + ABC {rearranging the terms}

= A + B + C + ABC {A + AB = A + B because X + XY = X + Y}

= A + C + B + ACB (B + BAC = B + AC because X + XY = X + Y)

= A + C + B + AC (C + CA = C + A)

= A + B + C + AC

= A + B + C + A

= A + A + B + C

= 1 + B + C {A + A = 1}

= 1 (1 + X = 1)

Boolean Algebra66

Karnaugh Map or K-Map is a graphical display of the fundamental
product in a truth table.

Karnaugh map is nothing but a rectangle made up of certain number of
squares, each square representing a Maxterm or Minterm.

2.8.1 Sum of products Reduction using Karnaugh Map

In S-O-P reduction each square of K-Map represents a minterm of the
given function. Thus, for a function of n variables, there would be a map of 2n

squares, each representing a minterm (refer to Fig. 1.7). Given a K-map, for SOP
reduction the map is filled in by placing in squares whose minterms lead to a 1
output.

Following are 2,3,4 variable K-maps for SOP reduction. (see fig. 1.7)

Note in every square a number is written. These subscripted numbers
denote that this square corresponds to that number’s minterm. For example, in
3 variable map X Y Z box has been given number 2 which means this square
corresponds to M2. Similarly, box number 7 means it corresponds to m7 and so
on.

Please notice the numbering scheme here, it is 0, 1, 3, 2 then 4, 5, 7, 6
and so on, always squares are marked using this scheme while making a K-map.

X
Y (0)Y (1)Y

(0)X

(1)X

(a)

 0 1

 2 3

X
Y

 (00)YZ (01)YZ (11)YZ (10)YZ

(0)X X Y Z

(1)X

(c)

 0 1 3 2

 4 5 7 6

X Y Z X Y Z X Y Z

X Y Z X Y Z X Y Z X Y Z

X
Y (0)Y (1)Y

(0)X X Y X Y

X Y X Y(1)X

(a)

 0 1

 2 3

X
Y

 (00)YZ (01)YZ (11)YZ (10)YZ

(0)X

(1)X

(d)

 0 1 3 2

 4 5 7 6

Boolean Algebra 67

X
Y

 (00)YZ (01)YZ (11)YZ (10)YZ

(00)WX
 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

WXYZ WXYZ WXYZ WXYZ

WXYZ WXYZ WXYZ WXYZ

WXYZ WXYZ WXYZ WXYZ

WXYZ WXYZ WXYZ WXYZ

(01)WX

(11)WX

(10)WX

X
Y

 (00)YZ (01)YZ (11)YZ (10)YZ

(00)WX
 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

(01)WX

(11)WX

(10)WX

4-variable K Map representing minterms.

Observe carefully above given K-map. See the binary numbers at the top
of K-map. These do not follow binary progression, instead they differ by only one
place when moving from left to right : 00, 01, 11, 10. It is done so that only one
variable changes from complemented to un complemented form or vice versa.
The terms are A B . A B, AB, A B

This binary code 00, 01, 11, 10 is called Gray code. Gray Code is the
binary code in which each successive number differs only in one place. That is
why box numbering scheme follows above order only.

How to Map in K-Map?

We’ll take an example of 2 variable map to be illustrated, with the following
truth table for mapping (Table 1.38)

Table 1.38

A B F

0 0 0
0 1 0
1 0 1
1 1 1

Canonical S-O-P expression for this table is F=AB + AB or F = (2,3).

To map this function first we’ll draw an empty 2-variable K-map as shown in Fig.
1.8(a)

Boolean Algebra68

Now look for output 1 in the given truth table (1.38) for a given truth
table,.

For minterms M2 and M3 the output is 1. Thus mark 1 in the squares for
m2 and m3 i.e., square numbered as 2 and the one numbered as 3. Now our K-
map will look like fig 1.8 (b)

After entering 1’s for all 1 outputs, enter 0’s in all blank squares. K-map
will now look like Fig 1.8 same is the method for mapping 3-variable and 4-
varible maps i.e., enter 1’s for all 1 outputs in the corresponding squares and
then enter 0’s in the rest of the squares.

How to reduce Boolean expression in S-O-P form using K-map?

For reducing the expression, first we have to mark pairs, quads and octets.

To reduce an expression, adjacent 1’s are encircled. If 2 adjacent 1’s are
encircled, it makes a pair; if 4 adjacent 1’s are encircled, it makes a quad; and if 8
adjacent 1’s are encircled, it makes an octet.

While encircling groups of 1’s, firstly search for octets and mark them, then
for quads and lastly go for pairs. This is because a bigger group removes more
variables thereby making the resultant expression simpler.

Reduction of a pair : In the K-map in fig. 1.9, after mapping a given
function F(W, X, Y, Z) two pairs have been marked. Pair-1 is m0+m4 (group of 0th

minterm and 4th minterm as these numbers tell us minterm’s subscript). Pair-2
is m14+m15.

Observe that Pair-1 is a vertical pair. Moving vertically in pair-1, see one
variable X is changing its state from X to X as m0 is W X YZ and m4 is W X YZ.
Compare the two and we see W X YZ changes to W X YZ . So, the variable X can
be removed.

A
B

 (0) (1)

(0)

(1)

(a)

A
B

 (0) (1)

(0)

(1)

(b)

A
B

 (0) (1)

(0)

(1)

(c)

 1 1 1 1

 0 0

Boolean Algebra 69

Pair Reduction Rule

Remove the variable which changes its state from complemented to
uncomplemented or vice versa. Pair removes one variable only.

Thus reduced expression for Pair-1 is W Y Z as W X Y Z (m0) changes to W X Y Z
(m4)

We can prove the same algebraically also as follows :

Pair-1= m0 + m4 = W X Y Z + W X Y Z

= W Y Z (X + X)

= W Y Z . 1 (X + X = 1)

= W Y Z

Similarly, reduced expression for Pair-2 (m14+m15) will be WXY as WXYZ
(m14) changes to WXYZ (m15). Z will be removed as it is changing its state from
to Z.

Reduction of a quad

If we are given with the K-map shown in fig. 1.10 in which two quads have
been marked.

Quad-1 is m0 + m4 + m12 + m8 and Quad-2 is m7+m6+m15+m14. When we
move across quad-1, two variables change their states i.e., W and X are changing
their states, so these two variables will be removed.

Quad, Reduction Rule

Remove the two variables which change their states. A Quad removes two
variables. Thus reduced expression for quad-1 is Y Z as W and X (both) are
removed.

 (00)YZ (01)YZ (11)YZ (10)YZWX

YZ

(00)WX
 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

(01)WX

(11)WX

(10)WX

1 0 0 0

1 0 0 0

0 0 1 1

0 0 0 0

 (00)YZ (01)YZ (11)YZ (10)YZWX

YZ

(00)WX
 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

(01)WX

(11)WX

(10)WX

1 0 0 0

1 0 1 1

1 0 1 1

1 0 0 0

Boolean Algebra70

Similarly, in Quad -2 (m7+m6+m15+m14), horizontally moving, variable Z is
removed as W X Y Z (m7) changes to W X Y Z (m6) and vertically moving, variable
W is removed as (m7) changes to WXYZ. Thus reduced expression for quad-2 is (by
removing W and Z) XY.

Reduction of an octet

Suppose, we have K-map with an octet marked as shown in Fig. 1.11.

While moving horizontally in the octet two variables Y and Z are removed
and moving vertically one variable x is removed. Thus eliminating X, Y and Z, the
reduced expression for the octet is W only.

Octet Reduction Rule

Remove the three variables which change their states. An octet removes 3-
variables. But after marking pairs, quads and octets, there are certain other things
to be taken care of before arriving at the final expression. These are map rolling,
overlapping groups and redundant groups.

Map Rolling

Map Rolling means roll the map i.e., consider the map as if its left edges are
touching the right edges and top edges are touching the bottom edges. This is a
special property of Karnaugh maps that its opposite edges squares and corner
squares are considered contiguous (Just as the world map is treated contiguous
at its opposite ends). As in opposite edges squares and in corner squares only one
variable changes its state from complemented to uncomplemented state or vice
versa. Therefore, while making the pairs, quads and octets, map must be rolled.
Following pairs, quads and octets are marking after rolling the map.

 (00)YZ (01)YZ (11)YZ (10)YZWX

YZ

(00)WX
 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

(01)WX

(11)WX

(10)WX

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

XY+YZ

Boolean Algebra 71

Overlapping Groups

Overlapping means same 1 can be encircled more than once. For example,
if the following K-map is given:

Observe that 1 for m7 has been encircled twice. Once for Pair-1(m5+m7)
and again for Quad (m7+m6+m15+m14). Also 1 for m14 has been encircled twice.
For the Quad and for Pair-2 (m14+m10).

Here, reduced expression for Pair-1 is ABD

Reduced expression for Quad is BC

Reduced expression for Pair-2 is ACD

Thus final reduced expression for this map is ABD + BC + ACD

 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

 (00)CD (01)CD (11)CD (10)CDAB

CD

(00)AB
 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

(01)AB

(11)AB

(10)AB

11

1 1

1

1 1

1

 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

 (00)CD (01)CD (11)CD (10)CDAB

CD

(00)AB

(01)AB

(11)AB

(10)AB

11

1

1

 (00)CD (01)CD (11)CD (10)CDAB

CD

(00)AB

(01)AB

(11)AB

(10)AB

111

1

1 1

BD+BDABD+BCD

Boolean Algebra72

Thus reduced expression for entire K-map is sum of all reduced expressions
in the very K-map.

But before writing the final expression we must take care of redundant
Groups.

Redundant Groups

Reduntant group is a group whose all 1’s are overlapped by other groups
(i.e., pairs, quads, octets). Here is an example, given below.

Fig. 1.14(a) has a redundant group. There are three pairs : Pair-1 (m4+m5),
Pair-2 (m5+m13), Pair-3 (m13+m15). But Pair-2 is a redundant group as its all 1’s
are marked by other groups.

With this reduntant group, the reduced expression will be ABC+BD+ABD.
For a simpler expression, Redundant Groups must be removed. After removing
the redundant group, we get the K-map shown in fig. 1.14 (b).

The reduced expression, for K-map in fig. 1.14 (b), will be

ABC + ABD

Which is much simpler expression .

Thus removal of redundant group leads to much simpler expression.

Summary of all the rules for S-O-P reduction using K-map

1. Prepare the truth table for given function.

2. Draw an empty K-map for the given function (i.e., 2 variable K-map for 2
variable function; 3 variable K-map for 3 variable function, and so on).

 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

 (00)CD (01)CD (11)CD (10)CDAB

CD

(00)AB

(01)AB

(11)AB

(10)AB

1 1

1 1

 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

 (00)CD (01)CD (11)CD (10)CDAB

CD

(00)AB

(01)AB

(11)AB

(10)AB

1 1

1 1

Boolean Algebra 73

3. Map the given function by entering 1’s for the outputs as 1 in the
corresponding squares.

4. Enter 0’s in all left out empty squares.

5. Encircle adjacent 1’s in form of octets, quads and pairs. Do not forget to
roll the map and overlap.

6. Remove redundant groups, if any.

7. Write the reduced expressions for all the groups and OR (+) them.

Example 1.33 Reduce F (a, b, c, d) = m (0,2,7,8,10,15) using Karnaugh map.

Solution: Given F (a, b, c, d) = m (0,2,7,8,10,15)

= m0 + m2 + m7 + m8 + m10 + m15

m0 = 0000 = A B C D m2 = 0010 = A B C D

m7 = 0111 = A B C D m8 = 1000 = A B C D

m10 = 1010 = A B C D m15 = 1111 = A B C D

Truth table for the given Mapping the given function in a K-map

function is as follows : we get

A B C D F
0 0 0 0 1
0 0 0 1
0 0 1 0 1
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1
1 0 1 0 1
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1 1

In the above K-map two groups have been marked, one Pair and One Quad.

Pair is m7 + m15

 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

 (00)CD (01)CD (11)CD (10)CDAB

CD

(00)AB

(01)AB

(11)AB

(10)AB

1 0 0 1

0 0 1 0

0 0 1 0

1 0 1 1

Boolean Algebra74

And Quad is m0 + m2 + m8 + m10

Reduced expression for pair (m7 + m15) is BCD as A is removed. Reduced
expression for quad (m0 + m2 + m8 + m10) is BD as for horizontal corners C is
removed and for vertical corners A is removed.

Thus final reduced expression is BCD + BD

Example 1.34: What is the simplified Boolean equation for the function?

F(A,B,C,D) =(7,9,10,11,12,13,14,15)

Solution: Completing the given Karnaugh map by entering 0’s in the empty
squares, by numbering the squares with their minterm’s subscripts and then by
encircling all possible groups, we get the following K-map.

There is one pair, three quads

Pair-1= m7 + m15

Quad-1 = m12 + m13 + m14 + m15

Quad-2 = m13 + m15+m9 +m11

Quad-3 = m15 + m11 +m14 + m10

Reduced expression for pair-1 (m7 + m15) is BCD, as ABCD (m7) changes to
ABCD (m15) eliminating A.

Reduced expression for Quad-1 (m12 + m13 + m14) is AB, as while moving
across the Quad, C and D both are removed because both are changing their
states from complemented to uncomplemented or vice-versa.

Reduced expression for Quad 2 (m13 + m15+m9 +m11) is AD, as moving
horizontally, C is removed and moving vertically, B is removed.

Reduced expression of Quad-3 (m15 + m11 +m14 + m10) is AC as horizontal
movement removes D and vertical movement removes B.

Thus, Pair-1 = BCD, Quad-1 = AB, Quad-2 = AD, Quad-3 = AC

Hence final reduced expression will be BCD+AB+AD+AC.

Example 1.35: Obtain a simplified expression for a Boolean function F (X, Y,
A) the Karnaugh map for which is given below:

 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

 (00)CD (01)CD (11)CD (10)CDAB

CD

(00)AB

(01)AB

(11)AB

(10)AB

0 0 0 0

0 0 1 0

1 1 1 1

0 1 1 1

Boolean Algebra 75

Solution: Completing the given K-map.

We have 1 group which is a Quad i.e.,

m1 + m3 +m5 + m7

Reduced expression for this Quad is Z, as
moving horizontally from X Y Z (m1) to
X Y Z (m3), Y is removed (Y changing from
Y to Y) and moving vertically from m1 to
m5 or m3 to m7, X changes to X, thus X
is removed.

Example 1.36: Minimize the following
function using a Karnaugh map:

F (W, X, Y, Z) = (0,4,8,12)

Solution: Given function F (W, X, Y, Z) = (0,4,8,12)

F = m0 + m4 + m8 + m12

m0 = 0000 = W X Y Z

m4 = 0100 = W X Y Z

m8 = 1000 = W X Y Z

m12 = 1100 = W X Y Z

X

YZ
[00] [01] [11] [10]

[0]

[1]

[1] [1]

[1] [1]

X
YZ

 (00)YZ (01)YZ (11)YZ (10)YZ

(0)X 0 1 1 0

(1)X

(c)

 0 1 3 2

 4 5 7 6
0 1 1 0

 (00)YZ (01)YZ (11)YZ (10)YZWX

YZ

(00)WX
 0 1 3 2

 4 5 7
 6

 12 13 15
 14

(01)WX

(11)WX

(10)WX

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

 0 1 3 2

 4 5 7 6

Boolean Algebra76

Maping the given function on a K-Map, we get (m0 + m4 + m8)

Reduced expression for this quad is YZ as while moving across the Quad
W and X are removed. Because these are changing their states from
complemented to uncomplemented or vice versa.

Thus, final reduced expression is YZ.

Example 1.37: Using the Karnaugh technique obtain the simplified expression
as sum products for the following map:

Solution: Completing the given K- map, we get one group which is a Quad has
been marked.

Quad reduces two variables.
Moving horizontally, Z is removed as it
changes from Z to Z and moving
vertically, X is removed as it changes
from X to X. Thus only one variable Y
is left. Hence Reduced S-O-P
expression is Y. Thus F=Y assuming F
is the given function.

2.8.2 Product-of-Sum Reduction using Karnaugh Map

In POS reduction each square of K-map represents a Maxterm. Karnaugh
map is just the same as that of the used in S-O-P reduction. For a function of n
variables, map would represent 2n squares, each representing a maxterm.

For POS reduction map is filled by placing 0’s in squares whose Maxterms
lead to output 0.Following are 2, 3 4 variable K-Maps for POS reduction.

X
YZ

 (00) (01) (11) (10)

(0)

(1)

(d)

1 1

1 1

X
Y

 (00)YZ (01)YZ (11)YZ (10)YZ

(0)X

(1)X

 0 1 3 2

 4 5 7 6

 0 0 1 1

 0 0 1 1

Boolean Algebra 77

2- variable K-Map representing Maxterms.

3-variable K-Map representing Maxterms

4 varible K–Map representing Minterms

Figure 1.115: 2,3,4 variable K-Maps of POS expression.

X
Y

 (0) Y (1) Y

(0) X

(1) X

(a)

 0 1

 2 3

X
Y

 (0) Y (1) Y

(0) X

(1) X

(b)

 0 1

 2 3

(X + Y) (X + Y)

(X + Y) (X + Y)

(d)

X
YZ (00)Y+Z (01)Y+Z (11)Y+Z (10)Y+Z

(0) X

(1) X

(c)

 0 1 3 2

 4 5 7 6

X
YZ (00) (01) (11) (10)

[00]

(e)

 0 1 3 2

X
YZ (00)Y+Z (01)Y+Z (11)Y+Z (10) Y+Z

(0) X

(1) X

 0 1 3 2

 4 5 7 6

X+Y+Z X+Y+Z X+Y+Z X+Y+Z

X+Y+Z X+Y+Z X+Y+Z X+Y+Z

X
YZ (00)Y+Z

[00] W+X

 0 1 3 2

4 5 7 6

W + X + Y + Z

[00]

[00]

[00]

 4 5 7 6

12 13 15 14

 8 9 11 10

W + X + Y + Z W + X + Y + Z W + X + Y + Z

(01)Y+Z (11)Y+Z (10)Y+Z

W + X + Y + Z W + X + Y + Z W + X + Y + Z W + X + Y + Z

W + X + Y + Z W + X + Y + Z W + X + Y + Z W + X + Y + Z

W + X + Y + Z W + X + Y + Z W + X + Y + Z W + X + Y + Z

(f)

[01] W+X

[11] W+X

[10] W+X

12 13 15 14

8 9 11 10

Boolean Algebra78

Again the numbers in the squares represent Maxterm subscripts. Box
with number 1 represent M1, Number 6 represent, M6, and so on. Also notice
box numbering scheme is the same i.e., 0, 1, 3, 2 ; 4, 5, 7, 6 ; 12, 13, 15, 14 ; 8,
9, 11, 10.

One more similarity in SOP K-map and POS K-map is that they are binary
progression in gray code only. So, here also some Gray Code appears at the top.

But one major difference is that in POS K-Map, complemented letters
represent 1’s uncomplemented letters represent 0’s, whereas it is just the opposite
in SOP K-Map. Thus in the fig 1.15 (b), (d), (f) for 0’s uncomplemented letters
appear and for 1’s complemented letters appear.

How to derive POS Boolean expression using K-Map?

Rules for deriving expression are the same except for the thing i.e., POS
expression adjacent 0’s are encircled in the form of pairs, quads and octets.
Therefore, rules for deriving POS Boolean expression can be summarized as follows:

1. Prepare the truth table for a given function.

2. Draw an empty K-map for given function (i.e., 2-variable K-map for 2 variable
function; 3 variable K-map for 3 variable function and so on).

3. Map the given function by entering 0’s then squares numbered 5 and 13
will be having 0’s)

4. Enter 1’s in all left out empty squares.

5. Encircle adjacent 0’s in the form of octets, quads, and pair. Do not forget to
role the map and overlap.

6. Remove redundant groups, if any.

7. Write the reduced expressions for all the groups and AND (.) them.

Example 1.38: Reduce the following Karnaugh map in Product of sums form:

Solution: To reach at POS expression, we’ll have to encircle all possible groups
of adjacent 0’s encircling we get the following K-map.

A
BC

 (00) (01) (11) (10)

(0)

(1)

 0 0 0 1

 0 1 1 1

Boolean Algebra 79

There are 3 pairs which are;

Pair1: M0 . M1;

Pair 2: M0 .M4;

Pair 3: M1 . M3;

But there isone redundant group also i.e., Pair-1 (it’s all 0’s are encircled
by other groups). Thus removing this redundant pair-1, we have only two groups
now.

Reduced POS expression for Pair-2 is (B+C), as while moving across pair-2,
A changes its state from A to A, thus A is removed.

Reduced POS expression for Pair 3 is (A+C), as while moving across Pair 3
B changes to B, hence eliminated.

Final POS expression will be (B+C).(A+C)

Example1.39: Find the minimum POS expression of

Y(A, B, C, D) = (0, 1, 3, 5, 6, 7 10, 14, 15).

Solution: As the given function is 4 variable function, we’ll draw 4 variable K-
Map and then put 0’s for the given Maxterms. i.e., in the squares whose numbers
are 0, 1, 3, 5, 6, 7, 10, 14, 15 as each square number represents its Maxterm.
So, K-map will be

A
BC

 [00]B+C [01]B+C [11] B+C B + C

[0]A

[1]A

 0 0 0

 0 0 0

0 1 3 2

 4 5 7 6

 (00)C+D (01)C+D (11)C+D (10)C+DAB

CD

(00)A+B
 0 1 3 2

 4 5 7 6

 12 13 15 14

 8 9 11 10

(01)A+B

(11)A+B

(10)A+B

0 0 0 1

1 0 0 0

1 1 0 0

1 1 1 0

Boolean Algebra80

Encircling adjacent 0’s we have following groups:

Pair-1 = M0. M1; Pair -2= M14. M10;

Quad = M1 .M3. M5. M7; Quad-2 = M7. M6. M15. M14;

Reduced expressions are the following:

For Pair -1, (A+B+C) (as D is eliminated: D changes to D)

For pair-2, (A+C+D) (B Changes to B; hence eliminated)

For Quad-1, (A+D) (Horizontally C and vertically B is eliminated
as C, B are changing their states)

For Quad-2, (B+C) (horizontally D and vertically A is
eliminated)

Hence final POS expression will be

Y(A, B, C, D) = (A+B+C) (A+C+D+) (A+D) (B+C)

Boolean Algebra 81

Review questions:
One mark questions:
1. What is another name of Boolean algebra?

2. What do you understand by logic function?

3. Give examples for logic function.

4. What is meant by tautology and fallacy?

5. Prove the 1+Y is a tautology and 0.Y is a fallacy.

6. State indempotence law.

7. Prove indempotence law using truth table.

8. Draw logic diagram to represent indempotence law.

9. State Involution law.

10. Prove Involution law using truth table.

11. Draw logic diagram to represent Involution law.

12. State Complementarity law.

13. Prove Complementarity law using truth table.

14. Draw logic diagram to represent Complementarity law.

15. State Commutative law.

16. Prove Commutative law using truth table.

17. Draw logic diagram to represent Commutative law.

18. State Associative law.

19. Prove Associative law using truth table.

20. Draw logic diagram to represent Associative law.

21. State Distributive law.

22. Prove Distributive law using truth table.

23. Draw logic diagram to represent Distributive law.

24. Prove that X+XY = X (Absorption law)

25. Prove that X(X+Y) = X (Absorption law)

26. Draw logic diagram to represent Absorption law.

27. Prove that XY + XY = X

28. Prove that (X+Y)(X+Y) = X

29. Prove that X + X Y = X + Y

Boolean Algebra82

30. What is a minterm?

31. Find the minterm for XY + Z.

32. What is a maxterm?

33. Find the maxterm for X + Y + Z.

34. What is the canonical form of Boolean expression?

Two marks questions:
1. Prove algebraically that (X + Y) (X + Z) = X + YZ
2. Prove algebraically that X +XY = X + Y
3. Use duality theorem to derive another Boolean relation from : A + AB=A+B
4. What would be complement of the following :
(a) A(BC + BC)
(b) AB + CD
(c) XY + YZ + ZZ
(d) X + XY + XZ
5. What are the fundamental products for each of the input words;

ABCD = 0010, ABCD = 110, ABCD = 1110. Write SOP expression.
6. A truth table has output 1 for each of these inputs.

ABCD = 0011, ABCD = 0101, ABCD = 1000, what are the fundamental products
and write minterm expression.

7. Construct a Boolean function of three variables X, Y and Z that has an output
1 when exactly two of X, Y and Z are having values 0, and an output 0 in all
other cases.

8. Construct a truth table for three variables A, B and C that will have an
output 1 when XYZ = 100, XYZ = 101, XYZ = 110 and XYZ = 111. Write the
Boolean expression for logic network in SOP form.

9. Convert the following expressions to canonical Product-of-Sum form:
(a) (A+C)(C+D)
(b) A(B+C)(C + D)
(c) (X+Y)(Y+Z)(X+Z)
10. Convert the following expressions to canonical Sum-of-Product form:
(a) (X+XY+XZ)
(b) YZ + XY
(c) AB (B + C)
11. Draw Karnaugh maps for the following expressions:
(a) XY + XY
(b) XYZ + XYZ
(c) XYZ + XYZ + XYZ
12. Draw a general K-map for four variables A, B, C and D.
13. Given the expression in four variables , draw the K – map for the function:
(a) m2 + m3 + m5 + m 7 + m9 + m11 + m13
(b) m0 + m2 + m4 + m8 + m9 + m10 + m11 + m12 + m13

Boolean Algebra 83

14. Draw the K – map for the function in three variables given below.
(a) m0 + m2 + m4 + m6 + m7
(b) m1 + m2 + m3 + m5 + m7
15. Write S-O-P expression corresponding to the function F in the following truth

table and draw the logic gate diagram (use OR and AND gates)
 A B C F

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Three marks questions:
1. State and prove any three theorems of Boolean algebra.
2. State and prove associative law of addition and multiplication.
3. State and prove De Morgam’s theorems by the method of perfect induction.
4. Obtain the minterm expression for the Boolean function F = A+BC.
5. Explain with an example how to express a Boolean function in its sum-of-

products form.
6. Explain with an example how to express a Boolean function in its product- of-

sum form.
7. Construct a truth table for minterms and maxterms for three variables and

designate the terms.
8. Using basic gates, construct a logic circuit for the Boolean expression

(X+Y).(X+Z).(Y+Z)
9. Simplify the following Boolean expressions and draw logic circuit diagrams of

the simplified expressions using only NAND gates.
(a) ABC + ABC + ABC + ABC
(b) AC + AB + ABC + BC
(c) (ABC).(ABC)+ABC + ABC
(d) ABC + ABC + ABC + ABC
(e) (A+B+C)(A+B+C)(A+B+C)(A+B+C)
10. For a four variable map in w,x,y and z draw the subcubes for
(a) WXY (b) WX (c) XYZ (d) Y
11. Convert the following product-of-sums form into its corresponding sum-of-

products form using write the truth table.
F(x,y,z) = (2,46,7)

12. (a) Reduce the following Boolean expression to the simplest form:
A.[B+C.(AB + AC)
(b) Given : F(x,y,z) =(1,3,7) then prove that F’(x,y,z) = (0,2,4,5,6)

Boolean Algebra84

Five marks questions:
1. Using maps, simplify the following expressions in four variables W, X, Y and

Z.
(a) m1+m3+m5+m6+m7+m9+m11+m13
(b) m0+m2+m4+m8+m9+m10+m11+ m12+m13
2. For the Boolean function F and F’ in the truth table , find the following:
(a) List the minterms of the functions F and F’
(b) Express F and F’ in sum of minterms in algebraic form.
(c) Simplify the functions to an expression with a minimum number of literals.

A B C F F’
0 0 0 0 1
0 0 1 0 1
0 1 0 1 0
0 1 1 1 0
1 0 0 0 1
1 0 1 0 1
1 1 0 1 0
1 1 1 1 0

3. State and prove De Morgan’s theorems algebraically.
4. Find the complement of F = X + YZ, then show that F.F’ =0 and F + F’ = 1.
5. (a) State the two Absorption laws of Boolean algebra. Verify using truth

table.
(b) Simplify using laws of Boolean algebra. At each step state clearly the law
 used for simplification. F = x.y + x.z + x.y.z
6. Given the Boolean function F (x, y, z) = (0, 2, 4, 5, 6). Reduce it using

Karnuagh map method.
7. (a) State the two complement properties of Boolean algebra. Verify using

the truth tables. (b) x.(yz + yz)
8. Given the Boolean function F(A,B,C,D) = (5,6,7,8,9,10.14). Use Karnaugh’s

map to reduce the function F using SOP form. Write a logic gate diagram for
the reduced SOP expression.

9. Given ; F(A,B,C,D) = (0,2,4,6,8,10,14). Use Karnaugh map to reduce the
function F using POS form. Write a logic gate diagram for the reduced POS
expression.

10. Use Karnaugh map to reduce the given functions using SOP form. Draw the
logic gate diagrams for the reduced SOP expression. You may use gates with
more than two inputs. Assume that the variables and their complements
are available as inputs.

Boolean Algebra 85

11. Given the Boolean function F(A,B,C,D)=(0,4,8,9,10,11,12,13,15).

Reduce it by using Karnaugh map.
Working Sheet:

Logic gates86

Chapter 3
Logic Gates

Objectives:

 Learning differnt types of gates

 Designing the logical circuits

Logic gates 87

LOGIC GATES

3.1 Introduction

After Shannon applied Boolean algebra in telephone switching circuits,
engineers realized that Boolean algebra could be applied to computer electronics
as well.

In the computers, these Boolean operations are performed by logic gates.

Elementary logic gates

Gates are digital (two-state) circuits because the input and output signals are
either low voltage (denotes 0) or high voltage (denotes 1). Gates are often called
logic circuits, because they can be analyzed with Boolean algebra.

Gates are classified into two types.

(a) Basic gates

(b) Derived gates

(a) Basic gates

There are three basic logic gates:

1. NOT gate (inverter)

2. OR gate

3. AND gate

(b) Derived gates

There are four derived gates:

1. NOR gate

2. NAND gate

3. XOR gate (Exclusive OR gate)

4. XNOR gate (Exclusive NOR gate)

3.1.1 Inverter (NOT gate)

An inverter is also called a NOT gate, because the output is not the same
as the input. The output is sometimes called the complement (opposite) of the
input.

A gate is simply an electronic circuit which operates on one or more
signals and always produces an output signal.

Logic gates88

 X X
 Low High
 High Low

A low input i.e., 0 produces high output i.e., 1 and vice versa. NOT operation
is symbolized as or i.e., NOT X is written as X1 or X.

3.1.2 OR Gate

The OR gate has two or more input signals but only one output signal. If
one or more input signals are 1 (high), the output signal is 1 (high).

An OR gate can have as many inputs as desired. No matter how many
inputs are there, the action of OR gate is the same.

Following tables show OR action:

Table 3.4 Truth Table for three input OR gate

The OR gate has two or more input signals but only one output
signal. If any of the input signals is 1 (high), the output signal is 1
(high).

X

X X
0 1
1 0

An Inverter is a gate with only one input signal and one output
signal; the output state is always the opposite of the input state.

X Y Z F=X+Y+Z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

X Y F=X+Y
0 0 0
0 1 1
1 0 1
1 1 1

Table 3.3 Truth table for

2-input OR gatea

X

Logic gates 89

The symbol for OR gate is given below:

OR operation is symbolized as + i.e., X or Y is written as X+Y.

3.1.3 AND gate

This gate also can have two or more inputs and always gives single output.
If any input is 0, the output is 0. To obtain output as 1, all inputs must be 1.
Thus, the AND represents the logical multiplication.

X Y F=X.Y

0 0 0

0 1 0

1 0 0

1 1 1

Table 3.5: 2- input AND gate

X Y Z F=X.Y.Z

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 3.6: 3-input AND gate

A
B

F
A

C
FB

A

C FB

D

The AND Gate can have two or more input signals and produce one
output signal. When all the inputs are high then the output is
high. Otherwise, the output is low.

Logic gates90

The symbol for AND is

AND operation is symbolized as X AND Y is written as X.Y

 3.2 Derived gates

3.2.1 NOR Gate

NOR gate is nothing but NOT OR gate or inverted OR gate. This means, an
OR gate is always followed by a NOT gate to give NOR gate.

This gate also accepts two or more than two inputs and always produces
single output. If either of the two inputs is 1 (high), the output will be 0 (low).
Also, if all the inputs are low, then the output is high.

X Y F = X+Y

0 0 1

0 1 0

1 0 0

1 1 0

Table 3.7: 2-input NOR gate

X Y Z F=X+Y+Z

0 0 0 1

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Table 3.8: 3-input NOR gate

A
B F

A

C
FB

A

C FB

D

The NOR gate has two or more input signals but only one output
signal. If all the inputs are 0 (low), then the output signal is 1
(high).

Logic gates 91

NOR operation is symbolized as i.e., X NOR Y is written as X + Y.

(a)

(b) (c) (d)

3.2.2 NAND Gate

NAND gate is NOT AND gate or inverted AND gate. This means, an AND
gate is always followed by a NOT gate to give NAND gate.

NAND gate can also have two or more inputs. This gate produces 0 (low)
for all 1 (high) inputs and produces 1 (high) for other input combinations.

NAND action is illustrated in following Truth Tables (2.9 and 2.10)

X Y F = XY

0 0 1
0 1 1
1 0 1
1 1 0

The logical meaning of NAND gate can be shown as follows:
NAND operation is symbolized as i.e., X NAND Y is written as X.Y.

3.2.3 XOR Gate or Exclusive-OR Gate

The XOR Gate can also have two or more inputs, but produces one output
signal. Exclusive–OR gate is different from OR gate. OR gate produces output 1
for any input combination having one or more 1’s, but XOR gate produces output
1 for only those input combinations that have odd number of 1’s.

The NAND Gate has two or more input signals but only one output
signal. If all of the inputs are 1 (high), then the output produced is
0 (low).

X Y Z F = XYZ

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 3.9: Truth table of 2-input NAND gate

Table 3.10 Truth table of 3-input NAND gate

Logic gates92

In Boolean algebra, sign stands for XOR operation. Thus, A XOR B can
be written as AB.

Following Truth Tables (2.11 and 2.12) illustrates XOR operation.

No. of 1’s X Y Z = AB
Even/odd
Even 0 0 0
Odd 0 1 1
Odd 1 0 1
Even 1 1 0

Table 3.11 Truth table of 2-input XOR gate

No. of 1’s X Y Z F

Even 0 0 0 0
Odd 0 0 1 1
Odd 0 1 0 1
Even 0 1 1 0
Odd 1 0 0 1
Even 1 0 1 0
Even 1 1 0 0
Odd 1 1 1 1

Table 3.12 3 input XOR gate

The symbols of XOR gates are given below:

XOR addition can be summarized as following:

0 0 = 0; 0 1 = 1; 1 0 = 1; 1 1 = 0

The operation representing XOR may be written as F = xy = x y + xy

 Accepts two or more inputs and produces single output.
 The output is 0 if there are even number of 1’s in the inputs.
 The output is 1 if there are odd number of 1’s in the inputs.

Logic gates 93

3.2.4 XNOR Gate or Exclusive NOR Gate

An XOR gate is followed by a NOT gate (inventor) becomes XNOR gate.
Thus, The XNOR Gate is logically equivalent to an inverted XOR gate. Thus
XNOR produces 1 (high) as output when the input combination has even number
of 1’s or when all the inputs are 0’s.

Following truth tables 2.13 and 2.14 illustrate XNOR action.

No. of 1’s X Y F
Even/odd
Even 0 0 1
Odd 0 1 0

Odd 1 0 0

Even 1 1 1

Table 3.13 2 input XNOR gate

No. of 1’s X Y Z F
Even 0 0 0 1
Odd 0 0 1 0
Odd 0 1 0 0
Even 0 1 1 1
Odd 1 0 0 0
Even 1 0 1 1
Even 1 1 0 1
Odd 1 1 1 0

Table 3.14 3 input XNOR gate

Following are the XNOR gate symbols:

The bubble (small circle), on the output of NAND, NOR, XNOR gates
represents complementation.

The expression representing XNOR may be written as

F = (X+Y) . (X+Y)

The XNOR operation is symbolized as i.e. X NOR Y is written as XY.

Now that you are familiar with logic gates, you can use them in designing
logic circuits.

Logic gates94

3.2.5 Circuit diagrams

Boolean algebra is useless unless it can be translated into hardware, in
the form of gates. This translation of Boolean algebra in the gates’ form is known
as logic circuits. A logic circuit can be represented diagrammatically using the
traditional symbols of gates. Let us see how this is done, in the following
examples.

Example 2.1: Design a circuit to realize the following:

F(A, B, C) = AB + AC + BAC

Solution: The given Boolean expression can also be written as follows

F(A, B, C) = A . B + A . C + B . A . C

or F(A, B, C) = (A AND B) OR (A AND (NOT C)) OR ((NOT B) AND (NOT A) AND C)

Now these logical operators can easily be implemented in form of logic
gates. Thus circuit diagram for above expression will be as follows:

Example 2.2 Draw the diagram of digital circuit for the function:

F(X, Y, Z) = (X + Y) . (X + Z) . (Y + Z)

Solution: Above expression can also be written as

F(X, Y, Z) = (X OR Y) AND ((NOT X) OR (NOT Z)) AND (Y OR Z)

Thus circuit diagram will be

A

B
AB

A
C

AC

BAC

A
C

B

F

AB+AC+BAC

Logic gates 95

3.2.6 NAND, NOR as Universal Gates

We can design circuits using AND, OR and NOT gates as we have done so
far. But NAND and NOR gates are more popular as these are less expensive and
easier to design. Also, The basic gates AND, OR and NOT can easily be
implemented using NAND/NOR gates. Thus NAND, NOR gates are also referred
to as Universal Gates.

NAND–to-NOT logic

Not Operation

NOT X = X NAND X

 = X.X {De Morgan's Second Theorem}

 = X + X {De Morgan's Second Theorem}

 = X

NAND–to-AND logic

AND and OR operations from NAND gates are shown below:

X

Y
X+Y

X

Z

Z

Y

F

(X+Y).(X+Z).(Y+Z)

X+Z

Y+Z

Universal gate is a gate using which all the basic gates can be
designed. NAND and NOR gates are called as the universal gates.

X X

Logic gates96

AND operation

AND operation using NAND is

X . Y = (X NAND Y) NAND (X NAND Y)

Proof: X NAND Y = X.Y

= X + Y (De Morgan’s Second Theorem)

(X NAND Y) NAND (X NAND Y)

= (X + Y) NAND (X + Y)

= (X + Y) . (X + Y) (De Morgan’s Second Theorem)

= X.Y + X.Y (De Morgan’s First Theorem)

= X . Y + X . Y (X = X)

= XY (X + X = X)

OR Operation

X + Y = (X NAND X) NAND (Y NAND Y)

Proof : X NAND X = X.X {De Morgan’s Second Theorem}

 = X + X {De Morgan’s Second Theorem}

 = X { X + X = X }

Similarly, Y NAND Y = Y

Therefore, (X NAND X) NAND (Y NAND Y) = X NAND Y

 = (X . Y)

 = X + Y {X = X, Y = Y}

 = X + Y

X

Y
X.Y X.Y

X

Y

X.X

X+Y

Y.Y

Logic gates 97

NAND-to-NAND logic is best suited for Boolean expression in Sum-of-
Products form.

Design rule for NAND-TO-NAND logic Network (only for two-level-circuits)

1 Derive simplified sum-of products expression.

2 Draw a circuit diagram using AND, OR and NOT gates.

3 Just replace AND, OR and NOT gates with NAND gates

For example, XYZ + XZ can be drawn as follows, assuming that inputs and
their complements are available:

Example 2.3: Draw the diagram of a digital circuit for the function

F(X, Y, Z) = YZ + XZ using NAND gates only.

Solution : F(X, Y, Z) = YZ + XZ can be written as

= (Y NAND Z) NAND (X NAND Z)

Thus logic circuit diagram is

Example 2.4: Draw the diagram of digital circuit:

F (A, B, C) = AB + BC + CD using NAND-to-NAND logic.

Solution: F(A, B, C) = AB + BC + CD

= (A NAND B) NAND (B NAND C) NAND (C NAND D)

X
Y
Z

Z

X

XYZ+ZX

X
Y
Z

Z

X

XYZ+ZX
=

Y

Z

X
Z

Y.Z

X.Z YZ+ZX

Logic gates98

Thus logic circuit is

Example 2.5: Draw the circuit diagram for

F = ABC + CB using NAND-to-NAND LOGIC ONLY.

Solution: F = ABC + CB

= ((A NAND (NOT B) NAND C) NAND ((NOT C) NAND B))

Circuit Diagram is

NOR-to-NOT logic

NOT, AND and OR operations can be implemented in NOR-to-NOR form
as shown on below.

NOT X = X NOR X

 = X+X

 = X.X

 = X

A
B

B
C

C

D

A.B

B.C

C.D

AB+BC+CD

A
B

C

C
B

ABC+CB

A A

Logic gates 99

NOR to OR Operation

A + B = (A NOR B) NOR (A NOR B)

NOR to AND Operation

A . B = (A NOR A) NOR (B NOR B)

NOR-to-NOR logic is best suited for Boolean expression in Product-of-sum form.

Design rule for NOR-to-NOR logic network (only for two-level-circuits):

1 Derive a simplified product-of-sums form of the expression.

2 Draw a circuit diagram using NOT, OR and AND gates.

3 Finally substitute NOR gates tor NOT, OR and AND gates.

Example 2.6: Represent (X + Y) (Y + Z) (Z + X) in NOR-to-NOR form.

Solution: (X + Y) (Y + Z) (Z + X) = (X NOR Y) NOR (Y NOR Z) NOR (Z NOR X)

A

B
A+B

A+B

A

B

A

B
A.B

A

C

C
D

B

B
A.B

B.C

C.D

AB+BC+CD

Logic gates100

One mark questions:
1. What is a logic gate?
2. Mention the three basic logic gates?
3. Which basic gate is named as Inverter?
4. Which are the three logic operations?
5. Write the standard symbol for AND gate.
6. Write the truth table for AND gate.
7. Write the logic circuit for AND gate.
8. Write the standard symbol for OR gate.
9. Write the truth table for OR gate.
10.Write the logic circuit for OR gate.
11.Write the standard symbol for NOT gate.
12.Write the truth table for NOT gate.
13.Write the logic circuit for NOT gate.
14.What is a truth table?
15.What is meant by universal gates?
16.Mention different universal gates.
17.What is the output of the two input NAND gate for the inputs:
 A=0, B=1?
18.What are the values of the inputs to a three input NAND gate, if its

output is 1?
19.What are the values of the inputs to a three input NAND gate, if its

output is 0?
20.What is the output of the two input OR gate for the inputs: A=0, B=0?
21.What are the values of the inputs to a three input OR gate, if its output

is 0?
22.What are the values of the inputs to a three input OR gate, if its output

is 1?
23.For the truth table given below, what type of logic gate does the output

X represent?

A B C X
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

24.For the truth table given below, what type of logic gate does the output
X represent?

Logic gates 101

A B X
0 0 0
0 1 1
1 0 1
1 1 0

25.State any one of the principle from duality of theorems.

Three Marks Questions

1. What is meant by proof by perfect induction? Give an example.

2. Write the truth table and standard symbol of NAND gate.

3. Explain the working of NAND gate .(write the output conditions)

4.Write the truth table and standard symbol of NOR gate.

5.Explain the working of NOR gate .(write the output conditions)

6.Draw the logic gate diagram to implement AND and OR gates using NAND
gates only. (any two gates)

7.Draw the logic gate diagram to implement AND and OR gates using NOR
gates only. (any two gates)

8.Draw the logic gate diagram to implement NOT using
(a) only NOR gates (b) only NAND gates.

9.State De Morgan’s theorems.

10.What is principle of duality? Give an example.

11.Give the dual form of (any two) :
(a) 0.X + X.Y + 1.X
(b) X.(Y+Z) = X.Y + X.Z
(c) X + . Y = X + Y
(d) 1 + X = 1

12.Simplify the following logical expression using De Morgan’s theorems.
(a) (A+B).C
(b) (A+BC).(D+EF)

Logic gates102

13.Prove the following rules using the proof by perfect induction.
(a) X + XY = X
(b) X + Y = X + Y

14.Draw logic circuit diagram for the following expressions.
(a) Y = AB + C +
(b) Y = + Z + Z

 15.Simplify the following Boolean expressions.
(a) A
(b) AB + A

103Data structure

Chatpter 4
Data Structures

Objectives:

 To understand the concept of data structures

 To understand the types of data structures

 To understand the operations on different data structures

 The implementation of different data structures

104 Data structure

4.1 Introduction

Data is a collection of raw facts that are processed by computers. Data
may contain single value or set of values. For example students name may contain
three sub items like first name, middle name, and last name, whereas students
regno can be treated as a single item. These data have to be processed to form
information.

In order to process the data the data should be organized in a particular
way. This leads to structuring of data. Utilization of space by data in memory
and optimization of time taken for processing, plays an important role in data
structures. Data structures are efficient way to organize the data.

Data structures provide a means to manage large amount of data efficiently.
Data structures are also key factor in designing efficient algorithms. In this
chapter we will discuss about various types of data structures and operations
performed on them.

Data structure means organization or structuring a collection of data items
in appropriate form so as to improve the efficiency of storage and processing.

A data structure is a specialized format for organizing and storing
data.

4.2 Data representation

Computers memory is used to store the data which is required for
processing. This process is known as data representation. Data may be of same
type or different types. A need may arise to group these items as single unit.
Data structures provide efficient way of combining these data types and process
data.

Data structure is a method of storing data in memory so that it can be
used efficiently. The study of data structure mainly deals with:

 Logical or mathematical description of structure.
 Implementation of structure on a computer.
 Analysis of structure which includes determining amount of space

in memory and optimization of time taken for processing.

We consider only the first and second cases are considered in this chapter.

105Data structure

4.3 classification of data structures

4.3.1 Primitive data structures:

Data structures that are directly operated upon by machine-level
instructions are known as primitive data structures.

The integer, real (float), logical data, character data, pointer and reference
are primitive data structures.

Integer

Floating
point

Character

Pointers

Arrays

Primitive Data
structure

Data
Structure

Non-Primitive
Data Structure

Single
Dimension

Multi
Dimension

Stack

Queues

Linked
List

Trees

Linear Data
Structures

Lists

Files Non-Linear
Data structure

Graph

Two
Dimension

106 Data structure

4.3.2 Operations on primitive data structures

The various operations that can be performed on primitive data structures
are:

 Create: Create operation is used to create a new data structure. . This
 operation reserves memory space for the program elements. It
 can be carried out at compile time and run-time.

 For example, int x;

 Destroy: Destroy operation is used to destroy or remove the data
structures from the memory space.

 When the program execution ends, the data structure is
 automatically destroyed and the memory allocated is eventually
 de-allocated. C++ allows the destructor member function
 destroy the object.

 Select: Select operation is used by programmers to access the data within
 data structure. This operation updates or alters data.

 Update: Update operation is used to change data of data structures. An
 assignment operation is a good example of update operation.

 For example, int x = 2; Here, 2 is assigned to x.

Again, x = 4; 4 is reassigned to x. The value of x now is 4
because 2 is automatically replaced by 4, i.e. updated.

4.3.3 Non primitive data structures:

Non-primitive data structures are more complex data structures. These
data structures are derived from the primitive data structures. They stress on
formation of groups of homogeneous and heterogeneous data elements.

Non-primitive data structures are classified as arrays, lists and files.

Array is the collection of homogenous elements under the same name.
The different types of arrays are one-dimensional, two-dimensional and multi-
dimensional.

Data structures under lists are classified as linear and non-linear data
structures.

107Data structure

4.3.4 Linear data structure:

Linear data structures are a kind of data structure that has homogenous
elements. Each element is referred to by an index. The linear data structures
are Stack, Queues and Linked Lists.

Data elements of linear data structures will have linear relationship
between data elements. One of the methods is to have linear relationship between
elements by means of sequential memory locations. The other method is to have
linear relationship between data elements by means of pointers or links.

4.3.5 Non-linear data structure:

A non-linear data structure is a data structure in which a data item is
connected to several other data items. The data item has the possibility to reach
one or more data items. Every data item is attached to several other data items
in a way that is specific for reflecting relationships. The data items are not arranged
in a sequential structure.

Trees and Graphs are the examples of non-linear data structures.

4.4 Operations on linear data structure

The basic operations on non-linear data structures are as follows:

 Traversal: The process of accessing each data item exactly once to perform
some operation is called traversing.

 Insertion: The process of adding a new data item into the given collection
of data items is called insertion.

 Deletion: The process of removing an existing data item from the given
collection of data items is called deletion.

 Searching: The process of finding the location of a data item in the given
collection of data items is called as searching.

 Sorting: The process of arrangement of data items in ascending or
descending order is called sorting.

 Merging: The process of combining the data items of two structures to
form a single structure is called merging.

4.5 Arrays
An array is a collection of homogeneous elements with unique name and

the elements are arranged one after another in adjacent memory location.

108 Data structure

The data items in an array are called as elements. These elements are
accessed by numbers called as subscripts or indices. Since the elements are
accessed using subscripts, arrays are also called as subscripted variables.
4.5.1 Types of Arrays:

There are three types of array:
 One-dimensional Array
 Two-dimensional Array
 Multi-dimensional array

4.5.2 One-dimension Array

An array with only one row or column is called one-dimensional array. It
is finite collection of n number of elements of same type such that

 Elements are stored in contiguous locations
 Elements can be referred by indexing

Array can be denoted as: data type Arrayname[size];

Here, size specifies the number of elements in the array and the index
(subscript) values ranges from 0 to n-1.

109Data structure

Features:

 Array size should be positive number only.

 String array always terminates with null character (‘\0’).

 Array elements are counted from 0 to n-1.

 Useful for multiple reading of elements.

Calculating the length of Array

Arrays can store a list of finite number (n) of data items of same data type
in consecutive locations. The number n is called size or length of the array.

The length of an array can be calculated by L = UB – LB + 1

 Here, UB is the largest index and LB is the smallest index of an array.

 Example: If an array A has values 10, 20, 30, 40, 50, 60 stored in locations 0, 1,
 2, 3, 4, 5 then UB = 5 and LB= 0

 Size of the array L = 5 – 0 + 1 = 6

4.5.3 Representation of one-dimensional arrays in memory

Elements of linear array are stored in consecutive memory locations. Let P
be the location of the element. Address of first element of linear array A is given
by Base(A) called the Base address of A. Using this we can calculate the address
of any element of A by the formula

LOC(A[P]) = Base(A) + W(P – LB)

Here W is the number of words per memory cell.

Example: Suppose if a string S is used to store a string ABCDE in it with starting
address at 1000, one can find the address of fourth
element as follows:

4.5.4 Basic operations on one-dimensional arrays

The following operations are performed on arrays:

Now the address of element S[3] can be
calculated as follows:

 Address(S[3]) = Base(S) + W(P - LB)Here W =
1 for characters

 = 1000 + 1(3 - 0)

= 1003

110 Data structure

1. Traversing: Accessing each element of the array exactly once to do
 some operation.

2. Searching: Finding the location of an element in the array.
3. Sorting: Arranging the elements of the array in some order.
4. Insertion: Inserting an element into the array.
5. Deletion: Removing an element from the array.
6. Merging: Combining one or more arrays to form a single array.

4.5.5 Traversing a Linear Array

 Traversing is the process of visiting each subscript at least once from the
beginning to last element.

For example, to find the maximum element of the array we need to access
each element of the array.

Algorithm: Let A be a linear array with LB and UB as lower bound and upper
bound. This algorithm traverses the array A by applying the operation PROCESS
to each element of A.

1. for LOC = LB to UB

PROCESS A[LOC]

 End of for

2. Exit

Program: To input and output the elements of the array.

#include<iostream.h>
#include<iomanip.h>
#include<conio.h>
void main()
{

int a[10], i, n;

clrscr();
cout<<“How many elements? “;
cin>>n;

cout<<“Enter the elements: “;

for(i=0; i<n; i++)
cin>>a[i];

cout<<“The elements are “;
for(i=0; i<n; i++)

cout<<setw(4)<<a[i];
getch();

}

111Data structure

How many elements? 5
Enter the elements 5 10 20 15 10
The elements are 5 10 20 15 10

4.5.6 Searching an element

It refers to finding the location of the element in a linear array. There are
many different algorithms. But the most common methods are linear search
and binary search.

Linear Search

This is the simplest method in which the element to be searched is
compared with each element of the array one by one from the beginning till end
of the array. Since searching is one after the other it is also called as sequential
search or linear search.

Algorithm: A is the name of the array with N elements. ELE is the element to be
searched. This algorithm finds the location loc where the search ELE element is
stored.

Step 1: LOC = -1
Step 2: for P = 0 to N-1

 if(A[P] = ELE)
LOC = P
GOTO 3

 End of if
End of for

Step 3: if(LOC >= 0)
PRINT LOC

else
PRINT “Search is unsuccessful”

Step 4: Exit

Program: To find the location of an element

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
void main()
{

int a[50], i, pos, ele, n;
clrscr();
cout<<“Enter the number of elements: “;

112 Data structure

cin>>n;
cout<<“Enter the elements: “;
for(i=0; i<n; i++)

cin>>a[i];
cout<<“Enter the search element: “;
cin>>ele;
pos=-1;
for(i=0; i<n ;i++)
if(ele == a[i])
{

pos = i;
break;

}
if(pos>= 0)
 cout<<ele<<“ is present at position “<<pos<<endl;
else
 cout<<ele<<“ is not present”<<endl;
getch();

}

Enter the number of elements: 5
Enter the elements: 10 20 50 40 30
Enter the search element: 40
40 is present at position 3

Binary Search:

When the elements of the array are in sorted order, the best method of
searching is binary search. This method compares the element to be searched
with the middle element of the array. If the comparison does not match the
element is searched either at the right-half of the array or at the left-half of the
array.

Let B and E denote the beginning and end locations of the array. The
middle element A[M] can be obtained by first finding the middle location M by
M = int(B+E)/2, where int is the integer value of the expression.

If A[M] = ELE, then search is successful. Otherwise a new segment is
found as follows:

1. If ELE<A[M] , searching is continued at the left-half of the segment. Reset
E = M – 1.

2. If ELE>A[M], searching is continued at the right-half of the segment. Reset
B = M + 1.

113Data structure

3. If ELE not found then we get a condition B>E. This results in unsuccessful
search.

Algorithm: A is the sorted array with LB as lower bound and UB as the upper
bound respectively. Let B, E, M denote beginning, end and middle locations of
the segments of A.

Step 1: set B = 0, E = n-1 LOC=-1
Step 2: while (B <= E)

M= int(B+E)/2
if(ELE = A[M]

loc = M
GOTO 4

else
if(ELE <A[M])

E = M-1
else

B = M+1
End of while

Step 3: if(LOC >= 0)
PRINT LOC

else
PRINT “Search is unsuccessful”

Step 4: Exit

Program: To find the location of an element.

#include<iostream.h>
void main()
{

int a[10], i, n, m, loc, b, e, pos, ele;

cout<<“How many elements? “;
cin>>n;

cout<<“Enter the elements: “;
for(i=0; i<n; i++)

cin>>a[i];

cout<<“Enter the search element “;
cin>>ele;

pos=-1;
b=0;
e=n-1;

while(b<=e)
{

114 Data structure

m=(b+e)/2;
if(ele==a[m])
{

pos=m;
break;

}
else

if(ele<a[m])
e=m-1;

else
b=m+1;

}
if(pos>=0)

cout<<“Position= “<<pos;
else

cout<<“Search is unsuccessful”;
}

How many elements? 7
Enter the elements: 10 20 30 40 50 60 70
Enter the search element 60
Position= 5

4.5.7 Insertion an element

Insertion refers to inserting an element into the array. A new element can
be done provided the array should be large enough to accommodate the new
element.

When an element is to be inserted into a particular position, all the
elements from the asked position to the last element should be shifted into the
higher order positions.

 Example: Let A be an array with items 10, 20, 40, 50 and 60 stored at consecutive
locations. Suppose item=30 has to be inserted at position 2. The following
procedure is applied.

 Move number 60 to position 5.
 Move number 50 to position 4.
 Move number 40 to position 3
 Position 2 is blank. Insert 30 into the position 2. i.e., A[2] = 30.

115Data structure

Algorithm: A is the array with N elements. ITEM is the element to be inserted in
the position P.

Step 1: for I = N-1 downto P
A[I+1] = A[I]

End of for
Step 2: A[P] = ITEM
Step 3: N = N+1
Step 4: Exit

Program: To insert an element into the array.

#include<iostream.h>
#include<iomanip.h>
void main()
{

int a[10], i, n, ele, p;

cout<<"How many elements? ";
cin>>n;

cout<<"Enter the elements: ";
for(i=0; i<n; i++)

cin>>a[i];

cout<<"Enter the element to be inserted: ";
cin>>ele;

cout<<"Enter the position (0 to "<<n<<"): ";
cin>>p;

if(p > n)

116 Data structure

cout<<"Invalid position";
else
{

for(i=n-1; i>=p; i--)
a[i+1] = a[i];

a[p] = ele;
n = n+1;

cout<<"The elements after the insertion are ";
for(i=0; i<n; i++)

cout<<setw(4)<<a[i];
}

}

How many elements? 5
Enter the elements: 1 2 4 5 6
Enter the element to be inserted: 3
Enter the position (0 to 5): 2
The elements after the insertion are 1 2 3 4 5 6

4.5.8 Deleting an element from the array

Deletion refers to removing an element into the array. When an element
is to be deleted from a particular position, all the subsequent shifted into the
lower order positions.

Example: Let A be an array with items 10, 20, 30, 40 and 50 stored at consecutive
locations. Suppose item=30 has to be deleted at position 2. The following
procedure is applied.

 Copy 30 to Item. i.e., Item = 30
 Move number 40 to position 2.
 Move number 50 to position 3.

117Data structure

Algorithm: A is the array with N elements. ITEM is the element to be deleted in
the position P and it is stored into the variable Item.

Step 1: Item = A[P]
Step 2: for I = P to N-1

A[I] = A[I+1]
End of for

Step 2: N = N-1
Step 4: Exit

Program: To delete an element from the array.

#include<iostream.h>
#include<iomanip.h>
void main()
{

int a[10], i, n, ele, p;

cout<<“How many elements? “;
cin>>n;

cout<<“Enter the elements: “;
for(i=0; i<n; i++)

cin>>a[i];

cout<<“Enter the position (0 to “<<n-1<<“): “;
cin>>p;

if(p > n-1)
cout<<“Invalid position”;

else
{

ele = a[p];
for(i=p; i<n; i++)

a[i] = a[i+1];
n = n-1;
cout<<“The elements after the deletion is “;
for(i=0; i<n; i++)

cout<<setw(4)<<a[i];
}

}

How many elements? 5

Enter the elements: 10 20 30 40 50

Enter the position (0 to 4): 2

The elements after the deletion is 10 20 40 50

118 Data structure

4.5.9 Sorting the elements
Sorting is the arrangement of elements of the array in some order. There

are various methods like bubble sort, shell sort, selection sort, quick sort, heap
sort, insertion sort etc. But only insertion sort is discussed in this chapter.
Insertion Sort:

The first element of the array is assumed to be in the correct position. The
next element is considered as the key element and compared with the elements
before the key element and is inserted in its correct position.

Example: Consider the following list of numbers 70 30 40 10 80 stored in the
 consecutive locations.

Step 1: Assuming 30 in correct position 70 is compared with 30 . Since 30 is less
 the list now is 30 70 40 10 8 0

Step 2: Now 40 is the key element. First it is compared with 70. Since 40 is less
 than 70 it is inserted before 70. The list now is 30 40 70 10 80

Step 3: Now 10 is the key element. First it is compared with 70. Since it is less it
 is exchanged. Next it is compared with 40 and it is exchanged. Finally it
 is compared with 30 and placed in the first position. The list now is

 10 30 40 70 80

Step 4: Now 80 is the key element and compared with the sorted elements and
 placed in the position. Since 80 is greater than 70 it retains its position.

Algorithm: Let A be an array with N unsorted elements. The following algorithm
sorts the elements in order.

Step 1: for I = 1 to N-1
Step 2: J = I

While (J >= 1)
If(A[J] < A[J-1])

temp = A[J]
A[J] = A[J-1]
A[J-1] = temp

If end
J = J-1

While end

for end

Step 3: Exit

119Data structure

4.5.10 Two-dimensional arrays

A two dimensional array is a collection of elements and each element is
identified by a pair of indices called as subscripts. The elements are stored in
contiguous memory locations.

We logically represent the elements of two-dimensional array as rows and
columns. If a two-dimensional array has m rows and n columns then the elements
are accessed using two indices I and J, where 0<=I<=m-1 and 0<=J<=n-1. Thus
the expression A[I][J] represent an element present at Ith-row and Jth-column of
the array A. The number of rows and columns in a matrix is called as the order
of the matrix and denoted as m x n.

The number of elements can be obtained by multiplying number of rows
and number of columns.

In the above figure, the total number
of elements in the array would be,
rows x columns = 3 x 3 =9-elements.

Representation of 2-dimensional array in memory
Suppose A is the array of order m x n. To store m*n number of elements,

we need m*n memory locations. The elements should be in contiguous memory
locations.

There are two methods:
 Row-major order
 Column-major order

Row-major order
Let A be the array of order m x n. In row-major order, all the first-row

elements are stored in sequential memory locations and then all the second-row
elements are stored and so on.

Base(A) is the address of the first element. The memory address of any
element A[I][J] can be obtained by the formula

LOC(A[I][J]) = Base(A) + W[n(I-LB) + (J-LB)]
where W is the number of words per memory location.

Example: Consider the array of order 3 x 3.

120 Data structure

Column-major order

Let A be the array of order m x n. In column-major order, all the first-
column elements are stored in sequential memory locations and then all the
second-column elements are stored and so on.

Base(A) is the address of the first element. The memory address of any
element A[I][J] can be obtained by the formula

LOC(A[I][J]) = Base(A) + W[(I-LB) + m(J-LB)]

where W is the number of words per memory location.

Example: Consider the array of order 3 x 3.

121Data structure

Program: To read and print the elements in column-major order.

#include<iostream.h>
#include<iomanip.h>
void main()
{

int a[5][5], i, j, r, c;

cout<<“Enter the order: “;
cin>>r>>c;

cout<<“Enter the elements: “<<endl;
for(i=0; i<c; i++)

for(j=0; j<r; j++)
cin>>a[j][i];

cout<<“The matrix in column-major order is: “<<endl;
for(i=0; i<r; i++)
{

for(j=0; j<c; j++)
cout<<setw(4)<<a[i][j];

cout<<endl;
}

}

122 Data structure

Enter the order: 2 3
Enter the elements:
1 2 3
4 5 6
The matrix in column-major order is:
 1 2 3
 4 5 6

Example: Consider the array A of order 25 x 4 with base value 2000 and one
word per memory location. Find the address of A[12][3] in row-major order and
column-major order.

Solution:

Given Base(A) = 2000, m = 25, n = 4 LB = 0

W = 1, I = 12, J = 3

Row-major order: LOC(A[I][J]) = Base(A) + W[n(I-LB) + (J-LB)]

LOC(A[12][3]) = 2000 + 1[4(12-0)+(3-0)]

 = 2000 + 4(12) + 3

 = 2000 + 48 + 3

 = 2051

Column-major order: LOC(A[I][J]) = Base(A) + W[(I-LB) + m(J-LB)]

LOC(A[12][3]) = 2000 + 1[(12-0)+25(3-0)]

 = 2000 + 1(12 + 75)

 = 2000 + 87

 = 2087

Applications of arrays

1. Arrays are used to implement other data structures such as heaps, hash
tables, queues, stacks and strings etc.

2. Arrays are used to implement mathematical vectors and matrices.

3. Many databases include one-dimensional arrays whose elements are
records.

Advantages of arrays

1. It is used to represent multiple data items of same type by using only
single name.

123Data structure

2. It can be used to implement other data structures like linked lists, stacks,
queues, trees, graphs etc.

3. Two-dimensional arrays are used to represent matrices.

Disadvantages of arrays

1. We must know in advance that how many elements are to be stored in
array.

2. Array is static structure. It means that array is of fixed size. The memory
which is allocated to array cannot be increased or reduced.

3. Since array is of fixed size, if we allocate more memory than requirement
then the memory space will be wasted. If we allocate less memory than
requirement, then it will create problem.

4. The elements of array are stored in consecutive memory locations. So
insertions and deletions are very difficult and time consuming.

STACKS

4.6.1 Introduction
A stack is an ordered collection of items where the addition of new items

and the removal of existing items always take place at the same end. This end is
commonly referred to as the “top”. The end opposite to top is known as the base.

The base of the stack is significant since items stored in the stack that are
closer to the base represent those that have been in the stack the longest. The
most recently added item is the one that is in position to be removed first. This
ordering principle is sometimes called LIFO, last-in first-out. Newer items are
near the top, while older items are near the base.

Many examples of stacks occur in everyday situations. Almost any cafeteria
has a stack of trays or plates where you take the one at the top, uncovering a
new tray or plate for the next customer in line. Imagine a stack of books on a
desk. The only book whose cover is visible is the one on top. To access others in
the stack, we need to remove the ones that are placed on top of them. Another
Figure shows another stack. This one contains a number of primitive data
objects.

124 Data structure

Figure A Stack of Books

One of the most useful ideas related to stacks comes from the simple
observation of items as they are added and then removed. Assume you start out
with a clean desktop. Now, place books one at a time on top of each other. You
are constructing a stack. Consider what happens when you begin removing
books. The order that they are removed is exactly the reverse of the order that
they were placed. Stacks are fundamentally important, as they can be used to
reverse the order of items. The order of insertion is the reverse of the order of
removal.

Considering this reversal property, you can perhaps think of examples of
stacks that occur as you use your computer. For example, every web browser
has a Back button. As you navigate from web page to web page, those pages are
placed on a stack (actually it is the URLs that are going on the stack). The
current page that you are viewing is on the top and the first page you looked at
is at the base. If you click on the Back button, you begin to move in reverse order
through the pages.

4.6.2 Representation of stacks in memory

The representation of a stack in the memory can be done in two ways.

 Static representation using arrays
 Dynamic representation using linked lists

125Data structure

Array Representation of a Stack

Stack can be represented using a one-dimensional array. A block of memory
is allocated which is required to accommodate the items to the full capacity of
the stack. The items into the stack are stored in a sequential order from the first
location of the memory block.

A pointer TOP contains the location of the top element of the stack. A
variable MAXSTK contains the maximum number of elements that can be stored
in the stack.

The condition TOP = MAXSTK indicates that the stack is full and TOP =
NULL indicates that the stack empty.

Representing a stack using arrays is easy and convenient. However, it is
useful for fixed sized stacks. Sometimes in a program, the size of a stack may be
required to increase during execution, i.e. dynamic creation of a stack. Dynamic
creation of a stack is not possible using arrays. This requires linked lists.

Linked list representation of a Stack

The size of the array needs to be fixed to store the items into the stack. If
the stack is full we cannot insert an additional item into the array. It gives an
overflow exception. But in linked list we can increase the size at runtime by
creating a new node. So it is better to implement stack data structure using

126 Data structure

Linked list data structure. The linked list structure will be studied in detail
later.

Insertion

Insertion operation refers to Inserting an element into stack. We create a
new node and insert an element into the stack. To follow the stack principle
“Last-in-first-out”, a node need to be created from the end of the Linked list
and element need to be inserted into the node from the end of the linked list.

Deletion

Deletion operation is to delete an element or node from the Linked list.
Deletion can be done by deleting the top-most item from the stack as the last
item inserted is the first item that needs to be deleted as per stack principle. So
the recently inserted item i.e, top item must be deletes from the linked list to
perform as stack deletion.

START

20 NULL50 25

127Data structure

4.6.3 Operation Stack

The stack abstract data type is defined by the following structure and
operations. A stack is structured, as described above, as an ordered collection of
items where items are added to and removed from the end called the “top.”
Stacks are ordered LIFO. The stack operations are given below.

 stack() creates a new stack that is empty. It needs no parameters and
returns an empty stack.

 push(item) adds a new item to the top of the stack. It needs the item
and returns nothing.

 pop() removes the top item from the stack. It needs no parameters and
returns the item. The stack is modified.

 peek() returns the top item from the stack but does not remove it. It
needs no parameters. The stack is not modified.

 isEmpty() tests whether the stack is empty. It needs no parameters
and returns a Boolean value.

 size() returns the number of items on the stack. It needs no parameters
and returns an integer.

Algorithm for PUSH Operation: PUSH(STACK , TOP, SIZE, ITEM)

STACK is the array that contains N elements and TOP is the pointer to the
top element of the array. ITEM the element to be inserted. This procedure inserts
ITEM into the STACK.

Step 1: If TOP = N -1then [check overflow]
PRINT “Stack is full”
Exit

End of If
Step 2: TOP = TOP + 1 [Increment the TOP]
Step 3: STACK[TOP] = ITEM [Insert the ITEM]
Step 4: Return

Algorithm for POP Operation: POP(STACK , TOP, ITEM)

STACK is the array that store N items. TOP is the pointer to the top element
of the array. This procedure deleted top element from STACK.

128 Data structure

Step 1: If TOP = NULL then [check underflow]
PRINT “Stack is empty”

Exit
End of If

Step 2: ITEM = STACK[TOP] [Copy the top element]
Step 3: TOP = TOP – 1 [Decrement the top]
Step 4: Return

4.6.4 Application of Stacks

 The simplest application of a stack is to reverse a word. You push a given
word to stack - letter by letter - and then pop letters from the stack.

 Another application is an “undo” mechanism in text editors; this operation
is accomplished by keeping all text changes in a stack.

 Backtrackin

Backtracking: This is a process when you need
to access the most recent data element in a
series of elements. Think of a labyrinth or maze
- how do you find a way from an entrance to an
exit?

Once you reach a dead end, you must
backtrack. But backtrack to where? to the
previous choice point. Therefore, at each choice
point you store on a stack all possible choices.
Then backtracking simply means popping a
next choice from the stack.

 Language processing:

 Space for parameters and local variables is created internally
using a stack.

 Compiler’s syntax check for matching braces is implemented by
using stack.

 support for recursion

 Conversion of decimal number into binary

 To solve tower of Hanoi

 Expression evaluation and syntax parsing

 Conversion of infix expression into prefix and postfix.

 Rearranging railroad cars

129Data structure

 Quick sort

 Stock span problem

 Runtime memory management

Arithmetic expression: An expression is a combination of operands and operators
that after evaluation results in a single value. Operands consist of constants and
variables. Operators consists of {, +, - , * , / …….. etc.,) [Expressions can be

 Infix expression

 Post fix expression

 Prefix expression

Infix expression: If an operator is in between two operands it is called infix
expression.

Example: a + b, where a and b are the operands and + is an operator.

Postfix expression: If an operator follows the two operands it is called post fix
expression.

 Example: ab +

Prefix expression: If an operator precedes two operands, it is called prefix
expression.

 Example: +ab

Algorithm for Infix to Postfix

1. Examine the next element in the input.

2. If it is operand, output it.

3. If it is opening parenthesis, push it on stack.

4. If it is an operator, then

 If stack is empty, push operator on stack.

 If the top of stack is opening parenthesis, push operator on stack

 If it has higher priority than the top of stack, push operator on
stack.

 Else pop the operator from the stack and output it, repeat step 4.

5. If it is a closing parenthesis, pop operators from stack and output them
until an opening parenthesis is encountered. Pop and discard the opening
parenthesis.

6. If there is more input go to step 1.

130 Data structure

7. If there is no more input, pop the remaining operators to output.

Example: Suppose we want to convert 2*3/(2-1)+5*3 into Postfix form.

Evaluating a postfix expression using stack

 The postfix expression to be evaluated is scanned from left to right.

 Each operator in a postfix string refers to the previous two operands
in the string.

 Each time we read an operand we push it into a stack. When we
reach an operator, its operands will then be top two elements on
the stack.

 We can then pop these two elements, perform the indicated operation
on them, and push the result on the stack.

 So that it will be available for use as an operand of the next operator.

 Initialize an empty stack.

 While character remain in the input stream

 Read next character.

 If character is an operand, push it into the stack.

131Data structure

Picture below depicts postfix expression using stack

Algorithm for evaluating a postfix expression
WHILE more input items exist
{

If symb is an operand then
push (operand_stk, symb)

else //symbol is an operator
{

Opnd1 = pop(operand_stk);
Opnd2 = pop(operand_stk);
Value = opnd2 symb opnd1
Push(operand_stk, value);

}
} Result = pop (operand_stk);

 Else, if character is an operator, pop top two characters off the
stack, apply the operator, and push the answer back into the
stack.

 Pop the answer off the stack.

132 Data structure

Consider an expression S having operators, operands, left parenthesis
and right parenthesis. Operators includes +, - , /, *. Evaluations are performed
from left to right otherwise indicated by parenthesis. Stack is used to hold
operators and left parenthesis. The postfix expression can be obtained from left
to right using operands from } the operators which are removed from STACK.
Left parentheses are pushed onto stack and right parenthesis at the end of S.
Algorithm is completed when STACK is empty.
Example 1: Convert A + (B * C – (D/E^ F) into postfix notation.
Symbol scanned stack expression

1. A (A
2. + (+ A
3. ((+(A
4. B (+(A B
5. * (+(* A B
6. C (+(* A B C
7. - (+(- A B C *
8. ((+(-(A B C *
9. D (+(-(A B C * D
10. / (+(-(/ A B C * D
11. E (+(-(/ A B C * D E
12. ^ (+(-(/^ A B C * D E
13. F (+(-(/^ A B C * D E F
14.) (+(- A B C * D E F ^ /

Examples 2: Convert the following infix expressions postfix notation.

133Data structure

Queues

4.7.1 Introduction

We now turn our attention to another linear data structure. This one is
called queue. Like stacks, queues are relatively simple and yet can be used to
solve a wide range of important problems.

A queue is an ordered collection of items where the addition of new items
and the removal of existing items always take place at different ends.

Insertion and deletion is performed according to the first-in first-out (FIFO)
principle. An excellent example of a queue is a line of students in the food
court of a canteen. New additions to the line are made to the back of the
queue, while removal (or serving) happens in the front. In the queue only two
operations are allowed enqueue and dequeue. Enqueue means to insert an
item into the back of the queue, dequeue means removing the front item. The
picture demonstrates the FIFO access.

The difference between stacks and queues is in removing. In a stack we
remove the item the most recently added; in a queue, we remove the item the
least recently added.

Queue is also called as FIFO list, i.e. First-In-First-Out. Here insertions
are limited to one end of the list called the rear, whereas deletions are limited to
other end called as front.

A queue is an ordered collection of items where an item is inserted at
one end called the “rear,” and an existing item is removed at the other
end, called the “front.” Queues maintain a FIFO ordering property.

134 Data structure

4.7.2 Types of queues
Queue can be of four types:

1. Simple Queue

2. Circular Queue

3. Priority Queue

4. Dequeue (Double Ended queue)

Item1 Item2 Item3 Item4 Item5

FRONT REAR

135Data structure

1. Simple Queue: In Simple queue insertion occurs at the rear end of the list,
and deletion occurs at the front end of the list.

2. Circular Queue: A circular queue is a queue in which all nodes are treated as
circular such that the last node follows the first node.

3. Priority Queue: A priority queue is a queue that contains items that have
 some preset priority. An element can be inserted or removed
 from any position depending on some priority.

4. Dequeue (Double Ended queue):
It is a queue in which insertion and deletion takes place at both the

ends.

A B C D E

0 1 2 3 4 5 6 7 8

FRONT REAR

FRONT = 1
REAR = 5

0 1 2 3 4 5 6 7 8

REAR

FRONT = 1
REAR = 5

F D E A B C

Insertion

Deletion

Insertion

Deletion

136 Data structure

4.7.3 Operations on queue
The queue abstract data type is defined by the following structure and

operations. The queue operations are given below.

 Queue() creates a new queue that is empty. It needs no parameters
and returns an empty queue.

 enqueue(item) adds a new item to the rear of the queue. It needs the
item and returns nothing. This operation is generally called as push.

 dequeue() removes the front item from the queue. It needs no parameters
and returns the item. The queue is modified. This operation is generally
called as pop.

 isEmpty() tests to see whether the queue is empty. It needs no
parameters and returns a Boolean value.

 size() returns the number of items in the queue. It needs no parameters
and returns an integer.

4.7.4 Memory representation of a queue using arrays
Queue is represented in memory linear array. Let QUEUE be a linear

queue. Two pointer variables called FRONT and REAR are maintained. The pointer
variable FRONT contains the location of the element to be removed and the
pointer variable REAR contains location of the last element inserted. The condition
FRONT = NULL indicates that the queue is empty and the condition REAR = N
indicates that the queue is full.

REAR = REAR +1, QUEUE[REAR] =’ E’

A B C D

0 1 2 3 4 5 6 7 8

FRONT REAR

FRONT = 1
REAR = 4

A B C D E

0 1 2 3 4 5 6 7 8

FRONT REAR

FRONT = 1
REAR = 5

137Data structure

ITEM = QUEUE[FRONT],FRONT = FRONT + 1

Memory representation of a queue using linked list

Queues are also represented using linked lists. In queues an item should
be inserted from rear end and an item should be removed from the front end.
The pointer front contains location of the first node of the linked list and another
pointer rear contains location of the last node.

Algorithm for insertion
Algorithm: Let QUEUE be the linear array consisting of N elements. FRONT is
the pointer that contains the location of the element to be deleted and REAR
contains the location of the inserted element. ITEM is the element to be inserted.

B C D E

0 1 2 3 4 5 6 7 8

FRONT REAR

FRONT = 2
REAR = 5

HEAD

20 NULL50 25

FRONT REAR

HEAD

75 NULL50 25

FRONT REAR

20

HEAD

75 NULL25

REARFRONT

20

138 Data structure

Step 1: If REAR = N-1 Then [Check for overflow]
PRINT “Overflow”
Exit

Step 2: If FRONT = NULL Then [Check whether QUEUE is empty]
FRONT = 0
REAR = 0

Else
REAR = REAR + 1 [Increment REAR Pointer]

Step 3: QUEUE[REAR] = ITEM [Copy ITEM to REAR position]
Step 4: Return

Algorithm for deletion
Algorithm: Let QUEUE is the linear array consisting of N elements. FRONT is
the pointer that contains the location of the element to be deleted and REAR
contains the location of the inserted element. This algorithm deletes the element
at FRONT position.

Step 1: If FRONT = NULL Then [Check whether QUEUE is empty]
PRINT “Underflow”
Exit

Step 2 : ITEM = QUEUE[FRONT]
Step 3: If FRONT = REAR Then [If QUEUE has only one element]

FRONT = NULL
REAR = NULL

Else
FRONT = FRONT + 1 [Increment FRONT pointer]

Step 3: Return

4.7.5 Applications of queues

 Simulation
 Various features of operating system.

[Operating systems often maintain a queue of processes that are
ready to execute or that are waiting for a particular event to
occur.]

 Multi-programming platform systems
 Different type of scheduling algorithm
 Round robin technique or Algorithm
 Printer server routines
 Various applications software is also based on queue data structure
 Operating systems often maintain a queue of processes that are

ready to execute or that are waiting for a particular event to occur.

139Data structure

LINKED LISTS
4.8.1 Introduction

One disadvantage of using arrays is that arrays are static structures and
therefore cannot be easily extended or reduced to fit the data set. During
insertion, the array elements are shifted into higher order memory locations
and during deletion, elements ate shifted into lower order memory locations. In
this chapter we study another data structure called Linked Lists that addresses
these limitations of arrays. The linked list uses dynamic memory allocations.
Linked list

A linked list is a linear collection of data elements called nodes and the
linear order is given by means of pointers.

Each node contains two parts fields: the data and a reference to the next
node. The first part contains the information and the second part contains the
address of the next node in the list. This is also called the link field.

The above picture is linked list with 4 with nodes, each node is contains
two parts. The left part of the node represents the information part of the node
and the right part represents the next pointer field that contains the address of
the next node. A pointer START gives the location of the first node. This pointer
is also represented as HEAD. Note that the link field of the last node contains
NULL.

4.8.2 Types of linked lists

There are three types of linked lists.

1. Singly linked list (SLL)
2. Doubly linked list (DLL)
3. Circular linked list (CLL)

Single linked list

A singly linked list contains two fields in each node – the data field and
link field. The data field contains the data of that node while the link field
contains address of the next node. Since there is only one link field in each
node, the linked list is called as singly linked list.

Data Link

START

10 X502030

140 Data structure

In any linked list the nodes need not necessarily represent a set of
consecutive memory locations (or contiguous memory locations).

Circular linked lists:

In a singly linked list, a pointer is available to access all the succeeding
nodes, but not preceding nodes. In the singly linked lists, the link field of the
last node contains NULL.

In circular lists, if the link field of the last node contains the address of the
first node first node, such a linked list is called as circular linked list.

In a circular linked list, it is possible to reach any node from any other
node.

Doubly linked lists:

It is a linked list in which each node is points both to the next node and
also to the previous node.

In doubly linked list each node contains three parts – FORW, BACK and
INFO.

BACK: It is a pointer field containing the address of the previous node.
FORW: It is a pointer field that contains the address of the next node.
INFO: It contains the actual data.

Header node

STAR
T

INFO

START

20 NULL7050 40

141Data structure

In the first node, if BACK contains NULL, it indicates that it is the first
node in the list. The node in which FORW contains NULL indicates that the
node is the last node in the linked list.

In our discussion, we will only study the singly linked list.

4.8.3 Operations on linked lists:
The operations that are performed on linked lists are

1. Creating a linked list
2. Traversing a linked list
3. Inserting an item into a linked list
4. Deleting an item from the linked list
5. Searching an item in the linked list
6. Merging two or more linked lists

Creating a linked list

Linked list is linear data structure which contains a group of nodes and
the nodes are sequentially arranged. Nodes are composed of data and address of
the next node or reference of the next node. These nodes are sequentially or
linearly arrayed that is why the Linked list is a linear data structure. In linked
list we start with a node and create nodes and link to the starting node in order
and sequentially. The pointer START contains the location of the first node. Also
the next pointer field of the last node must be assigned to NULL. In this topic we
will be discussing about Single Linked List. Elements can be inserted anywhere
in the linked list and any node can be deleted.

The nodes of a linked list can be created by the following structure
declaration.

struct Node
 {

int data; OR
Node* link;
}
Node *node1, *node2;

struct Node
{

int data;
Node* link;

} *node1, node2;

x x

STAR
T

T

142 Data structure

Here data is the information field and link
is the link field. The link field contains a pointer
variable that refers the same node structure.
Such a reference is called as self-addressing
pointer.

The above declaration creates two variable
structures. Each structure will be taken as node.

Thus it is linked list that contains two nodes. Another node cannot be inserted if
it not already declared. Also, there may be cases where the memory needs of a
program can only be determined during runtime. On these cases, programs
need to dynamically allocate memory, for which the C++ language use the
operators new and delete.

Operator new and new[]

Dynamic memory is allocated using operator new. new is followed by a
data type specifier and, if a sequence of more than one element is required, the
number of these within brackets []. It returns a pointer to the beginning of the
new block of memory allocated.

Syntax: pointer = new type
pointer = new type [number_of_elements]

The first expression is used to allocate memory to contain one single
element of the required data type. The second one is used to allocate a block (an
array) of elements of data type type, where number_of_elements is an integer
value representing the amount of these. For example:

For example, int *tmp;
tmp = new int [5]

Operator delete and delete[]

In most cases, memory allocated dynamically is only needed during
specific periods of time within a program; once it is no longer needed, it can be
freed so that the memory becomes available again for other requests of
dynamic memory. For this purpose the operator delete is used.

Syntax: delete pointer;
delete [] pointer;

 Operator new allocates space.
 Operator new[] allocates memory space for array.
 Operator delete deallocate storage space.
 Operator delete[] deallocate memory space for array.

4-bytes

2-bytes 2-bytes

data link

143Data structure

The first statement releases the memory of a single element allocated
using new, and the second one releases the memory allocated for arrays of
elements using new and a size in brackets [].

The value passed as argument to delete shall be either a pointer to a
memory block previously allocated with new, or a null pointer (in the case of a
null pointer, delete produces no effect).

Dynamically the memory space is allocated for the linked list using new
operator as follows:

Node *newNode;

p = new Node;
data(p) = num;
link(p) = NULL;

Program: Creating a linked list and appending nodes into the linked list.

#include <iostream.h>
class LinkList
{

private:
struct Node
{

int data;
Node* link;

}*START;
public:

LinkList();
void Print(); //Prints the contents of linked list
void Append(int num); //Adds a new node at the end

of the linked list
void Count(); //Counts number of nodes in the linked

list
};
LinkList::LinkList() //Constructor
{

START = NULL;
}

// Prints the contents of linked list
void LinkList::Print()
{

if (START == NULL)
{

cout<< “Linked list is empty”<<endl;

144 Data structure

return;
}
//Traverse
cout<<“Linked list contains”;
Node* p = START;
while(p != NULL)
{

cout<<“ “<<p->data;;
p = p->link ;

}
}
// Adds a new node at the end of the linked list
void LinkList::Append(int num)
{

Node *newNode;
newNode = new Node;
newNode->data = num;
newNode->link = NULL;

if(START == NULL)
{

//create first node
START = newNode;
cout<<endl<<num<<“ is inserted as the first node”<<endl;

}
else

{
//Traverse
Node *p = START;
while(p->link != NULL)
p = p->link;
//add newnode to the end of the linked list
p->link = newNode;
cout<<endl<<num<<“ is inserted”<<endl;

}
}
// Counts number of nodes present in the linked list
void LinkList::Count()
{

Node *p;
int c = 0;

//Traverse the entire Linked List
for (p = START; p != NULL; p = p->link)

c++;

145Data structure

cout<<endl<<“No. of elements in the linked list= “<<c<<endl;
}
void main()
{

LinkList* obj = new LinkList();

obj->Print();
obj->Append(100);
obj->Print();
obj->Count();

obj->Append(200);
obj->Print();
obj->Count();

obj->Append(300);
obj->Print();
obj->Count();

}

Linked list is empty

100 is inserted as the first node
Linked list contains 100
No. of elements in the linked list= 1

200 is inserted
Linked list contains 100 200
No. of elements in the linked list= 2

300 is inserted
Linked list contains 100 200 300
No. of elements in the linked list= 3

Traversing a linked list
Traversing is the process of accessing each node of the linked list exactly

once to perform some operation.

To traverse a linked list, steps to be followed are given here.

1. To begin with, move to the first node.
2. Fetch the data from the node and perform the required

operation depending on the data type.
3. Advance the pointer to the next node.
4. Step 2 and step 3 is repeated until all the nodes are visited.

146 Data structure

Algorithm: This algorithm traverses the linked list. Here START contains the
address of the first node. Another pointer p is temporarily used to visit all the
nodes from the beginning to the end of the linked list.

Step 1: p = START [Initialize p to first node]
Step 2: while p != NULL
Step 3: PROCESS data(p) [Fetch the data]
Step 4: p = link(p) [Advance p to next node]
Step 5: End of while
Step 6: Return

Memory allocation to a linked list

Computer memory is a limited resource. Therefore some mechanism is
required where the memory space of the deleted node becomes available for
future use. Also, to insert a node to the linked list, the deleted node should be
inserted into the linked list. The operating system of the computer maintains a
special list called AVAIL list that contains only the unused deleted nodes.

AVAIL list is linked list that contains only the unused nodes. Whenever a
node is deleted from the linked list, its memory is added to the AVAIL list and
whenever a node is to be inserted into the linked list, a node is deleted from the
AVAIL list and is inserted into the linked list. AVAIL list is also called as the free-
storage list or free-pool.

Inserting a node into the linked list

Sometimes we need insert a node into the linked list. A node can be
inserted into the linked list only if there are free nodes available in the AVAIL
list. Otherwise, a node cannot be inserted. Accordingly there sre three types of
insertions.

1. Inserting a node at the beginning of the linked list
2. Inserting a node at the given position.
3. Inserting a node at the end of the linked list

Inserting a node at beginning of the linked list

START is pointer that contains the memory address of the first node. To
insert an ITEM into the linked list, the following procedure is used.

1. Create a new node.
2. Fill data into the data field of the new node.
3. Mark its next pointer field as NULL.
4. Attach this newly created node to START.
5. Make the new node as the STARTing node.

147Data structure

Algorithm (inst-beg): This algorithm inserts a node at the beginning of the
linked list.

1. p new Node;
2. data(p) num;
3. link(p) START
4. START p
5. Return

Program: Inserting node at the beginning of the linked list.

#include <iostream.h>
#include<ctype.h>
class LinkList
{

private:
struct Node
{

int data;
Node* link;

}*START;
public:

LinkList();
void Print();
void Count();
void insert(int num);

};
LinkList::LinkList()
{

START = NULL;
}
void LinkList::Print()
{

if (START == NULL)
{

cout<< “Linked list is empty”<<endl;
return;

}
cout<<endl<<“Linked list contains”;

N e w n o d e

S T A R T

5 0

4 0 7 0 2 0 x

148 Data structure

Node* p = START;
while(p != NULL)
{

cout<<“ “<<p->data;;
p = p->link ;

}
}
void LinkList::insert(int num)
{

Node *newNode;
newNode = new Node;
newNode->data = num;
newNode->link = START;
START = newNode;
cout<<num<<“ is inserted at the beginning”<<endl;

}
void LinkList::Count()
{

Node *p;
int c = 0;

//Traverse the entire Linked List
for (p = START; p != NULL; p = p->link)

c++;
cout<<endl<<“No. of elements in the linked list= “<<c<<endl;

}
void main()
{

LinkList* obj = new LinkList;
int item;
char ch;

cout<<“Do you want to insert a node at the beginning (Y/N): “;
cin>>ch;
while(toupper(ch) == ‘Y’)
{

cout<<“Enter the item to be inserted at the beginning: “;
cin>>item;
obj->insert(item);
cout<<“Do you want to insert a node at the beginning (Y/N): “;
cin>>ch;

}
obj->Print();
obj->Count();
cout<<“T H A N K Y O U”;

}

149Data structure

Do you want to insert a node at the beginning (Y/N): y
Enter the item to be inserted at the beginning: 111
111 is inserted at the beginning
Do you want to insert a node at the beginning (Y/N): y
Enter the item to be inserted at the beginning: 222
222 is inserted at the beginning
Do you want to insert a node at the beginning (Y/N): y
Enter the item to be inserted at the beginning: 333
333 is inserted at the beginning
Do you want to insert a node at the beginning (Y/N): n

Linked list contains 333 222 111
No. of elements in the linked list= 3
T H A N K Y O U

Inserting a node at the end of the linked list
We can insert a node at the end of the linked list. To insert at the end, we

have to traverse the liked list to know the address of the last node.

Algorithm (inst-end): Inserting a node at the end of the linked list.

1. START
2. [Identify the last node in the list]

a. p START
b. while p != NULL

p next(p)
while end

3. N new Node [Create new node copy the address to the pointer N]
4. data(N) item
5. link(N) NULL
6. link(p) N
7. RETURN

Inserting a node at a given position
We can insert a node at a given position. The following procedure inserts

a node at the given position.

START

50 40

20 NULL

New node

70

150 Data structure

Algorithm (INST-POS): This algorithm inserts item into the linked list at the
given position pos.

1. START
2. [[Initialize] count 0

 p1 START
3. while (p1 != NULL)

count count +1
p1 link(p1)

while end
4. a. if (pos = 1)

call function INST-BEG()
 else
b. if (pos = count +1)

call function INST-END()
else

c. if(pos <= count)
p1 START
for (i = 1; i <= pos; i++)

p1 next(p1)
for end

d. [create] p2 new node
data(p2) item
link(p2) link(p1)
link(p1) p2

else
e. PRINT “ Invalid position “

 5. RETURN

Garbage collection:
If a node is deleted from the linked list or if a linked list is deleted, we

require the space to be available for future use. The memory space of the deleted
nodes is immediately reinserted into the free-storage list. The operating system
of the computer periodically collects all the deleted space into the free-storage

START

20 NUL50

New node

70

40

151Data structure

list. This technique of collecting deleted space into free-storage list is called as
garbage collection.

Deleting an item from the linked list:

The deletion operation is classified into three types:

1. Deletion of the first node
2. Deletion of the last node
3. Deletion of the node at the given position

Underflow

If we try to delete a node from the linked list which is empty, the condition
is called as underflow.

Deletion of the first node:

We can easily delete the first node of the linked list by changing the
START to point to the second node of the linked list. If there is only one node in
the liked list, the START can be stored with NULL.

Algorithm (DELE-BEG): This algorithm first copy data in the first node to a variable
and deletes the first node of the linked list.

Step1. START
Step2. p START
Step3. PRINT data(p)
Step4. START link(p)
Step5. free(p)
Step6. RETURN

Deleting a node at the end (DELE-END)

To delete the last node, we should find location of the second last node.
By assigning NULL to link field of the second last node, last node of the linked
list can be deleted.

20 40 X5030

START

START

20 40 Xx5030

p1 P2

152 Data structure

Algorithm (DELE-END): This used two pointers p1 and p2. Pointer p1 is used to
traverse the linked list and pointer p2 keeps the location of the previous node of
p1.

1. START
2. p2 START
3. while (link(p2) != NULL)

p1 p2
p2 link(p2)

while end
4. PRINT data(p2)
5. link(p1) NULL

free(p1)
6. STOP

Deleting a node at the given position

To delete a node at the given position, the following procedure is used.

1. Find location of the node to be deleted and the previous node.
2. Delete the node to be deleted by changing the location of the previous

node of the node to be deleted.
Algorithm (DELE-POS): Here p1 and p2 are the pointers. Pointer p2 is used to
traverse the linked list. If pointer p2 has the location of the node to be deleted,
p1 keeps the location of previous node of p2.

1. START
2. Count 0

p1 START
3. while(p1 != NULL)

count = count +1
p1 link(p1)

while end
4. if(pos = 1)

CALL DELE-BEG()
else

if(pos = count)
CALL DELE-END()

else
if(pos < count)

p2 START
for i = 1 to pos

p1 p2
p2 link(p2)

for end

153Data structure

PRINT data(p2)
link(p1) link(p2)
free(p2)

 else PRINT "Invalid position"
5. RETURN

Non-linear data structure
4.9.1 Introduction

A non-linear data structure is a data structure in which a data item is
connected to several other data items, so that a given data item has the possibility
to reach one-or-more data items.

The data items in a non-linear data structure represent hierarchical
relationship. Each data item is called a node. Examples of non-linear data-
structures are Graphs and Trees.
Pros
 Uses memory efficiently as contiguous memory is not required for allocating

data items.

 The length of the data items is not necessary to be known prior to allocation.
Cons
 Overhead of the link to the next data item.

4.9.2 TREES

A tree is a data structure consisting of nodes organized as a hierarchy -
see figure.

154 Data structure

Terminology

A node is a structure which may contain a value, a condition, or represent
a separate data structure (which could be a tree of its own). Each node in a tree
has zero or more child nodes, which are below it in the tree (by convention,
trees are drawn growing downwards). A node that has a child is called the parent
node (or ancestor node, or superior). A node has at most one parent.

Nodes that do not have any children are called leaf nodes. They are also
referred to as terminal nodes.

The height of a node is the length of the longest downward path to a leaf
from that node. The height of the root is the height of the tree. The depth of a
node is the length of the path to its root (i.e., its root path).

The topmost node in a tree is called the root node. Being the topmost
node, the root node will not have parents. It is the node at which operations on
the tree commonly begin. All other nodes can be reached from it by following
edges or links.

An internal node or inner node is any node of a tree that has child nodes
and is thus not a leaf node.

A subtree of a tree T is a tree consisting of a node in T and all of its
descendants in T.

Binary trees

The simplest form of tree is a binary tree. A binary tree is a tree in which
each node has at most two descendants - a node can have just one but it can’t
have more than two.

A binary tree consists of

a. a node (called the root node) and

b. left and right sub-trees.

Both the sub-trees are themselves binary trees.

The importance of a binary tree is that it can create a data structure that
mimics a “yes/no” decision making process.

155Data structure

Root Node: Node at the “top” of a tree - the one from which all operations on the
tree commence. The root node may not exist (a NULL tree with no nodes in it) or
have 0, 1 or 2 children in a binary tree.

Leaf Node: Node at the “bottom” of a tree - farthest from the root. Leaf nodes
have no children.

Complete Tree: Tree in which each leaf is at the same distance from the root.
i.e. all the nodes have maximum two subtrees.

Height: Number of nodes which must be traversed from the root to reach a leaf
of a tree.

4.9.3 GRAPHS

A graph is a set of vertices and edges which connect them. A graph is a
collection of nodes called vertices, and the connections between them, called
edges.

Undirected and directed graphs

When the edges in a graph have a direction, the graph is called a directed
graph or digraph, and the edges are called directed edges or arcs.

Neighbors and adjacency

A vertex that is the end point of an edge is called a neighbor of the vertex,
that is its starting-point. The first vertex is said to be adjacent to the second.

The following diagram shows a graph with 5 vertices and 7 edges. The
edges between A and D and B and C are pairs that make a bidirectional
connection, represented here by a double-headed arrow.

156 Data structure

One mark questions

1. What are data structures?
2. Differentiate between one-dimensional and two-dimensional array.
3. Give any two examples for primitive data structures.
4. Mention any two examples for non-primitive data structures.
5. What are primitive data structures ?
6. What are non-primitive data structures ?
7. Name the data structure which is called LIFO list.
8. What is the other name of queue.
9. Define an array.
10. What are lists ?
11. What is meant by linear data structures ?
12. What are non-linear data structures ?
13. What is a stack ?
14. What is a queue ?
15. Name the data structure whose relationship between data elements is by

means of links.
16. What is a linked list ?
17 .Mention any one application of stack .
18. What do you mean by traversal in data structure.
19. Define searching in one-dimensional array.
20. What is meant by sorting in an array.
21. Mention the types of searching in the array.
22. What is a binary tree.
23. What do you mean by depth of a tree.
24. What are the operations that can be performed on stacks
25.What are the operations that can be performed on queues ?
26. Define the term PUSH and POP operation in stack.
27. What is FIFO list ?
28. What is LIFO list ?
29. Mention the different types of queues.

Two marks questions:

1. How are data structure classified ?
2. Justify the need for using arrays.
3. How are arrays classified ?
4. Mention the various operations performed on arrays .
5. How do you find the length of the array ?
6. Mention the types of linked lists.
7. What is a stack ? Mention the types of operations performed on the stacks.
8. What is a queue ? Mention the various operations performed on the queue.

Three marks questions:

157Data structure

1. Mention the various operations performed on data structures.
2. Explain the memory representation of a one-dimensional array.
3. Explain the memory representation of a stack using one-dimensional array.
4. Explain the memory representation of queue using one-dimensional array.
5. Explain the memory representation of single linked list .
6. Define the following with respect to binary tree

a. root b. subtree c. depth
7. Write an algorithm for traversal in a linear array.
8. Give the memory representation of two-dimensional array.

Five marks questions:

1. Write an algorithm to insert an element in an array.
2. Write an algorithm to delete an element in an array.
3. Write an algorithm to search an element in an array using binary search.
4. Write an algorithm to sort an array using insertion sort.
5. Write an algorithm for push and pop operation in stack using array.
6. Write an algorithm to insert a data element at the rear end of the queue.
7. Write an algorithm to delete a data element from the front end of the queue.
8. Write an algorithm to insert a data element at the beginning of a linked list.
9. Write an algorithm to delete a data element at the end of a linked list.
10. Apply binary search for the following sequence of numbers.

10, 20, 30, 35, 40, 45, 50, 55, 60 search for item = 35

Review of C++158
Chatpter 5

Review of C++

Objectives:

 To understand the basics of C++

 To understand different control structures.

 To understand structured data types arrays,string, functions and structures.

Review of C++159 159

5.1 Review of C++ language

OPP OOP emphasizes on data. The ideology here is to unite both the data and
the functions that operate on that data into a single unit called as “object”.

Therefore, an object is an identifiable entity with some characteristics and behavior.

OOP view any problem as object rather than as a procedure. For example,
we can say ‘mobile’ is an object and its characteristics are color, weight, display,
size etc. Its features include price, voice call, video call, memory size etc. Here OOP
considers the characteristics as data and features as functions.

Another important concept with respect to OOP is the ‘Class’. A class
serves as a plan or blueprint that specifies what data and what functions should be
included in the objects of that class.

OOP characteristics

The characteristics of OOP are:

·Abstraction Data encapsulation Inheritance·
Polymorphism Polymorphism Dynamic binding ·
Message Passing

Modularity

Modularity is a concept where given problem is divided into sub-problems
and the sub-problems are further divided. Each sub-problem is solved by writing a
subprogram. Each subprogram is called a module.

Abstraction

Abstraction is an act which represents the essential features of an entity
without including explanations or any background details about it.

OOP implements abstraction using classes as a list of abstract attributes.

Data Encapsulation

The binding of data and functions into a single unit called as the class is
known as encapsulation.

The concept of insulating the data from direct access by the program is
called data hiding.

Inheritance

Inheritance is the process by which objects of one class acquires the
properties of the objects of another class.

Polymorphism

Polymorphism means taking more than one form. Polymorphism is the
ability for a message to be processed in more than one form.

The process of making an operator to exhibit different behaviors in different
instances is known as operator overloading.

Review of C++160
Using a single function name to perform different types of tasks is known

as function overloading.

Polymorphism allows objects to have different internal structures to share
the same external interface. It supports to implement inheritance to a great extent.

Dynamic Binding

Binding means linking of a function call to the code to be executed when
the function is called.

Dynamic Binding means that the code associated with a function call is
not known until the time of the call at run-time. It is associated with polymorphism
and inheritance.

Message Passing

The objects of a class can communicate can communicate with each other.
The objects communicate with each other by sending and receiving messages. A
message means a request for the execution of a function for an object. Therefore, a
message invokes a function in the form of an object to generate the desired output.

For example, consider the message: stack1.push();

Here, we are invoking a function push of an object stack1. stack1 is an
object of the class stack.

5.2 Fundamentals of C++

Bjarne Stroustrup developed C++ at AT & T Bell Laboratories in Murray
Hill, New Jersey. He developed this language in early 1980’s and was very much
concerned in making C++ more efficient.

C++ character set

The following are the character set in C++.

Alphabets A, B, …. , Za, b, …., z
Numerals 0, 1, 2, …., 9
Special characters: + - * % / \ . < > , = _ @ ! ^ & ~ { } [] () etc

Tokens

A token is a smallest individual unit in a program or a lexical unit.

The most fundamental elements of a C++ program are “tokens”. These elements
help us to construct statements, definitions, declarations, and so on, which in turn
helps us to construct complete programs. C++ has following tokens:

Identifiers Keywords Variables Constants
Punctuators Operators

 Identifiers

An identifier is a name given to the programming elements such as variables,
arrays, functions etc. It can contain letter, digits and underscore. C++ is case sensitive
and henceforth it treats uppercase and lowercase characters differently.

Review of C++161 161

Exampe: Student _amount marks1 total_ score
STUDENT _AMOUNT RANK5 _Ad12

Keywords

Keyword is a predefined word that gives special meaning to the compiler.
They are reserved words which can be used for their intended purpose and should
not be used as normal identifier. Some of the keywords are given below:

and asm auto bool break case
catch char

Constants or Literals

Constant is an identifier whose value is fixed and does not change during
the execution of the program.

Integer constants

Integer constants are numbers that has no fractional pars or exponent. It
refers to the whole numbers. Integers always begin with a digit or + or -.

We can specify integer constants in decimal, octal, or hexadecimal form.

Unsigned constants:

To specify an unsigned type, use either the u or U suffix. To specify a long
type, use either the l or L suffix.

Example 7.4: 328u 0x7FFFFFL 0776745ul;

Floating point constants

Floating-point constants are also called as real constants. These values contain
decimal points (.) and can contain exponents. They are used to represent values
that will have a fractional part and can be represented in two forms - fractional form
and exponent form.

In the fractional form, the fractional number contains integer part and fractional
part. A dot (.) is used to separate the integer part and fractional part.

Example: 65.05 125.5 -125.75

In the exponential form, the fractional number contains constants a mantissa
and exponent. Mantissa contains the value of the number and the exponent contains
the magnitude of the number. The exponent, if present, specifies the magnitude of
the number as a power of 10.

Example: 7.6: 23.46e0 // 23.46 x 100 = 23.46 x 1 = 23.46

 23.46e1 // 23.46 x 101= 23.46 x10 = 234.6

Character constants

Character constants are specified as single character enclosed in pair of
single quotation marks. Single character constants are internally represented as
ASCII codes.

Review of C++162
For example: ‘A’ ‘p’ ‘5’

There is another class of characters which cannot be displayed on the screen
(non-graphic characters) but they have special meaning and are used for special
purpose. Such character constants are called as escape sequences.

For example: \’ \” \\ \0 \a

String constants

A string zero or more characters enclosed by double quotation marks (“) is
called a string or string constant.

String constants are treated as an array of char. By default, the compiler
adds a special character called the ‘null character’ (‘\0’) at the end of the string to
mark the end of the string.

For example: “Empress College” “Tumkur” “C++ Programming\0”

Punctuators

Punctuators are symbols in C++ and have syntactic and semantic meaning to
the compiler. But do not by themselves specify an operation that yields a value.
Some punctuators can be either alone or in combination. The following characters
are considered as punctuators:

For example: ! % ^ & * () –

C++ Operators

An operator is a symbol that tells the compiler to perform specific mathematical
or logical manipulations.

The operators can be either ‘unary’ or ‘binary’ or even ‘ternary’ operators.

Unary operators

Unary operations have only one operand.

For example: ! & ~ * ++ — + -

Binary operators

The binary operators are those operators that operate on two operands. These
operators can be arithmetic operators, relational, logical operators, bitwise,
assignment operators.

Arithmetic Operators

The arithmetic operators are: + - * / %
These operators are used in arithmetic expressions

Relational Operators:

The relational operators are: == != > < >= <=

These operators are used in relational operations. The relational operations
always give 0 (or False) or 1 (or True).

Review of C++163 163

Logical Operators

The logical operators supported by C++ are: && || and !

Logical operators are used in logical expressions. Such expressions
always give 0 (or False) or 1 (or True).

Bitwise Operators

Bitwise operator works on bits. The bitwise operators are: & | ^
~ << >>

The Bitwise operators supported by C++ are listed in the following table 7.9.

Shorthand operators

We combine the assignment operators with arithmetic operators and bitwise
operators. Such operators are called as shorthand operators

The shorthand operators are: += -= *= /= %=

&= |= ^=

Assignment Operator

It is an operator used to assign a value to a variable.

The syntax is variable = value or expression;

Example: n = 10; sum = n + 35;

Special Operators

Some special operators are there in C++. They are

sizeof() comma(,) dot(.) pointer(*)

Ternary operators

The ternary operators are those operators that operate on three or more
operands. Ternary operator is also called as conditional operator.

? is the ternary operator. This operator can be used as an alternative to if-else
statement.

Precedence of operators or Hierarchy of operators

If an expression contains multiple operators, the order in which operations
are to be carried out is called hierarchy.

Example : x = 7 + 3 * 2;

Here x is assigned 13, not 20 because operator * has higher precedence than
+. First multiply 3 and 2 and then adds into 7 and assign it to the variable x.

Type Conversion

Converting an expression of a given type into another type is known as type
conversion.

Review of C++164
Type conversions are of two types, they are

Ø Implicit conversion

Ø Explicit conversion

Implicit conversion

Implicit conversions do not require any type conversion operator. They are
automatically performed when a value is copied to a compatible type. The C++
compiler will implicitly does conversion.

Explicit conversion will be performed by the user. The user can convert an
expression from one type to another type. Such conversions are called as explicit
conversion or type casting.

5.3 Structure of C++ Program

Include files
Class declarations
Member function declaration

 main() function

Include files: This section is used to include all the preprocessor directives that are
necessary for the program being written.

Class declaration: A class is a blueprint for the objects. It describes the data and
functions that the object is going to use.

Member function declarations: This section defines or declares the user-defined
functions that other functions or the main() function may use.

main() function: This is also a function that integrates all the other functions of the
program. It contains the body of the function. The body should be enclosed within
curled braces {and}.

The body contains two parts: Local declarations and executable statements.
The local declaration refer to the declaration of all those variables that are used
within the main() function. The executable statements are the statements that
perform the required operations to solve the problem.

5.4 Libaray functions

C++ provides many built-in functions that save the programming time.
They include mathematical functions, character functions, string functions, console
input–output functions and some general standard library functions. Some of them
are given below and also discussed in detail in Functions chapter.

Character Functions

All the character functions require ctype.h header file. The following
table lists the function.

Some functions of character manipulation are given below:

Review of C++165 165

isalpha() isdigit() isupper() islower() isspace() ispunct()
tolower()toupper() toascii()

String Functions

The string functions are present in the string.h header file. Some string
functions are given below:

Some of the functions are: strlen() strcat() strcpy() strrev()
strupr() strlwr() strcmp() strcmpi()

Console I/O functions

The following are the list of functions is in stdio.h are:

getchar() putchar() gets() puts()

5.5 Data types

Variables

A variable is an identifier whose value is allowed to change during the
execution of the program. A variable actually represent the name of the memory
location.

Declaration of a variable

The syntax for declaring a variable is datatype variable_name;

Example: int n = 50;

Initializing a variable

The syntax to initialize a variable is: datatype variable_name = value;

Example : Let b be a variable declared of the type int. Then, int b = 100;

C++ compiler allows us to declare a variable at run time. This is dynamic
initialization. They can be initialized anywhere in the program before they are
used.

Example int a, b;

….

int temp = a;
a = b;
b = a;

5.5 Data types: C++ support the following data types.

Data types classification

There are two types of data types.

Ø Simple or fundamental data types
Ø Complex or Derived data types

Review of C++166
The simple or fundamental data types are the primary data types which

are not composed of any other data types.

The simple data types/fundamental data types include int, char, float
double and void.

Modifiers

The data type modifiers are listed here: signed, unsigned, long and short.

Example: unsigned int b;

Derived data types

These data types are constructed using simple or fundamental data types.
They include arrays, functions, pointers and references.

User defined data types

These data types are also constructed using simple or fundamental data
types. Some user defined data types include structure, union, class and enumerated.

5.6 Input and output Operators

Input and output operators are used to perform input and output operations.

Input Operator “>>”

The standard input device is usually the keyboard. Input in C++ is done by
using stream extraction operator (>>) on the cin stream. The operator must be
followed by the variable that will store the data that is going to be extracted from
the stream.

Example : int age;
cin>>age;

Output Operator “<<“

The standard output device is the screen (monitor) and outputting in C++
is done by using the object followed by the stream insertion operator which is
written as << . cout stands for Console output.

Review of C++167 167

Example: cout<< “ Let us learn C++”; // prints Let us learn C++
//on the screen.

Cascading of I/O operators:

C++ supports the use of stream extraction (<<) and stream insertion (>>)
operators many times in a single input (cin) and output (cout) statements. If a
program requires more than one input variable then it is possible to input these
variables in a single cin statement using multiple stream extraction operators.
Similarly, when we want to output more than one result then this can be done
using a single cout statement with multiple stream insertion operators. This is
called as cascading of input output operators.

Example : cout<<“ enter the value for x”;
cin>> x;
cout<<“ enter the value for y”;
cin>>y;

Instead of using cin statement twice, we can use a single cin statement
and input the values for the two variables x and y using multiple stream extraction
operator as shown below.

cout<<“ enter the value for x and y”;
cin>>x>>y;

Similarly, we can even output multiple results in a single cout statement
using cascading of stream insertion operator as shown below.

cout<<“ the sum of” <<x<<“ and “<<y<<“=”<<x+y;

5.7 Control Statements

C++ provides us control structures, statements that can alter the flow of a
sequence of instructions. .

Compound statements

Compound statements or block is a group of statements which are
separated by semicolons (;) and grouped together in a block enclosed in braces {
and } is called a compound statement.

Example: {
temp = a;
a = b;
b = temp;

}

Types of control statements

C++ supports two basic control statements.
· Selection statements
· Iteration statements

Review of C++168
Selection statements This statement allows us to select a statement or set of
statements for execution based on some condition.

The different selection statements are:

i. if statement
ii. if-else statement
iii. nested statement
iv. switch statement

if statement

This is the simplest form of if statement. This statement is also called as
one-way branching. This statement is used to decide whether a statement or a set
of statements should be executed or not. The decision is based on a condition
which can be evaluated to TRUE or FALSE.

Example if (n = = 100) cout<< “ n is 100 “;

The if–else statement

This statement is also called as two-way branching. It is used when there
are alternative statements need to be executed based on the condition. It executes
some set of statements when the given condition is TRUE and if the condition is
FALSE then other set of statements to be executed.

Nested-if statement

An if statement may contain another if statement within it. Such an if
statement is called as nested if statement.

There are two forms of nested if statements:

Format I: if-else-if statement

This structure is also called as else-if ladder. This structure will be used to
verify a range of values. This statement allows a choice to be made between different
possible alternatives. A choice must be made between more than two possibilities.

Format II:

This structure contains an if-else statement within another if-else statement.

Switch statement

C++ has a built-in multiple-branch selection statement, switch. This
successively tests the value of an expression against a list of integer or character
constants. When a match is found, the statements associated with that code is
executed.

Iteration statements or loops

Iteration statements are also called as loops. Loop is a statement that allows
repeated execution of a set of instructions until certain condition is satisfied. This
condition may be predefined or post-defined. Loops have a purpose to repeat a

Review of C++169 169

statement or set of statements a certain number of times or some condition is
fulfilled. We use three types of looping structures in C++.

Ø while loop
Ø do- while loop
Ø for loop

while loop

This looping structure is also called as pre-tested looping structure. This
statement repeats the execution of a set of statements while the condition is TRUE.

Example: c = 1;
while(c <= 10)

cout<<setw(4)<<c;

do-while loop

This looping structure is also called as post-tested looping structure. Unlike
while loop that test the loop condition at the beginning, the do-while loop checks
the condition after the execution of the statements in it. This means that a do-while
loop always executes at least once. Its functionality is exactly the same as the while
loop, except that the condition in the do while loop is evaluated after the execution
of statement, instead of before.

Example: c = 1;
do
{

cout<<setw(4)<<c;
} while(c <= 10);

The for loop

This statement is called as the fixed execution looping statement. It is
normally used when we know in advance exactly how many times a set of statements
should be repeatedly executed again and again. It provides initialization, loop-end-
condition and increment/decrement process statements in a single line. When one
is aware of fixed number of iterations, then this looping structure is best suited.

Jump statements or Transfer of control from within loop

Transfer of control within looping are used to

Ø Terminate the execution of loop
Ø Exiting a loop
Ø Half way through to skip the loop.

All these can be done by using break, exit, and continue statements.

5.8 ARRAYS

Array fundamentals

An array is collection of objects and all the objects have the same name.
Each object is called an element. The elements are numbered as 0, 1, 2,…, n-1.

Review of C++170
These numbers are called as indices or subscripts. These numbers are used to
locate the positions of elements within the array.

The method of numbering the ith element with index i-1 is called as zero-
based indexing. That is, the element is always same as the number of “steps”
from the initial element a[0] to that element. For example, the element a[3] is 3
steps from the element a[0].

Types of arrays

There are three types of arrays.

i. One-dimensional array
ii. Two-dimensional array
iii. Multi-dimensional array

One-dimensional array

It is an array in which each element is accessed by using only one subscript.
The only one subscript represents the position of the element in the array.

Two-dimensional array

It is an array in which each element is accessed using 2-subsripts. The
subscripts represent the position of element in the array.

Multi-dimensional array

A multidimensional array is an array of n-dimensions. In other words, an
array of arrays is called a multidimensional array. A one-dimensional array of one-
dimensional arrays is called a two-dimensional array; a one-dimensional array to
two-dimensional arrays is called a three-dimensional array and so on.

One-dimensional array:

It is an array in which each element is accessed by using only one subscript.
The only one subscript represents the position of the element in the array.

Declaration of one-dimensional array

Syntax datatype array-name[size];

Example : int marks[50];

Initialization of one-dimensional arrays

You can give values to each array element when the array is first defined.

Example : int a[5] = {9, -5, 6, 2, 8};

In the above example, value 9 is stored in a[0], value -5 is stored in a[1],
value 6 is store in a[2], value 2 is stored in a[3] and value 8 is store in a[4].

Memory representation of one-dimensional arrays:

The elements of one-dimensional arrays are stored in contiguous memory
locations.

Review of C++171 171

Example : Consider the declaration, char a[5];

The element a[0] is allocated at a particular memory location, the element
a[1] is allocated at next memory location and so forth. Since the array is of the type
char, each element requires 1-byte.

Two-dimensional arrays

It is an array in which each element is accessed using 2-subsripts. The
subscripts represent the position of the elements in the array.

The elements of two dimensional arrays are represented as rows and
columns. To identify any element, we should know its row-number and column-
number.

Declaration of two-dimensional array:

Syntax datatype array-name[row-size][column-size];

Example : int a[2][3];

Initialization of two-dimensional arrays

Example : int a[2][3] = {1, 2, 3, 4, 5, 6};

a is a two dimensional array which contains 2 rows and 3 columns and these
assignments would be

a[0][0] = 1 a[0][1] = 2 a[0][2] = 3

a[1][0] = 4 a[1][1] = 5 a[1][2] = 6

If the values are missing in an initialize, they are automatically set to 0.

Example : int b[2][3] = {

{1, 2},

{3}

 };

will initialize the first two elements to the first row, the next element to the second
row. The remaining elements are automatically set 0.

b[0][0] = 1 b[0][1] = 2 b[0][2] = 0

b[1][0] = 3 b[1][1] = 0 b[1][2] = 0

Multi-dimensional array

A multidimensional array is an array of n-dimensions. In other words, an
array of arrays is called a multidimensional array. A one-dimensional array of one-
dimensional arrays is called a two-dimensional array; a one-dimensional array to
two-dimensional arrays is called a three-dimensional array and so on.

Review of C++172
5.9 FUNCTIONS

If the programs are complex and lengthy, they can be modularized into
subprograms. The subprograms are called as functions. The subprograms can be
developed independently, compiled and tested. They can be reused in other
programs also.

A function is a named group of statements developed to solve a sub-problem
and returns always a value to other functions when it is called.

Types of functions

There are two types of functions:

i. Library functions
ii. User-defined functions.
i. Library functions

A standard library is a collection of pre-defined functions and other
programming elements which are accessed through header files.

Header files are the files containing standard functions that our programs
may use. This chapter contains the information about some header files of C++
standard library and some functions of it. The header files should be written within
angled brackets and its functions are included into our programs by #include
directive.

User-defined functions

We can create our own functions or sub-programs to solve our problem.
Such functions are normally referred to as user defined functions.

A user-defined function is a complete and independent program, which
can be used (or invoked) by the main program or by the other sub-programs. The
user-defined functions are written to perform definite calculations, after performing
their task they send back the result to the calling program or sub-program.

Different header files

As said earlier, header files are the files containing standard functions
that our programs may use. C++ contains many header files and is listed below.

stdio.h

This header file contains functions and macros to perform standard I/O
operations. When we include the header file iostream.h, the header file stdio.h is
automatically included into our program.

string.h

This header file declares functions to manipulate strings.

stdlib.h

This header file is used to declare conversion routines, search/sort routines
and other miscellaneous things.

Review of C++173 173

iostream.h

This header file contains C++ streams and i/o routines.

iomanip.h

This header file contains functions and macros for I/O manipulators for
creating parameterized manipulations.

math.h

This header file declares prototypes for the mathematical functions and
error handlers. The functions are used to perform mathematical calculations.

Mathematical library functions

C++ provides many mathematical functions. These functions can be used
in mathematical expressions and statements. The various functions are ceil(), exp(),
fabs(), floor(), log(), pow() etc.

Character and string functions

A character is any single character enclosed within single quotes. Some
functions accept a character as argument. The argument is processed as an int by
using its ASCII code. To use these functions, the header file ctype.h should be
included.

Inputting single character

We can input a character using the function get().

char ch; char ch;

cin = get(ch); OR ch = cin.get();

Outputting single character

cout.put(ch);

put() function is used to display single character.

The general form is

Example : char ch; ch = cin.get(); cout.put(ch);

String functions

A string is sequence of characters enclosed within double quotes. Strings
are manipulated as one-dimensional array of characters and terminated by null
(‘\0’) character. C++ provides many functions to manipulate strings. To use these
functions, the header file string.h should be included.

char string-name[size];

 Declaring a string variable

The general form to declare a string is:

Ø string-name is the name of the string variable

Review of C++174
Ø Size is the number of characters in the string. The size helps the compiler

to allocate required number of memory locations to store the string.

Example : char st[50];

 Initializing a string

Like other variables, strings can also be initialized when they are declared.

Example : char s[10] = “Karnataka”;

There are only 9 characters in the string. The null character (‘\0’) is
automatically appended to the end of the string.

Inputting a string

C++ provides the function getline() to read a string.

cin.getline(string, size);

Example cin.getline(st, 25);

Outputting a string

C++ provides the function write() to output a string.

cout.write(string, size);

Example : cout.write(st, 25);

Some string manipulation functions are given below:

 strlen() function

This function returns the length of the string. i.e., the number of characters
present in the string, excluding the null character.

The general form is variable = strlen(string);

Example 12.9: l = strlen(“Empress”); Returns 7.

strcat() function

This function is used to concatenate two strings. The process of combining
two strings to form a string is called as concatenation.

strcpy() function

A string cannot be copied to another string by using assignment statement.
The function strcpy() is used to copy a string into another string.

strcmp() function

This function is used to alphabetically compare a string with another string.
This function is case-sensitive. i.e., it treats the uppercase letters and lowercase
letters as different.

strcmpi() function

Review of C++175 175

This function is used to alphabetically compare a string with another string.
This function is not case-sensitive. i.e., it treats the uppercase letters and lowercase
letters as same.

strrev() function

This function is used to reverse the characters in a string.

5.10 USER DEFINED FUNCTIONS

Definition

User-defined function is a function defined by the user to solve his/her
problem. Such a function can be called (or invoked) from anywhere and any number
of times in the program.

Function definition or structure of user-defined function

Function-header

Any user-defined function has the following structure.

return-type-specifier function-name(argument-list with declaration)
{

Local-variable-declarations;
Executable-statement-1;
Body of the function
Executable-statement-2;

………..
Executable-statement-n;
return(expression);

}

Ø Return-type-specifier is the data type of the value return by the function
to anther function when it is called. The return-type-specifier can be char, int, float
or void. The data type void is used when the function return no value to the calling
function.

Ø Function-name is the name of the function. It is an identifier to identify
the particular function in a program.

Ø Argument-list with declaration is the list of arguments or parameters or
variables with their declaration. Each argument should be declared separately.
Each declaration should be separated by comma. The list should be enclosed within
parenthesis.

Ø The complete line is called the function header. Note that there is no
semicolon at the end.

Ø Local-variable declaration is the declaration of the variables that are used
within the function. Since these variables are local to the function, these variables
are called as local variables.

Ø Executable-statements are the statements that perform the necessary
operations to solve the problem. If the function is returning a value, a return

Review of C++176
statement should be included. Otherwise, return statement is not necessary.

Ø Local declaration and executable statements are together called as body
of the function. The body of the function should be enclosed within the curled
braces.

Calling a function

variable = function-name(argument-list);

OR

variable = function-name();

A function can be called by specifying its name, followed by list of
arguments enclosed within the parenthesis. The arguments should be separated
by commas. If the function does not pass any arguments, then an empty pair of
parenthesis should follow the name of the function.

The function call should be a simple expression such as an assignment
statement or it may be part of a complex expression.

Example : big = biggest(a, b, c);

main() function

In C++, the main() function returns a value of type int to the operating
system. If the program runs successfully, 0 is returned. Otherwise, a non-zero
value is returned to the operating system, indicating that the program contains
errors. If the main() function is not returning a value, the datatype void can be
used as return-type-specifier.

The general form of main() function is:

int main() void main()

{ {

Executable-statements; OR Executable-statements;
return 0; }

}

Returning a value

When a function is called, the statements in the called function are
executed. After executing the statements, the function returns a value to the calling
function. The return statement is used to return a value. A function can return only
one value or none to the calling function, for every function call.

The general form of return statement is:

return(expression); OR return 0;

Function prototypes

Like all variables are declared before they are used in the statements, the
function should also be declared. The function prototype is a declaration of the

Review of C++177 177

function in the calling function.

The general form of function prototype is

return-type-specifier function-name(type arg1, type arg2, ……);

OR

return-type-specifier function-name(type , type , ……);

Example : float volume(int x, float y, float z);
Or float volume(int, float, float);

Types of arguments

A variable in a function header is called an argument. The arguments are
used to pass information from the calling function to the called function.

Actual arguments

The function call statement contains name of the function and list of
arguments to be passed. These arguments or parameters are called as actual
arguments. The arguments can be constants, variables or expressions. Actual
arguments have values stored in them before the function call hence the name
actual.

Example : In the function call g = gcd(a, b);

Formal arguments

The function header contains return-type-specifier, function name and
list of arguments with their declaration. These arguments are called as formal
arguments or dummy arguments. Formal arguments get their values from the actual
arguments.

Example: In the function header int gcd(int x, int y)
x and y are the formal arguments.

Local variables

The variables declared inside function or block is said belong to that block.
These variables are called as Local variables. Values of local variables are accessible
only in that block. The function’s formal arguments are also considered as local
variables.

Global variables

The variables declared outside the function are called as global variables.
These variables are referred by the same data type and same name throughout the
program in both the calling function and called function. Whenever if some variables
are to be treated as same value in both main() and in other functions, it is advisable
to use global variables.

The availability of the values of global variables starts from the point of
definition to the rest of the program.

Review of C++178
Types of Functions :

There are 5 types of functions.

i. Functions with no arguments and no return values
ii. Functions with arguments and with no return values
iii. Functions with no arguments and with return values
iv. Functions with arguments and with return values
v. Recursive functions

Functions with no arguments and with no return values

In this method, the function simply performs an independent task. The
function does not receive or send any arguments.

Example : void natural()
{

for(int i=1; i <= 10; i++)
cout<<setw(4)<<i;

}

Functions with arguments and with no return values

In this method, the function receives some arguments and does not return
any value.

Example : void average(int x, int y, int z)
{

float sum, avg;
sum = a + b + c;
avg = sum/3.0;
cout<<“Average = “avg<<endl;

}

Functions with no arguments and with return values

In this method, the function receives no arguments but return a value.

Example : int greatest()
{

if(a>b)
return(a);

return(b);
}

Functions with arguments and with return values

In this method, the function receives some arguments and returns a value.

Example : float interest(float p, float t, float r)
{

si = (p * t * r)/100;
return(si);

}

Review of C++179 179

Recursive functions

Recursive function is a function that calls itself. The process of calling a
function by itself is called as recursion.

Recursive functions must have one or more terminating conditions to
terminate recursion. Otherwise, recursion will become infinite.

Passing default arguments to functions

In C++, to call a function we need not pass all the values for the arguments
to a function from the calling function. It allows us to assign default values to the
formal arguments.

Example : Consider the prototype

float interest (float amt, int time, float rate = 0.15);

0.15 is the default value provided to the argument rate.

The function call statement can be as follows:

si = interest(5000,5); // third argument is missing

Default values should be assigned only in the function prototype. It should not be
repeated in the function definition.

Passing constant arguments

In C++, we can declare some arguments as constants. The compiler cannot
modify the arguments marked as constants.

Example : int strlen(const char *p);
int total(constint x, const int y);

Pass by value or Call by value

A function can be called by passing arguments from the calling function
into the called function. Thus the data is transferred through argument list.

Pass by reference or call by reference

We can pass parameters to the function by using reference variables. When
we pass arguments by reference, the formal arguments in the called function become
the aliases to the actual arguments of the calling function. i.e., the called function
is actually uses the original data with a different name.

Passing arrays to functions

To pass an array to a function, we just pass the name of the array to the
function. i.e., we are referring the address of the first element of the array. Using
this address, the function can access all the elements of the array.

Passing structures to functions

We can pass structures to functions as we pass other arguments. Structures
are passed to functions in pass-by-value method. i.e., the function works with copy
of the structures. The function can also return a structure after processing it.

Review of C++180
Whenever we pass the address of the structure to the function, we should include
the address-of (&) operator.

5.11 Structures

A structure is a collection of simple variables. The variables in a structure can be of
same or different types: Some can be int, some can be float and so on. The data
items in a structure are called the members of the structure.

Defining a structure

The process of defining a structure is equivalent to defining your own data
type.

struct structure-name
{

datatype member-name-1;
datatype member-name-2;

……………
datatype member-name-n;

};

Example: A structure definition to hold employee information.
structemployee
{

int idno;
char name[15];
char designation[10];
float salary;

};

Basic concepts of OOP 181

Chapter 6
BASIC CONCEPTS OF OOP

Objectives:

 Provides an overview of object oriented programming

 To understand concept of objects, classes and other related

terminologies

 To highlight advantages of OOP

 To highlight limitations of OOP

 To identify the application areas

182 Basic concepts of OOP

6.1 Introduction

 Object oriented programming is the principle of design and development of
programs using modular approach. Object oriented programming approach
provides advantages in creation and development of software for real life
applications. The advantage is that small modules of program can be developed
in shorter span of time and these modules can be shared by a number of
applications. The basic element of object oriented programming is the data. The
programs are built by combining data and functions that operate on the data. In
this chapter we learn about the basic concepts, advantages and terminologies
used in Object oriented programming. Some of the object oriented programming
languages are C ++, Java, C # and so on.

 The object oriented programming methods use data as the main element in
the program. The data is tied to the function that operates on the data and the
other functions cannot modify the data tied to a given function. Thus in object
oriented programming, a problem is decomposed into a number of components
called objects. An object is a collection of set of data known as member data and
the functions that operate on these data a known as member functions or
Methods. The member data are encapsulated in an object and then can be
accessed or modified only by the member functions. An object can be accessed
only if permitted by other member functions. Various objects of a program can
interact with each other by sending messages.

 Object oriented programming methods modularize a program by creating
memory area for data and member functions (methods) together as a single
entity. All objects are created according to the specifications of the entity defined.
 Object is the basic unit of OOP. To design OO Model, first a set of classes are
defined. A class is a Template from which objects are created. The Template of a
class specifies the data , member functions and their attributes.

Basic concepts of OOP 183

6.2 Basic concepts of object oriented programming

The following are the major characteristics of any object oriented
programming language. They are
 Objects
 Classes
 Data abstraction
 Data encapsulation
 Inheritance
 Overloading
 Polymorphism
 Dynamic binding
 Message passing

6.2.1 Objects

Objects are basic building blocks for designing programs. An object may
represent a person, place or a table of data. An object is a collection of data
members and associated member functions. Each object is identified by a unique
name. Every object must be a member of a particular class.
Ex: Apple, orange, mango are the objects of class fruit.
 Objects take up space in memory and have address associated with them.
For example, structure variable in a C program.
At the time of execution of a program, the objects interact by sending messages
to one another. The objects can interact with one another without having to
know the details of data or functions within an object.

6.2.2 Classes

The objects can contain data and code to manipulate the data. The objects
can be made user defined data types with the help of a class. Therefore objects

Objects

184 Basic concepts of OOP

are variables of the type class. A class is a way of
grouping objects having similar characteristics. Once
a class is defined, any number of objects of that class
are created.

For example, planets, sun, moon are members of
class solar system.

Classes are user defined data types. A class can
hold both data and functions.

6.2.3 Data abstraction

Data abstraction permits the user to use an object without knowing its
internal working. Abstraction refers to the process of representing essential
features without including background details or explanations. Classes use the
concept of abstraction and are defined as a list of abstract attributes such as
size, weight and cost, and functions to operate on these attributes.

6.2.4 Data encapsulation

Data encapsulation combines data and functions
into a single unit called class. Data encapsulation will
prevent direct access to data. The data can be accessed
only through methods (function) present inside the
class. The data cannot be modified by an external non-
member function of a class. Data encapsulation
enables data hiding or information hiding.

6.2.5 Inheritance

In OOP, the concept of inheritance provides the
idea of reusability. This means that we can add
additional features to an existing class without
modifying it. Thus the process of forming a new
class from an existing class is known as
Inheritance. The objects of one class acquire the
properties of another class through inheritance.

The existing class is known as base class. The new class is known as derived
class.

The derived class shares some of the properties of the base class. Therefore
a code from a base class can be reused by a derived class. In addition to this the
new class may combine features from two different base classes too.

Basic concepts of OOP 185

In single inheritance, each subclass has only one superclass. In Multiple
inheritance, each subclass has more than one super class.

6.2.6 Overloading

Overloading allows objects to have different meaning depending upon
context. There are 2 types of overloading namely

1. Operator overloading
2. Function overloading

When an existing operator operates on new data type, it is called operator
overloading.

Function overloading means two or more functions have same name ,but
differ in the number of arguments or data type of arguments. Therefore it is said
that (function name) is overloaded. Function overloading therefore is the pro-
cess of defining same function name to carry out similar types of activities with
various data items.

6.2.7 Polymorphism

Polymorphism is a feature of object oriented programming where a function
can take multiple forms based on the type of arguments, number of arguments
and data type of return value.

The ability of an operator and function to take multiple forms is known as
polymorphism.

Example 1.2: Consider the addition operation. In addition of 2 numbers
the result is the sum of 2 numbers.

In addition of 2 strings the operation is string concatenation. When an
operator behaves differently based on operands, then it is said that operator is
overloaded. Similarly when same function is used for multiple tasks in the same
program by changing argument type and number, it is known as function
overloading.

6.2.8 Dynamic Binding

Binding is the process of connecting one program to another. Dynamic
binding means code associated with a procedure call is known only at the time
of program execution routine.

6.2.9 Message Passing

In OOP, processing is done by sending messages to objects. A message for
an object is request for execution of procedure. The request will involve a
procedure (function) in the receiving object that generates desired results.
Message passing involves specifying the name of object, the name of the function
(message) and the information to be sent.

186 Basic concepts of OOP

6.3 Advantages of OOP over earlier programming methods
 The programs are modularized based on the principle of classes and objects.
 Linking code & object allows related objects to share common code. This

reduces code duplication and code reusability.
 Data is encapsulated along with functions. Therefore external non- member

function cannot access or modify data, thus providing data security.
 Easier to develop complex software, because complexity can be minimized

through inheritance.

 The concept of data abstraction separates object specification and object
implementation.

 Creation and implementation of OOP code is easy and reduces software
development time.

 OOP can communicate through message passing which makes interface
description with outside system very simple.

6.4 Limitations of OOP

The main disadvantages of using Object oriented programming are:

 OOP software is not having set standards.

 The adaptability of flow diagrams and object oriented programming using
classes and objects is a complex process.

 To convert a real world problem into an object oriented model is difficult.

 The classes are overly generalized.

6.5 Applications of object oriented programming

Object oriented programming approach is an easier method to design and
implement programs. The programs are easier to upgrade and modify. The
standard class libraries can be used by the programmers so that development
time is minimized. The graphical user interface design for windows operating
system using object oriented programming is the most interesting feature of
programming. The common application areas of Object oriented programming
are:

 Computer graphic applications

 CAD/CAM software
 Object –oriented Database

 User Interface design such as windows

 Real-time systems

 Simulation and Modeling

 Artificial intelligence and expert systems

Basic concepts of OOP 187

 Points to remember

 Object oriented programming: Object oriented programming is a
programming paradigm that uses “objects” to design applications and
computer programs. The OOP uses several techniques such as
inheritance, abstraction, modularity, polymorphism and encapsulation.

 Object: Object represents data and associated functions as a single
unit.

 Class: A class is a way of grouping objects having similar characteristics.

 Abstraction: Abstraction refers to the representation of essential features
of an object as a program object. An abstract class defines an interface,
but does not provide implementation details.

 Encapsulation: It is a way of combining data and associated functions
into a single unit. Encapsulation implements abstraction.

 Inheritance: It is the capability of a class to inherit the properties of
another class. The class that inherits the properties from another class
is known as derived or subclass. The class that provides its properties to
subclass is known as base class.

 Polymorphism: It is ability of a function to have same name and multiple
forms. The appropriate function is called automatically by the compiler
depending on the number and type of arguments.

 Message passing: The processing of data in object oriented programming
is carried out by sending messages to objects.

One mark questions:

1. What is the fundamental idea of object oriented programming?
2. What is an object?
3. Define the term class.
4. Define the term data abstraction
5. What is encapsulation?
6. What is meant by function overloading?
7. Define polymorphism
8. What is inheritance?
9. What is a base class?
10. What is a derived class?
11. How are base class and derived class related?
12. Define the term data hiding

Two marks questions:

1. What is the significance of classes in OOP?
2. What is the difference between program module and an object?
3. Mention different types of inheritance.

188 Basic concepts of OOP

4. Mention any two advantages of object oriented programming over
earlier programming methods.

Three mark questions

1. Briefly discuss the classes and objects.
2. Explain inheritance
3. Write short notes on polymorphism.
4. Mention any 4 high level languages that follow object oriented

programming approach.

Five marks answer questions

1. Write the differences between procedural programming and object
oriented programming

2. Explain advantages OOPs
3. Write the disadvantages of object oriented programming
4. Write the real life applications of object oriented programming.

Classes and objects 189

Chapter 7
Classes and objects

Objectives:

 To understand the need of classes.

 To understand the definition and declaration of classes

 To understand the use of members functions inside and outside

classes

 To understand the process of accesing and manipulating the members

of class

 To illustrate use of classes through application of simple programs.

Classes and objects190

7.1 Introduction

In the previous chapter we have learnt the fundamentals units of an object
oriented programming. In this chapter let us understand the basic units of data
representation for development of any object oriented programming namely
classes and objects.

Real world objects can be represented as data variables in computer domain.
Data variables are identified as account numbers, balance_payment,
Employee_code and so on. When these real world objects are represented as
data in computers, they can also be manipulated or processed by using functions
in C++. For instance account information of a customer in a bank can be updated,
balance_payment can be computed and so on. To combine the data variables
(objects) along with appropriate functions for manipulation of these objects, the
concept of classes were introduced in object oriented programming.

The elementary concept of object oriented programming begins with the
use of classes and objects. A class is a very powerful keyword in C++. A class
declaration defines new user-defined data types that link data and the code that
manipulates the data. In other words, a class combines data elements and
functions (operations) into a single entity.

 We have already discussed the concept of combining of data elements into a
group called structures in the previous year. Application of user-defined functions
for performing different operations has also been discussed. Classes combine
both data elements and operations associated with the data.

Let us look at the terminologies in procedural programming language and
object oriented programming.

Procedural Object oriented
programming programming

Variables Objects
User-defined data types Classes
Structure members Instance variables
Functions Methods
Function call Message passing

The data elements in a class are called member data and the functions in
a class are called member functions. This chapter explains classes, objects,
member functions, data hiding, abstraction, encapsulation and how these
features are implemented using classes (further chapters provide details of single
inheritance, multiple inheritances, insight to polymorphism and other functions).

Classes and objects 191

7.2 Definition and declaration of classes and objects:

A class definition is a process of naming a class and data variables, and
interface operations of the class.

A class declaration specifies the representation of objects of the class and
set of operations that can be applied to such objects.

The definition and declaration of a class indicates the following:

 The data variables known as member data of a class, describe the
characteristics of a class.

 Member functions are the set of operations that are performed on the
objects of the class. There may be zero or more member functions in a
class. This is also known as interface.

 The access control specifiers to the class members within a program are
specified.

 Class tagname for external operations for accessing and manipulating
the instance of a class.

The General syntax for defining a class is as follows:

class user_defined_name
{

private:
 Member data
 Member functions

protected:
Member data
Member functions

public:
Member data
Member functions

};

Keyword class is used to declare a class. User_defined_name is the name
of the class.

Class body is enclosed in a pair of flower brackets. Class body contains
the declaration of its members (data and functions). There are generally three
types of members namely private, public and protected. These are discussed in
the following section.

The class function definition describes how the class functions are
implemented.

Classes and objects192

Example 7.1: Let us declare a class for representation of bank account.
class account
{

private: //implicit by default
int accno;
char name[20[;
char acctype[4];
int bal _amt;

public: //member functions
void get_data();
void displaydata();

}

In the above example, class name account is a new type identifier that is
used to declare instance of that class type. The class account contains four
member data and two methods or member functions. Both of these member
data are private by default, while both member functions are public by default.

The functions get_data() and put_data() are used to write instructions to
perform operations on member data. These two functions only can provide access
to get member data from outside the class. Therefore, the data cannot be accessed
by any other function that is not a member of the class account.

Program 7.1 Program to show the use of class and object

#include<iostream.h>
#include<conio.h>
class Test
{

private:
int a,b;

public:
void getnum()
{

cout<<"Enter Numbers for Addition: ";
cin>>a>>b;

}
void show_data()
{

cout<<"Addition of two numbers: "<<(a+b);
}

};

Classes and objects 193

int main()
{

clrscr();
Test a1;
a1.getnum();
a1.show_data();
getch();
return 0;

}

Enter Numbers for Addition: 50 60
Addition of two numbers: 110

In the above program a, b are data members of the class Test. get_num()
and show_add() are member functions. get_num() is used to input data values.
show_add() function is used to add two numbers and display the sum of two
numbers.

7 .3 Access specifiers

An object is defined to be an instance of a class. Every data member of a
class is specified by three levels of access protection for hiding data and function
members internal to the class. The access specifiers define the scope of data.
The access specifers are indicated using the following keywords.

7.3.1 private

private access means a member data can only be accessed by the member
function. Members declared under private are accessible only within the class.
If no access specifier is mentioned, then by default, members are private.

Example 7.2: private:
int x;
float y;

7.3.2 public

public access means that members can be accessed by any function outside
the class also.

Example 7.3: class box
{

int length;
public : int width;
private : int height;
void set_height (int i)
{

height = i ;
}

Classes and objects194

int get_height ()
{

return height ;
 }

};
int main()
{

box object;
object.length = 10;
object.width = 20;
object.set _height (30); // private variable can be accessed
return 0; only through its public method

}

Thus keyword public identifies both class data and functions that constitute
the public interface for the class. In the above program data member width is a
public variable. set_height() and get_height() are member functions. The private
variable height can be accessed only through the member functions of the class.

Thus keyword public identifies both class data and functions that constitute
the public interface for the class.

7.3.3 Protected

The members which are declared using protected can be accessed only by
the member functions, friends of the class and also by the member functions
derived from this class. The members cannot be accessed from outside. The
protected access specifier is therefore similar to private specifier. The difference
is discussed in detail in further chapters.

7.4. Members of the class

The members of a class can be data or functions. Private and protected
members of a class can be accessed only through the member functions of that
class. No function outside a class can include statements to access data directly.
The public data members of objects of a class can be accessed using direct
member access operator (.)

The syntax for accessing class member is

class-object. member-data
class-object.member-function(arguments);

 Example 7.4: class rectangle

{
int l;
int b;

public:

Classes and objects 195

void get_data();
void compute_area();
void display();

 };
int main()
{

rectangle rl;
rl.get _data();
rl.compute_data();
r1.display();
return 0;

}

In the above example l and b are data members of class rectangle and
get_data(), compute_data() and display() are member functions. r1 is a class
variable that invokes the member functions.

Program 7.2. Program to show the use of access specifiers with classes and
 objects

#include<iostream.h>
#include<conio.h>
class data
{

private:
int day;
int month;
int year;

public:
void date(int dd,int mm,int yy)
{

day = dd;
month = mm;
year = yy;
cout<<"\t"<<day<<"\t"<<month<<"\t"<<year<<endl;

}
};
int main()
{

clrscr();
data date1,date2;
date1.date(7,12,2014);
date2.date(8,12,2014);
date1.date(12,12,2014);
getch();

Classes and objects196

return 0;
}
In the above program day, month and year are private members and date

is a public function. The output of the above program is as follows.

7.5 Member functions

Member functions can be defined in two places:

 Inside class definition
 Outside class definition

7.5.1 Inside class definition

To define member function inside a class the function declaration within
the class is replaced by actual function definition inside the class. A function
defined in a class is treated as inline function. Only small functions are defined
inside class definition.

Syntax: return_type classname(member function)

Example 7.5: class rectangle
{

int length;
int breadth;

public:
void get_data ()
{

cin>>length;
cin>>breadth;

}
void put_data (void)
{

cout <<length ;
cout <<breadth;

}
};

7.5.2 Outside class definition

A function declared as a member of a class is known as member function.
Member functions declared within a class must be defined separately outside
the class. The definition of member function is similar to normal function. But a

Classes and objects 197

member function has an ‘identity label’ in the header. This label tells the compiler
which class the function belongs to. The scope of the member function is limited
to the class mentioned in the header. Scope resolution operator :: is used to
define the member function.

Syntax: For member function outside a class

return_type classname :: memberfunction(arg1, arg2, …, argn)

{
function body;

}

The member functions have following characteristics:

 Type and number of arguments in member function must be same as
types and number of data declared in class definition.

 The symbol :: is known as scope resolution operator. Usage of :: along
with class name is the header of function definition. The scope resolution
operator identifies the function as a member of particular class.

 Several classes can use same function name. Membership label will resolve
their scope.

 Member function can access private data of a class. A non-member function
cannot.

Example 7.6: The following program segment shows how a member function
 is defined outside class.

class operation
{

private :
 int a;
int b;

 public :
 int sum();
 int product();

};
int operation::sum()
{

return (a+b) ;
}

int operation (product)
{

return (a*b) ;
}

Classes and objects198

In the above example sum() and product() are member functions defined
outside class operation. The use of scope resolution operator implies that
these member functions are defined outside the class.

Program 7.3 To use classes using member functions inside and outside
 class definition.

include<iostream.h>
 class item // class declaration
 {

int number; // private by default
float cost;

public :
void getdata(int a, float b);
void putdata(void) // function defined here
{

cout <<"Number: "<< number << endl;
cout << "Cost: "<< cost << endl;

}
 };
 // member function outside class definition
 void item :: getdata(int a, float b)
 {

number = a;
cost = b;

 }
 // main program
 int main()
 {

item x; // create object x
 x.getdata(250, 10.5);
x.putdata();
return 0;

 }
 In the above program one member functions putdata() is defined inside

class definition and the other member function getdata() is defined outside
class definition. Here is the output of program.

Number : 250
Cost : 10.5

7.6. Defining objects of a class

When a class is defined, it specifies the type information the objects of the
class store. Once the class is defined an object is created from that class. The

Classes and objects 199

objects of a class are declared in the same manner like any other variable
declaration.

Syntax : class user_defined_name
{

private: //Members
public: // Methods

};
User_defined_name object1, object2, … ;

Example 7.6: class num
{

private:
int x;
int y;

 public:
 int sum(int p, int q);
 int diff(int p, int q);

};
void main()
{

num s1,s2;
s1.sum(200,300);
s2.diff(600,500);

}

Note that an object is an instance of a class template.

Example 7.6 A class to create studentname, rollno, sex, age.

class student
{

int rollno;
char name[20];
char gender;
int age;

public:
void get_data();
void display_data();

};
student obj1, obj2; //Obj1, obj2 are objects of class student

7.7 Arrays as members of classes

So far we have considered primary data values as member of class. Just
like arrays within structures, it is possible to use arrays as member data of class
type.

Classes and objects200

Example 7.7: class marks
{

int m[5];
int i ;

public:
void setval(void);
void display(void);

};

The array variable m is a private member of class marks. This can be used
by member function setval() and display() as follows.

void marks :: setval(void)
{

cout<< "Enter marks: "<<endl;
for (i=0;i<5;i++)

cin>>m[i] ;
}
void marks::display(void)
{

cout<< "The marks are : ";
for(i =0;i<5;i++)

cout<<setw(4)<<m[i]<<endl;
}

7.8 Array of objects

An array having class type elements is known as array of objects. An array
of objects is declared after class definition and is defined in the same way as any
other array.

Example 7.8: class employee
{

char name[10] ;
int age;

public:
void getdata();
void dispdata(void);

};
employee supervisor[3] ;
employee sales_executive[5] ;
employee team_leader[10] ;

In the above example, the array supervisor contains 3 objects namely
supervisor[0], supervisor[1],supervisor[2].

Classes and objects 201

Name Age

supervisor[0]

supervisor[1]

supervisor[2]

Storage of data items in an object array

Program 7.4 Program to show the use of array of objects

#include<iostream.h>
#include<conio.h>
class data
{

 int rollno, maths, science;
 public:

int avg();
void getdata();
void putdata();

};
void data::getdata()
{

 cout<<"Enter rollno: ";
cin>>rollno;
cout<<"Enter maths marks: ";
cin>>maths;
cout<<"Enter science marks: ";
cin>>science;
putdata();

}
int data::avg()
{

int a;
a=(maths+science)/2;
return a;

}
void data::putdata()
{

cout<<"Average = "<<avg()<<endl;
}

int main()
{

Classes and objects202

clrscr();
data stud[3];
for(int i=0;i<3;i++)

stud[i].getdata();
return 0;

}

Enter rollno: 23
Enter maths marks: 56
Enter science marks: 78
Average = 67
Enter rollno: 24
Enter maths marks: 56
Enter science marks: 77
Average = 66
Enter rollno: 12
Enter maths marks: 44
Enter science marks: 89
Average = 66

In the above program stud is an array of objects, data is a class with member
functions getdata() and putdata() defined outside the class definition.

7.9. Objects as function arguments

A function can receive an object as a function argument. This is similar to
any other data type being sent as function argument. An object can be passed to
a function in two ways:

 Copy of entire object is passed to function (pass-by-value).

 Only address of the object is transferred to the function (pass-by-reference).

In pass by value, a copy of the object is passed to the function. The function
creates its own copy of the object and uses it. Therefore changes made to the
object inside the function do not affect the original object.

In pass by reference, when an address of an object is passed to the function,
the function directly works on the original object used in function call. This
means changes made to the object inside the function will reflect in the original
object, because the function is making changes in the original object itself.

Pass-by-reference is more efficient, since it require only to pass the address
of the object and not the entire object.

Classes and objects 203

Program 7.4: Program to show objects as arguments to function.

#include<iostream.h>
#include<conio.h>
class currency
 {

int rupee, paise;
int total;

public:
void get_value(int r, int p);
void display(void);

};
void currency::get_value(int r, int p)
{

rupee = r;
paise = p;
total = r*100 + p;

}
void currency::display(void)
{

cout<<rupee<<" Rupees "<<" and "<<paise<<" paise"<<endl;
cout<<"Converted value: "<<total<<" paise";

}
int main()
{

currency c;
c.get_value(5, 75);
c.display();

}

5 Rupees and 75 paise
Converted value: 575 paise

Program 7.5: Program to show objects as arguments to function.

#include <iostream.h>
#include<conio.h>
class rup
{

private:
 int n1,n2;

 public:
 rup():n1(1),n2(1)

Classes and objects204

 {
 }
 void get()

 {
cout<<“enter first number”;
cin>>n1;
cout<<“enter second number”;
cin>>n2;

 }
 void print()
 {

cout<<“product=”<<n1<<endl;
cout<<“product2=”<<n2<<endl;

 }
 void multi(rup r1,rup r2)
 {

n1=r1.n1*r1.n2;
n2=r2.n1*r2.n2;

 }
};
int main ()
{

 rup r1,r2,r3;
 clrscr();
 r1.get();
 r2.get();
 r3.multi(r1,r2);
 r3.print();
 getch();
 return 0;

}
7.10. Differences between structure and class:

In C++, a structure is a class defined with the keyword struct. Its members
and base classes are public by default. A class is defined with the class keyword

Points to remember:
 A class is a user defined data that contains data members and objects

 An object is an instance of a class.

 Members: There are two types of members in a class. They are data member
and member functions.

 Data members are different data variables similar to structure members.

 Data members may be declared in a class as private, public or protected.

Classes and objects 205

 Private members are default by declaration. They are accessible only to
member functions within a class only.

 Public members can be accessed inside as well as outside class definition.

 Member function also known as method, acts on data members in the
class.

 Member functions may be defined inside or outside a class.

 Scope resolution operator :: is used when a global variable exists with the
same name as local variable. This is also used in C++ when member
functions are declared outside the class definition. The function name is
preceded by the class name and scope resolution operator.

 Class members are accessed using dot(.) operator.

 An array having class type elements is known as an array of objects.

 Functions can receive objects as function arguments.

 It is possible to pass objects to a function using pass by value or pass by
reference.

One mark questions:

1. What is a class?
2. What is an object?
3. What are the two types of members referenced in a class?
4. What are data members?
5. What is a member function?
6. Mention the access specifiers used with a class
7. Is it possible to access data outside a class?
8. Which type of data members are accessible outside a class?
9. Which access specifier is implicitly used in a class?
10. Define the term public access
11. Mention the operator used to access members of a class
12. What is the significance of scope resolution operator (::)?
13. How are objects of a class declared? Give an example
14. What is meant by an array of objects?
15. Write an example to show how objects can be used as function

arguments?

Two/Three mark questions
1. Write the differences between class definition and class declaration.
2. Write the syntax and example for class definition.
3. Write the syntax and example for class declaration.
4. What is the significance of using access specifiers? Mention different

access specifiers.
5. Discuss private access specifier with an example.

Classes and objects206

6. Write short notes on public access specifier.
7. Explain protected access specifer.
8. How are class members referenced? Discuss with suitable example.
9. What is meant by referencing member functions inside class definition

and outside class definition?
10. Discuss how objects of a class are referenced with an example.
11. How can arrays be used as class members. Write an example.
12. How are objects passed as arguments to a function? Give an example.

Five mark questions
1. Explain class definition and class declaration with syntax and example.
2. Describe access specifiers in a class.
3. Explain member functions
a. Inside class definition
b. Outside class definition
4. What are the characteristics of member functions outside a class?
5. Explain how objects of a class can be defined?
6. Illustrate how an array of objects can be defined.
7. Describe how objects can be used as function arguments.
8. Let product list be a linear array of size N where each element of the

array contains following fields : Itemcode, price and quantity. Declare a
class product list with the three data members and member functions to
perform the following :

a. Add values to the product list.
b. Printing the total stock value.

9. A class clock has following members : a. hour b. minute
Create member functions

a. To initialize the data members
b. Display the time
c. To convert hours and minutes to minutes

10. Write a program that receives arrival time, departure time and speed of an
automobile in kilometers/hour as input to a class. Compute the distance
travelled in meters/second and display the result using member
functions.

Function overloading 207

Chapter 8

FUNCTION OVERLOADING AND MEMBER FUNCTIONS

Objects:

Ø Need for function overloading
Ø Concept of polymorphism
Ø Application of function overloading through simple examples
Ø Concept of inline functions
Ø Use friend functions

Function overloading208

8.1 Introduction

In the previous chapter, we have learnt about classes and objects. The
application of classes with data members and member functions is the principle
feature of object oriented programming to develop and simplify programming
methods. Another feature to help for easier programming is polymorphism. The
definition of polymorphism has appeared in chapter 6. Let us recall the definition
once again. Polymorphism refers to “one name having many forms, different
behavior of an instance of an object depending on situations”.

C++ implements polymorphism through function overloading and operator
overloading. The function overloading allows the user to create new abstract
data types. In this chapter we learn about the need for function overloading,
definition and declaration of function overloading and some examples. The
discussion is limited to design of a set of functions that perform essentially the
same thing, but with a different argument list. The selection of overloaded function
depends on matching arguments at the time of compilation. The study in this
chapter is also extended to inline and friend functions.

8.2 Need for function overloading

Function overloading means two or more functions have same name, but
differ in the number of arguments or data type of arguments. Therefore it is said
that (function name) is overloaded. Function overloading therefore is the process
of defining same function name to carry out similar types of activities with various
data items. The advantages of function overloading are:

 When different functions are created for different operations, then user
has to call respective function depending on the situation. Instead, for
different situations if the same function is called with different arguments
using function overloading, then the compiler automatically decides about
the appropriate function by comparing the argument types used in the
call to the function and calls the required function. Thus the code is
executed faster.

 It is easier to understand the flow of information and debug.

 Code maintenance is easy.

 Easier interface between programs and real world objects.

8.3 Definition and declaration of overloaded functions

The main factor in function overloading is a function’s argument list. C++
can distinguish overloaded functions by the number and type of arguments. If
there are two functions having same name and different types of arguments or
different number of arguments, then function overloading is invoked automatically
by the compiler. Function Overloading is also known as Compile time
polymorphism.

Function overloading 209

Example 8.1: int sum(int a, int b);
float sum(float p, float q);

The function sum() that takes two integer arguments is different from the
function sum() that takes two float arguments. This is function overloading.

To overload a function, each overloaded function must be declared and
defined separately.

Example 8.2: int product(int p, int q, int r);
float product(float x,float y, float z);
int product(int p, int q, int r)
{

 cout<<“product=”<<p*q*r<<endl;
}
float product(float x,float y,float z)
{

cout<<product=”<<x*x*y*y*z*z<<endl;
}

In this example the function product() is overloaded two times. First time
with three integer values and integer as return value, second time with three
float values and return type being a float. The compiler automatically chooses
the right type of function depending on the number of arguments.

8.4 Restrictions on overloaded functions

Ø Each function in a set of overloaded functions must have different argument
list.

Ø If typedef is used for naming functions, then the function is not considered
as different type.

8.4.1 Calling overloaded functions

The following programming example shows how overloaded functions can
be called.

Program 8.1: To compute volume of cone, cube and cylinder using overloaded
 functions.

#include<iostream.h>
#include<conio.h>
class funoverload
{

public:
 int volume(int a) // Volume of Cube
 {
 return a*a*a;
 }

Function overloading210

double volume(double r, double h) // Volume of Cone
 {
 return (0.33*3.14*r*r*h);
 }

double volume(double r, int h) // Volume of Cylinder
{

 return (3.14*r*r*h);
 }

 double volume(double l, double b, double h) //Volume of Cuboid
 {
 return (l*b*h);
 }
 };

int main()
{
 clrscr();
 funoverload f1;
 cout<<“Volume of the Cube: “<<f1.volume(10)<<endl;
 cout<<“Volume of the Cone: “<<f1.volume(2.0,3.0)<<endl;
 cout<<“Volume of the Cylinder: “<<f1.volume(2.0,3)endl;
 cout<<“Volume of the Cuboid: “<<f1.volume(5.0,6.0,7.0)<<endl;
 return 0;
 getch();
}

Volume of the Cube: 1000
Volume of the Cone: 12.4344
Volume of the Cylinder: 37.68
Volume of the Cuboid: 210

The above program finds volume of cube, cuboid, cone or cylinder
depending on the number and type of arguments provided as input to the function
called volume. Therefore though all functions have the same name volume,
appropriate function is selected based on data type of argument list. The compiler
selects the required function through function overloading.

8.5 Other functions in a class

The member functions of a class may be defined inside or outside a class.
One such function defined inside a class is inline function.

Function overloading 211

8.5.1 inline functions

A function call generally involves the complex process of invoking a function,
passing parameters to the function, allocating storage for local variables, thereby
using extra time and memory space. It is possible to avoid these overheads of a
function by using inline function. The inline function is a short function. Compiler
replaces a function call with the body of the function.

The keyword inline is used to define inline functions. The inline function consists
of function call along with function code and the process is known as expansion.

 Inline functions definition starts with keyword inline.

 The inline functions should be defined before all functions that call it.

 The compiler replaces the function call statement with the function code
itself (expansion) and then compiles the entire code.

 They run little faster than normal functions as function calling overheads
are saved.

 Advantages of inline functions

 The inline member functions are compact function calls.
 Therefore the size of the object code is considerably reduced.
 The speed of execution of a program increases.
 Very efficient code can be generated.
 The readability of the program increases.

Disadvantage

As the body of inline function is substituted in place of a function call,
the size of the executable file increases and more memory is needed.

Program 8.2: Finding the square of a number using inline functions.

#include <iostream.h>
inline int square (int a)
{
 return(a*a);
}
int main()
{

int x, y;

x=square(5);
cout<<"Square of 5 = "<<x<<endl;
y=square(10);
cout<<"Square of 10 = "<<y<<endl;
return 0;

}

Function overloading212

Square of 5 = 25
Square of 10 = 100

In the above example square() is an inline function that finds the square
of a number.

Note: The inline function may not work some times for one of the following
reasons:

 The inline function definition is too long or too complicated.
 The inline function is recursive.
 The inline function has looping constructs
The inline function has a switch or goto.

8.5.2 friend functions

We have seen that private and protected members of a class cannot be
accessed from outside the class in which they are declared. In other words non-
member function does not have access to the private data members of a class.
But there could be a situation where two classes must share a common function.
C++ allows the common function to be shared between the two classes by making
the common function as a friend to both the classes, thereby allowing the function
to have access to the private data of both of these classes.

A friend function is a non-member function that is a friend of a class. The
friend function is declared within a class with the prefix friend. But it should be
defined outside the class like a normal function without the prefix friend. It can
access public data members like non-member functions.

Syntax: class class_name
{

public:
friend void function1(void);
friend returntype_specifer function_name(arguments);

};

Example 8.3: class base
{

int val1, val2;
 public:
 void getdata()
 {
 cout<<“Enter two values:”;

cin>>val1>>val2;
 }

};

Function overloading 213

 friend float mean(base ob);
float mean(base ob)
{

 return float(ob.val1+ob.val2)/2;
}

In the above example mean() is declared as friend function that computes
mean value of two numbers that are input using getdata() function.

 A friend function although not a member function, has full access right to
the private and protected members of the class.

 A friend function cannot be called using the object of that class. It can be
invoked like any normal function.

 They are normal external functions that are given special access privileges.

 It cannot access the member variables directly and has to use an object
name.membername (Here, is a membership operator).

 The function is declared with keyword friend. But while defining friend
function it does not use either keyword friend or :: operator.

Program 8.3 To indicate the use of friend function.

#include <iostream.h>
class myclass
{

private:
int a,b;

public:
void set_val(int i, int j);
friend int add(myclass obj);

};

void myclass::set_val(int i,int j)
{
 a = i;
 b = j;
}

int add(myclass obj)
{

return (obj.a+obj.b);
}

Function overloading214

 int main()

{
myclass object;

object.set_val(34, 56);
cout << “Sum of 34 and 56 is “<<add(object)<<endl;
return 0;

}

Sum of 34 and 56 is 90

In the above program segment the function add() is a friend of class
myclass. Since it is not a member of any class, it cannot be called like an
object. Since it is a non-member function, add() should be declared inside a
class under public or private or protected access specifier.

Points to remember

 A function name that has several definitions with respect to the number
of arguments and type of arguments is known as function overloading.

 Function overloading implements polymorphism

 Inline functions are member functions defined inside a class.

 The function code is written along with function definition inside a class

 Friend function is a non member function of a class that has access to
both private and protected access members

Function overloading 215

Review questions

One mark questions

1. What is meant by function overloading?
2. When is function overloading needed?
3. Write an advantage of function overloading.
4. Name one condition for overloading of functions.
5. What is an inline function?
6. Write one advantage of inline function.
7. The inline function is always converted to a code block. True/false
8. What is a friend function?
9. Write an example for friend function declaration.
10.Write one condition for using a friend function.
11.Can the keyword friend be used while declaring a friend function?
12.Overloading a function means using different names to perform the

same operations. True/false

Two marks questions:

1. What is meant by overloading implements polymorphism?
2. Write example for definition and declaration of function overloading
3. What are the restrictions on overloaded functions?
4. What are inline functions? Give an example.
5. Write the advantages of inline functions.
6. Create an inline function to check if a number is prime or not.
7. When are friend functions used? Write syntax for declaration of friend

function.
8. Write any two characteristics of friend function.

Three mark questions:

1. Write any three reasons for function overloading.
2. What are the advantages of inline functions?
3. Write the advantages and disadvantages of inline functions.
4. When is it possible that an inline function may not work?
5. Write any three characteristics of friend function.

Five mark questions:

1. Explain the need for function overloading.
2. Discuss overloaded functions with syntax and example.
3. Explain inline functions with syntax and example.
4. Explain friend functions and their characteristics.

Constructors and Destructors216

Chapter 9
CONSTRUCTORS AND DESTRUCTORS

Objectives:
 Need for use of constructors

 To identify different types of constructors

 To highlight implicit and explicit declaration of constructors

 To understand the need for constructor overloading

 To understand the need for destructors

Constructors and Destructors
217

9.1 Introduction:

In the previous chapters, we have learnt to use classes, member data and
member functions of a class. The use of polymorphism through function
overloading has simplified object oriented programming further. In real life
applications, sometimes the objects may have to be initialized before using them.
The initialization is normally done by a member function which initializes data
members to pre-defined values. In this chapter we discuss about special member
functions that are used to initialize and destroy the objects of a class automatically
so that memory utilization can be optimized.

It is sometimes convenient if an object can initialize itself when it is first
created, without the need to make a separate call to a member function. This is
possible with special member functions. Automatic initialization is carried out
using such a special member function called constructor. Generally, we can
say, a constructor constructs the data members of an object. i.e., initialized a es
a value to the data members.

“A constructor is a special member function that is used in classes to
initialize the objects of a class automatically”.

A constructor is a member function of a class with the same name as that
of the class. A constructor is defined like other member functions of a class. It
can be defined either inside the class definition or outside the class definition.

It is called constructor because it constructs the values of data members of
the class. The following rules are used for writing a constructor function:

1. A Constructor always has name that is same as the class name of which
they are the members. This will help the compiler to identify that they are
the constructors.

2. There is no return type for constructors (not even void). Since, the
constructor is called automatically by the system, there is no program for
it to return anything to; a return value would not make sense.

3. A constructor should be declared in public section.

4. A constructor is invoked automatically when objects are created.
Constructors can have default arguments.

5. It is not possible to refer to the address of the constructors.

6. The constructors make implicit calls to the operators new and delete when
memory allocation is required.

Constructors and Destructors218

9.2 Declaration of constructor inside the class definition

Example 9.1: class test
 {

int m, x, y;
public:

test() //constructor inside the class definition
{

x = 0; y = 0;
}

 };

Program 9.1: Use of constructor.

#include <iostream.h>
#include <iomanip.h>
class counter
{

private:
int a;

public:
counter()
{

a = 0;
}
void inc_count()
{

a++;
}
int get_count()
{

return a;
}

};
int main()
{

counter c1, c2;
cout<<“c1 = “<<c1.get_count();
cout<<“c2 = “<<c2.get_count();
c1.inc_count();
c2.inc_count();
cout<<“c1 = “<<c1.get_count()<<endl;
cout<<“c2 = “<<c2.get_count()<<endl;

}

Constructors and Destructors
219

The above code segment contains a constructor with the name counter(),
which is same as the class name. This constructor initializes the class variable a
to 0. When, in main(), an object for the counter class is defined will invoke or
call the constructor counter() and initialize the variable a to 0. i.e., in main() we
are defining two instances for the class counter(), c1 and c2. Now, the constructor
counter will be called twice automatically, once for object c1 and once for object
c2.

Note that when a constructor is declared for a class, initialization of class
objects is done automatically.

9.3 Types of constructors:

There are three types of constructors, namely:

1. Default constructor
2. Parameterized constructor
3. Copy constructor

9.3.1 Default Constructor

A constructor which does not accept any arguments is called a zero
argument constructor. It is also known as default constructor. The default
constructors are useful when the objects are need to be created without having
to type initial values. Default constructor simply allocated memory to data
members of objects. Features of default constructor are

 For every object created, this constructor is automatically called.

 All objects of a class are initialized to same set of values by the default
constructor.

 If different objects are to be initialized with different values, it cannot be
done using default constructor.

Note:

 When a user-defined class does not contain an explicit constructor,
compiler automatically invokes default constructor.

 Declaring a constructor with arguments, hides default constructor.

Syntax: classname::classname //constructor without arguments

{ }

Example 9.2: student() { }

Constructors and Destructors220

Program 9.2: To show initialization of an object using default constructor.

#include<iostream.h>
#include<iomanip.h>
class x
{

private:
int a, b;

public:
x() { a=10, b=20; }
void display()
{

cout<<a<<setw(5)<<b<<endl;
}

};

void main()
{

x obj1,obj2;

obj1.display();
obj2.display();

}

 10 20
 10 20

Program 9.3: To show the default initialization of constructor member function
 using scope resolution operator.

#include<iostream.h>
#include<string.h>
#include <ctype.h>
class student
{

private:
int regno;
char name[20];

public:
student(); //constructor

void display();
};
student : :student()
{

regno = 0;
strcpy(name, "Book");

}

Constructors and Destructors
221

void student::display()
{

cout<<"Reg. No: "<<regno<<endl;
cout<<"Name: "<<name<<endl;

}
void main()
{

student s1;
cout<<"Use of default constructor:"<<endl;
s1.display();

}

Use of default constructor:
Reg. No: 0
Name: Book

The above program shows the use of default constructor student that
initializes the members automatically as soon as they are created.

Disadvantages of default constructor:

 When many objects of the same class are created, all objects are initialized
to same set of values by default constructor

 It is not possible to initialize different objects with different initial values
using default constructor.

9.3.2 Parameterized Constructors:

A constructor that takes one or more arguments is called parameterized
constructor. Using this constructor, it is possible to initialize different objects
with different values.

Parameterized constructors are also invoked automatically, whenever
objects with arguments are created. The parameters are used to initialize the
object.

Features of parameterized constructors:

 The parameterized constructors can be overloaded.

 For an object created with one argument, constructor with only one
argument is invoked and executed.

 The parameterized constructor can have default arguments and default
values.

Invoking constructors

A constructor is automatically invoked by C++ compiler with an object
declaration. The constructors can be invoked through the following methods:

Constructors and Destructors222

1. Explicit call
2. Implicit call
3. Initialization at the time of declaration with = operator

Explicit call

In explicit call, declaration of an object is followed by assignment operator,
constructor name and argument list enclosed in parenthesis.

Program 9.4: To use parameterized constructor through explicit call

#include<iostream.h>
class num
{

private:
int a,b;

public:
num(int p, int q) {a = p,b = q;}
void display()
{

cout<<"a = "<<a<<" and b = "<<b<<endl;
}

};
void main()
{

num obj1=num(10,20);
num obj2=num(40,50);
cout<<"First construction: ";obj1.display();
cout<<"Second construction: ";obj2.display();

}

First construction: a = 10 and b = 20
Second construction: a = 40 and b = 50

In the above program code the objects obj1 and obj2 are called explicitly
by using parameterized constructor.

Implicit call
An Implicit call means the declaration of the object is followed by argument

list enclosed in parentheses.

Program 9.5: Program to intialise the data members using implicit declaration

#include<iostream.h>
class num
{

private:

Constructors and Destructors
223

int a,b;
public:

num(int m, int n)
{ a = m, b = n; }

void display()
{

cout<<"a= "<<a<<" b= "<<b<<endl;
}

};
void main()
{

num obj1(10,20);
num obj2(40,50);
obj1.display();
obj2.display();

}

a=10 b= 20
a=40 b=50

Note that:

1. One parameterized constructor num(int m, int n) is defined inside the
class.

2. For each object, different values are passed from function main(). Therefore
different objects can be initialized to different values.

Initialization of objects during declaration with assignment operator

This method is used for the constructor with exactly one argument. In this
method declaration is followed by assignment operator and value to be initialized.

Program 9.6: To initialize objects using assignment operator

#include<iostream.h>
class num
{

private:
int a;

public:
num(int m) { a = m; }
void display()
{

cout<<a<<endl;
}

};
void main()
{

Constructors and Destructors224

num obj1=100;
num obj2=200;
cout<<"Object1 = ";obj1.display();
cout<<"Object2 = ";obj2.display();

}

Object1 = 100
Object2 = 200

In the above example, the constructors obj1 and obj2 are initialized using
= operator.

Note that

1. This method is applicable only to the constructors that have exactly one
parameter.

2. If a class contains at least one parameterized constructor, then necessary
arguments have to be passed to the constructor in the declaration itself.

3. If user does not want to pass arguments, then default constructor must be
created in the class.

Example 9.1: num obj1(10,20);
num obj2; //error
num() { } //This default constructor must be included in

//class num to avoid errors

The above example shows that it is necessary to use a default constructor
num() to avoid error during the declaration of num obj2;

9.3.3 Copy constructor

Copy constructor is a parameterized constructor using which one object
can be copied to another object. Copy constructors are used in the following
situations.

 To initialize an object with the values of already existing objects.

 When objects must be returned as function values

 To state objects as by value parameters of a function.

Copy constructor can accept a single argument of reference to same class
type. The argument must be passed as a constant reference type.

Syntax: classname :: classname(classname &ptr)

Example 9.2: x::x(x &ptr)

Constructors and Destructors
225

Here, x is a class name and ptr is a pointer to a class object x.

If there is more than one argument present in the copy constructor, it
must contain default arguments.

Note that:

1. Copy constructor is not invoked explicitly.
2. Copy constructor is invoked automatically when a new object is created

and equated to an already existing object in the declaration statement
itself.

Example 9.3: x a1; //default constructor
x a2 = a1; //copy constructor
a1.display();

The above example shows the use of copy constructor to create a new
object a2 using existing object a1.

3. When a new object is declared and existing object is passed as a parameter
to it in the declaration, then also copy constructor is invoked.

Example 9.4: x a1(100,200);//parameterized constructor
x a2(a1); //copy constructor is invoked for

//object a2 with a1 as parameter

4. When an object is passed to a function using pass-by-value, copy constructor
is automatically called.

Example 9.5: void test(x)

{
—————
—————

}
main()
{

x a;
test(a); //copy constructor is invoked

}

5. Copy constructor is invoked when an object returns a value.

Example 9.6:
class measure
{

int feet;
float inches;
measure sum(measure&);

};

Constructors and Destructors226

measure measure::sum(measure &m)
{

feet=feet+m.feet;
 inches=inches+m.inches;

if(inches>=12)
{

feet++;
inches=inches-12;

}
 return measure(feet,inches);

}

Program 9.7: To find factorial of a number using copy constructor

#include<iostream.h>
class copy
{

int var;
public:

copy(int temp)
{

var = temp;
}
int calculate()
{

int fact, i;
fact = 1;
for(i = 1; i <= var; i++)

fact = fact * i;
return fact;

}
};
void main()
{

int n;
cout<<"Enter the number: ";
cin>>n;
copy obj(n);
copy cpy = obj;
cout<<"Before copying: "<<n<<"! = "<<obj.calculate()<<endl;
cout<<"After copying: "<<n<<"! = "<<cpy.calculate()<<endl;

}

Constructors and Destructors
227

Enter the number: 5
Before copying: 5! = 120
After copying: 5! = 120

9.4 Constructor Overloading

Constructors are used to initialize the data members of a class. We can
use constructors also to specify the input values for the data members. But the
default constructor cannot be used for this purpose. So, we have to overload the
default constructor. Overloading a constructor means specifying additional
operation by passing the required arguments. Depending on the requirement
one can define any number of overloaded constructors in a single class.
Depending on the type and number of arguments passed, the compiler decides
which version of the constructor to invoke during object creation. The following
example has overloaded constructor that is used to specify the input values for
the data members of the class.

Program 9.8: To find the simple interest

#include<iostream.h>
 class simpleinterest
 {

private:
float p, r, t, si;

public:
simpleinterest() //default constructor
{ }
simpleinterest(float x, float y, float z)//parameterized
{ //constructor

p = x;
r = y;
t = z;

}
void computesi()
{

cout<<"Simple interest is :"<< (p * r * t)/100.0;
}

 };
 void main()
 {

simpleinterest si1, si2(10000.0, 12.0, 2.0);
si2.computesi();

 }

Simple interest is 2400.0

Constructors and Destructors228

In the above code segment, there are two constructors, one is
simpleinterest() and another one is simpleinterest(float x, float y, float z). The
first one is the default constructor and the second one is the three-argument
constructor. When we overload a constructor in a class, then it is the job of the
programmer to define too the default constructor.

9.5 Destructors:

As we have seen, a constructor, the special member function, will be
automatically called when an object is defined for a class. In the same way, a
destructor will be called automatically when an object is destroyed. Destroying
an object means, de-allocating all the resources such as memory that was allocated
for the object by the constructor. A destructor is a special member function that
will be executed automatically when an object is destroyed. It will have, like
constructor, the name same as that of the class but preceded by a tilde (~).
Syntax: class classname

{
private:

//data variables
//method

public:
classname(); //constructor
~classname(); //destructor

}

Example 9.7: When we want to define a destructor for a class, then we can do
 this as shown below.

class counter
{

private:
int counter;

public:
counter() //Constructor
{

counter = 0;
}
~counter() //Destructor
{ }

};
In the above example the object counter is automatically destroyed

destructors

 The destructor name is same as that of class. The first character must be
tilde (~).

Constructors and Destructors
229

 Destructors do not have a return value. Destructor can never return a
value.

 They take no arguments. Therefore destructors cannot be overloaded.
 The most common use of destructors is to de-allocate memory that was

allocated for the object by the constructor. Also, they are declared public.

Examplem 9.8: class account
{

private:
float balance;
float rate;

public:
account(); //constructor
~account(); //destructor

};

Program 9.9: To show the use of destructor

#include<iostream.h>
#include<conio.h>
#include <iomanip.h>
class num
{

 private:
int x;

public:
num();
void display();
~num();

};
 num::num()
{

cout<<“ In constructor: \n”;
x=100;

}
num::~num()
{

cout<<“in destructor”<<endl;
}
void num::display()
{

cout<<“Value of x = ”<<x<<endl;
 }
int main()
 {

clrscr();

Constructors and Destructors230

num a;
a.display();
getch();
return 0;

}

In constructor:
Value of x = 100
In destructor

In the above program after executing the program, before the control is
transferred out of the function main(), the destructor ~string() is invoked for
each object a, so that memory allotted for data member is de allotted. The object
y and p are deleted using the destructor.

Points to remember:

 A Constructor is a special member function that is executed automatically
whenever an object of a class is created.

 Constructors should have either public or protected access.

 The three types of constructors are default constructor, parameterized
constructor and copy constructor.

 A constructor that does not take any arguments is a default constructor.

 A constructor that takes one or more arguments is called parameterized
constructor.

 Parameterized constructor can be invoked by explicit or implicit call.

 Copy constructor is a parameterized constructor using which one object
can be copied to another object.

 Constructor overloading means passing arguments to the constructor.

 Destructors are member functions that destroy an object automatically.

One mark questions:

1. What is a constructor?
2. Write one reason which defines the need to use a constructor.

Simplify
3. What should be the access parameters for constructor declaration?
4. Can a constructor return a value to a calling function?
5. How many types of constructors are there?
6. What is a default constructor?
7. What is the drawback of default constructor?
8. Is it possible to overload a default constructor?

Constructors and Destructors
231

9. What is a parameterized constructor?
10. Write any one feature of parameterized constructor.
11. Name two methods through which constructors can be invoked.
12. What is an explicit call?
13. What is an implicit call with reference to constructors?
14. When is =used with constructors?
15. What is a copy constructor?
16. Write the syntax for declaration of copy constructor.
17. Can a copy constructor be invoked explicitly?
18. What is meant by constructor overloading?
19. What is a destructor?
20. Which operator is used with destructor?

Two marks questions:

1. What is a constructor? Give an example
2. Why are constructors needed in a program? Justify
3. Write the syntax and example for default constructor.
4. Mention the features of parameterized constructors.
5. Which are the different methods through which constructors are invoked?
6. Write an example to show the use of parameterized constructor through

explicit call.
7. When is copy constructor used in a program?
8. Write syntax and example for copy constructor.

Three marks questions:

1. Mention three types of constructors
2. What are the features of default constructors?
3. What are the disadvantages of default constructor?
4. Write short notes for constructor overloading.

Five marks questions:

1. Write the rules for writing a constructor function.
2. Explain default constructor with syntax and example.
3. Explain parameterized constructor with syntax and example.
4. Explain with an example to show how a constructors is invoked explicitly.
5. Explain the features of copy constructor.
6. Explain destructors with syntax and example.

Inheritance232

CHAPTER - 10
INHERITANCE

OBJECTIVES

 To understand the concepts of inheritance.
 Usage of inheritance.
 The role of visibility mode.
 Levels of inheritance.
 Concepts of virtual base class.
 Concepts of abstract class.
 Constructors and destructors in derived class.

Inheritance 233

10.1 Introduction:
Inheritance is another important aspect of object oriented programming.

C++ supports this concept. C++ classes can be used in several ways. This is basically
done by creating new classes, reusing the properties of existing one.

C++ allows the user to create a new class (derived class) from an existing
class (base class). The derived class inherits all features from a base class and it
can have additional features of its own.

 Base Class:

It is the class whose properties are inherited by another class. It is also called Super Class.

 Derived Class:

It is the class that inherits properties from base class (es).It is also called Sub Class.

Inheritance has following advantages:
1. Reusing existing code
2. Faster development time
3. Easy to maintain
4. Easy to extend
5. Memory utilization

The following example illustrates the needs of inheritance.

Suppose X is a class already defined and we need to redefine another
class Y having same properties of X and in addition to its own. Suppose if we use
direct option without using inheritance, it has following problems.

1. Code written in X is repeated again in Y which leads to unnecessary wastage
of memory space.

2. Testing to be done separately for both class X and class Y leads to wastage
of time.

The above problems can be solved by using the concept of inheritance.

If we reuse the code of X even in Y without rewriting it. The class Y inherits
all the properties of X. The class X is called Base class and the class Y is called
derived class.

10.3.1 Defining derived classes
When you declare a class, you can indicate what class it derives from by

writing a colon after the class name, the type of derivation (public or private or
protected) and the class from which it derives.

Inheritance is the capability of one class to inherit properties from
another class.

Inheritance234

class derived_class_name : visibility_mode base_class_name
{

// …….
//members of the derived class

};

Where, class keyword
derived_class_name Name of the derived class

 : shows the derivation from the base class
visibility mode Specifies the type of derivation
base_class Name of the base class

The body of the derived class contains its own data members and member
function. Like base class definition, the derived class definition must be terminated
by a semicolon.

If no visibility mode is specified, then by default the visibility mode is
considered private.

Note that all members of the class except private are inherited. Following
are some examples of derived class definition.

10.3.2 public derived class
class father // Base class
{

private:
char name[50];
int age;

public:
char caste[50];
int boys;
int girls;
void readdata();
void printdata();

};
class son: public father //public derived class
{

private:
char company[50];
float salary;

public:
void getdata();
void display();

};
Similarly we can write private derived class.

Inheritance 235

10.3.3 private derived class
class son: private father // private derived class

{
private:

char company[50];
float salary;

public :
void getdata();
void display();

};
Similarly we can write protected derived class as:
10.3.4 protected derived class

class son: protected father // protected derived class
{

private:
char company[50];
float salary;

public :
void getdata();
void display();

};
10.4 Visibility mode

The visibility mode (private, public and protected) in the definition of the
derived class specifies whether features of the base class are privately derived or
publicly derived or protectedly derived. The visibility mode basically controls the
access specifier to be for inheritable member of base class in the derived class.

The role of visibility modes:

10.4.1 Public Inheritance

This is the most used inheritance mode. In this

 The public members of a base class become public members of the derived
class.

Inheritance236

 The private members of a base class can not be inherited to the derived
class.

 The protected members of a base class stay protected in a derived class.

class subclass: public superclass

class student //base class
{

private:
int rollno;
char name[50];
float per;

public:
void input();

 void output();
};

class comp: public student //publicly derived class
{

private:
int marks;

public:
void read();

 void write();
};

10.4.2. Private Inheritance

 The public members of a base class become the private members of the
derived class.

 The private members of a base class cannot be inherited to the derived
class.

 The protected members of a base class stay protected in a derived class.

10.4.3. Protected Inheritance

 The public members of a base class become protected in a derived class.
 The private members of a base class cannot be inherited to the derived

class.
 The protected members of a base class stay protected in a derived class.

class subclass : protected superclass

10.5 Levels of Inheritance

A derived class extends its features by inheriting some or all the properties
from its base class and adding new features of its own. While inheriting, the derived
class can share properties from:

Inheritance 237

 Only one class
 More than one class
 More than one level

Based on this relationship, inheritance can be classified into five forms.

1. Single inheritance
2. Multilevel inheritance
3. Multiple inheritance
4. Hierarchical inheritance.
5. Hybrid inheritance

10.5.1 Single Inheritance

If a class is derived from a single base class, it is called as single inheritance.

Base

Derived class

Father

Son

10.5.2 Multilevel Inheritance

The classes can also be derived from the classes that are already derived.
This type of inheritance is called multilevel inheritance.

Base

Derived class-1

Grand Father

Father

Derived class-2 Son

Derived class-n

Inheritance238

10.5.3 Multiple Inheritance

If a class is derived from more than one base class, it is known as multiple
inheritance.

10.5.4 Hierarchical Inheritance

If a number of classes are derived from a single base class, it is called as
hierarchical inheritance.

Example for Hierarchical Inheritance

10.5.5 Hybrid Inheritance
Hybrid Inheritance is combination of Hierarchical and Multilevel Inheritance.

Derived class

Base-1 Base - 2 Base - n King

Prince

Queen

Base

Derived classDerived classDerived class

Staff

Group-DOffice StaffLecturers

Inheritance 239

Hierarchical inheritance

 Multilevel inheritance

Program to illustrate single level inheritance

#include<iostream.h>
#include<conio.h>
class base
{

private:
int rollno;
char name[20];

public:
void read()
{

cout<<“Enter Roll No and name “<<endl;
cin>> rollno >>name;

}

void display()
{

cout<<“roll no: “<< rollno <<endl;
cout<<“name : “<<name <<endl;

}

};
class derive: public base
{

private:
int m1;
int m2;
int t;

public:
void read1()
{

cout<<“enter first marks and second marks: ”<<endl;

Base

Derived class-1 Derived class-2

Derived class

Inheritance240

cin>>m1>>m2;
t = m1+m2;

}
void display1()
{

cout<<"First marks = "<<m1<<endl;
cout<<"Second marks = "<<m2 <<endl;
cout<<"Total marks = "<<t<<endl;

 }

 };

void main()
{

derive ob;
clrscr();
ob.read();
ob.read1();
ob.display();
ob.display1();
getch();

}

Enter Roll No and name
1234 Ravindra
Enter first marks and second marks: 100 100
Roll no : 1234
Name : Ravindra
First marks = 100
Second marks = 100
Total marks = 200

10.6 Relationship between classes

10.6.1. Virtual base classes:

Consider a situation where the program design would require one base
class (call it A) and two derived classes namely B and C, which are inherited from
the base class A. Further, derived class D is created from B and C. See the
figure.

In the public inheritance, B and C inherit one copy of the base class data,
where as derived class D inherited from B and C get two copies of the base class
data.

Now suppose a member function of D now wants to access the data members
of the base class an ambiguity problem of which of the two copies is to access will

Inheritance 241

be encountered. The compiler will generate an error message for this ambiguity.
To overcome this problem, the derived class B and C should be declared as
virtual.

Example: class A
{

————
————

};

class B: virtual public A
{

————
————

};

class C: virtual public A

{
————
————

};

class D: public B, public C
{

————
————

};

Base class - A

derived class –B : get one
copy of base class data

derived class – C: get one
copy of base class data

derived class – D
get 2 copies of
base class data

When two or more objects are derived from a common base class,
we can prevent multiple copies of the base class being present in an object
derived from those objects by declaring the base class as virtual when it is
being inherited. Such a base class is known as virtual base class. This
can be achieved by preceding the base class name with the word virtual.

Inheritance242

10.6.2 Abstract classes

An abstract class is one that is not used to create objects. An abstract
class is designed only to act as a base class (to be inherited by other classes). It
is a design concept in program development and provides a base upon which
other classes may be built. In the previous example, the class A is an abstract
class since it was not used to create any objects.

10.6.3 Constructors in derived classes

As we know, the constructors play an important role in initializing objects.
We did not use them earlier in the derived classes for the sake of simplicity. One
important thing to note here is that, as long as no base class constructor takes
any arguments, the derived class need not have a constructor function. However,
if any base class contains a constructor with one or more arguments, then it is
mandatory for the derived class to have a constructor and pass the arguments to
the base class constructors. Remember, while applying inheritance we usually
create objects using the derived class. Thus, it makes sense for the derived class
to pass arguments to the base class constructor. When both the derived and
base classes contain constructors, the base constructor is executed first and
then the constructor in the derived class is executed.

In case of multiple inheritances, the base classes are constructed in the
order in which they appear in the declaration of the derived class. Similarly, in a
multilevel inheritance, the constructors will be executed in the order of
inheritance.

Since the derived class takes the responsibility of supplying initial values
to its base classes, we supply the initial values that are required by all the
classes together, when a derived class object is declared. How are they passed
to the base class constructors so that they can do their job? C++ supports a
special argument passing mechanism for such situations.

The constructor of the derived class receives the entire list of values as its
arguments and passes them on to the base constructors in the order in which
they are declared in the derived class. The base constructors are called and
executed before executing the statements in the body of the derived constructor.

Example: Use of constructor in single inheritance

class base_class
{

protected:
public:

base_class() // base class constructor
{
}

};

Inheritance 243

class derived_class: public base_class
{

protected:
public :

derived _class() // derived class constructor
{
}

};

10.6.4 Destructors in derived classes

If the constructors are called down the line from the base to the derived
class, the destructors are called just in the reverse order. That is from the derived
class up to the base class.

Points to remember:
 Inheritance: It is the capability of one class to inherit properties from

another class.

 Base Class: It is the class whose properties are inherited by another class.
It is also called Super Class.

 Derived Class: It is the class that inherits properties from base class(es). It
is also called Sub Class.

 Advantages of inheritance

 Reusing existing code.
 Faster development time.
 Easy to maintain.
 Easy to extend.
 Memory utilization

 All members of the class except private are inherited.

 The visibility mode (private, public protected) in the definition of the derived
class specifies where features of the base class are privately derived or
publicly derived or protected derived. The visibility mode basically controls
the access specifier to be for inheritable member of base class in the
derived class.

 Inheritance can be classified into five forms.

 Single inheritance
 Multilevel inheritance
 Multiple inheritance
 Hierarchical inheritance
 Hybrid inheritance

Inheritance244

 Single Inheritance: If a class is derived from a single base class, it is called
as Single Inheritance.

 Multilevel Inheritance: The classes can also be derived from the classes
that are already derived. This type of inheritance is called multilevel
inheritance.

 Multiple Inheritance: If a class is derived from more than one base class,
it is known as multiple inheritance.

 Hierarchical Inheritance: If a number of classes are derived from a single
base class, it is called as hierarchical inheritance.

 Hybrid inheritance: Hybrid Inheritance is combination of Hierarchical and
Multilevel Inheritance.

 In the publicly derived class, the public and protected members remain
public and protected.

 In the privately derived class, the public and protected members of the
base class become private members.

 In the protected derived class, the public and protected members of the
base class become protected members.

 Virtual base class: When two or more objects are derived from a common
base class, we can prevent multiple copies of the base class being present
in an object derived from those objects by declaring the base class as
virtual when it is being inherited. Such a base class is known as virtual
base class. This can be achieved by preceding the base class’ name with
the word virtual.

 An abstract class is one that is not used to create objects. An abstract
class is designed only to act as a base class (to be inherited by other
classes).

Inheritance 245

Review questions

One marks questions:

1. What is inheritance?
2. How to implement inheritance?
3. What is base class?
4. What is derived class?
5. What is public access specifier?
6. What is private access specifier
7. Mention any one advantage of inheritance?
8. Is inheritance possible in c?
9. What is the use of protected access specifier?
10. What is the use of public access specifier?
11. What is the use of private access specifier?
12. What is singe inheritance?
13. What is multilevel inheritance?
14. What is hierarchical inheritance?
15. What is hybrid inheritance?
16. What is multiple inheritance?
17. What is virtual base class?
18. What is an abstract class?
19. When is it necessary to use inheritance?
20. What is visibility mode?

Two marks questions:

1. How to implement inheritance?
2. What is the difference between public and private access specifier?
3. Mention any 2 advantages of inheritance?
4. Mention any 2 types of inheritance?
5. What is the difference between inheritance and polymorphism?
6. What is singe inheritance? Give an example.
7. What is multilevel inheritance? Give an example.
8. What is hierarchical inheritance? Give an example.
9. What is hybrid inheritance? Give an example.
10. What is multiple inheritance? Give an example.
11. What is virtual base class? Give example.
12. What is an abstract class?
13. Which are the components which cannot be inherited?
14. Explain Single Inheritance with a suitable C++ program.
15. Explain the requirements of a virtual base class.
16. When is it necessary to use inheritance?
17. What is visibility mode? What is its role?

Inheritance246

18. How does inheritance influence the working of constructors?
19. How does inheritance influence the working of destructors?

Three marks questions:

1. What is the difference between public and private access specifier
with respect to inheritance?
2. What are the advantages of inheritance?
3. What are the types of inheritance?

Five marks questions:

1. What is the difference between public and private and protected
access specifier?

2. What are the advantages of inheritance?
3. What are the types of inheritance? Explain any 2.
4. What is virtual base class? Give example.
5. Which are the components which can not be inherited?
6. Explain singe inheritance with a suitable C++ program.
7. Explain the requirements of a virtual base class.
8. What is visibility mode? What is its role with respect to
inheritance?
9. How does inheritance influence the working of constructors and

destructors?

Pointer 247

CHAPTER-11

POINTERS

Objectives:

 To understand the concepts of pointers.
 Usage of pointers.
 The role of pointers in array, strings, structures.
 Concepts of dynamic and static allocation of memory.
 Relationship between pointers and functions.
 Relationship between pointers and objects.

Pointer248

I11.1ntroduction:

When writing a program, you declare the necessary variables that you will
need in order to accomplish your work. When declaring variables, you are simply
asking the computer to reserve a set amount of space in its memory for a particular
object you want to use. When you declare a variable, the computer reserves an
amount of space for that variable, and uses the variable’s name to refer to that
memory space. This will allow you to store the value of that variable, in that
space. Indeed, the computer refers to that space using an address. Therefore,
everything you declare has an address, just like the address of your house. You
can find out what address a particular variable is using.

Pointers are a powerful concept in C++ and have the following advantages.

 It is possible to write efficient programs.

 Memory is utilized properly.

 Dynamically allocate & deallocate memory.

 Easy to deal with hardware components.

 Establishes communication between program and data.

I12.Memory representation of pointers.

Before understanding the concept of pointers it is necessary to know the
memory organization. Memory is organized as an
array of bytes. A byte is basic storage and
accessible unit in memory. Each byte is identifiable
by a unique number called address. Suppose we
have 1KB of memory, since 1KB=1024 bytes, the
memory can be viewed as an array of locations of
size 1024 with the subscript range (0 to 1023). 0
represents the address of first location; 1
represents the address of second location; and so
on 1023 represents the address of last location.

We know that variables are declared before they are used in a program.
Declaration of a variable tells the compiler to perform the following.

 Allocate a location in memory. The number of location depends on data
type.

 Establish relation between address of the location and the name of the
variable.

Consider the declaration, int num;

0
1
2
3
—

1022
1023

Address Location

Pointer 249

This declaration tells the compiler to reserve a location in memory. We know
that the size of int type is two byte. So the location would be two bytes wide.

Address num

100 15

101

In the above figure, num is the variable that stores the value 15 and address
of num is 100. The address of a variable is also an unsigned integer number. It
can also be retrieved and stored in another variable.

Pointer:

A pointer is a variable that holds a memory address, usually the location
of another variable in memory.

11.3 Declaration and Initialization of pointer:

The general form is, data-type *variable_name;

data-type is any valid data type supported by C++ or any user defined type and
variable_name is the name of pointer variable. The presence of * indicates that it
is a pointer variable.

Defining a Pointer Variable:

int *iptr; iptr is declared to be pointer variable of int type.
float *fptr; fptr is declared to be pointer variable of float type.
char *cptr; cptr is declared to be pointer variable of character type.

Pointer Variables Assignment:

We can assign the address of a variable to a pointer variable as follows:

 int num = 25;
 int *iptr;
 iptr = #

In the above example, the variable num (=25) is assigned to pointer variable iptr.

11.4 The address-of operator (&):

& is a unary operator that returns the memory address of its operand. For
example, if var is an integer variable, then &var is its address. This operator has
the same precedence and right-to-left associativity as the other unary operators.

You should read & operator as “the address-of” which means &var will be
read as “the address of var”.

Example: int num = 25;

Pointer250

 int *iptr;
 iptr = # // The Address of Operator &

11.5 Pointer operator or Indirection Operator (*):

The second operator is Indirection Operator *, and it is the complement of
&. It is a unary operator that returns the value of the variable located at the
address specified by its operand.

Example:

int num = 25;
int *iptr; //Pointer operator (Indirection Operator *):
iptr = #

The following program executes the above two operations

#include <iostream>
#include <iomanip.h>
void main()
{

int var;
 int *ptr;

int val;

var = 3000;
ptr = &var;
val = *ptr;

cout << “Value of var: “ << var << endl;
 cout << “Value of ptr: “ << ptr << endl;

cout << “Value of val: “ << val << endl;

 }

Value of var: 3000
Value of ptr: 0xbff64494
Value of val: 3000

11.6 Pointer Arithmetic:

As you understood, pointer is an address which is a numeric value.
Therefore, you can perform arithmetic operations on a pointer just as you can
on a numeric value.

There are four arithmetic operators that can be used on pointers: ++, —, +, and
. (dot operator).

Following operations can be performed on pointers.

 We can add an integer value to a pointer.

 We can subtract an integer value from a pointer,

Pointer 251

 We can compare two pointers, if they point the elements of the same array

 We can subtract one pointer from another pointer if both point to the
same array.

 We can assign one pointer to another pointer provided both are of same
type.

Following operations cannot be performed on pointers.

 Addition of two pointers.

 Subtraction of one pointer from another pointer when they do not point to
the same array.

 Multiplication of two pointers.

 Division of two pointers.

Example:

a. Suppose if p is an integer pointer then p++ will increment p by 2 bytes.
Each time a pointer is incremented by 1, it points to the memory location
of the next element of its base type.

b. Suppose if p is a char pointer then p++ will incremented p by 1-byte.

c. p-- each time a pointer is decremented by 1, it points to the memory
location of the previous element of its base type.

d. p=p + integer value.
p=p - integer value.

11.7 Pointers and Arrays:

There is a close relationship between arrays and pointers in C++.

Consider the declaration. int a[6];

The elements of the array can be referred to in the program as a[0], a[1],
…. , a[9]. When the program is compiled, the compiler does not save the addresses

of all the elements, but only the address of the
first element, a[0]. When the program needs to
access any element, a[i], it calculates its address
by adding i units to the address of a[0]. The
number of bytes in each “unit” is, in our example,
equal to the sizeof(int). i.e., 2. In general, it is equal

to the number of bytes required to store an element of the array.

The address of a[0] can be explicitly obtained using the & (address-of)
operator. i.e., &a[0]. Since the data type of a[0] is int, the data type of &a[0] is, as
usual, int* (pointer to int).

A[0] A[1] A[2] A[3] A[4]

Pointer252

C++ allows us to use the name of the array a, without any subscript, as
another name for &a[0].

The following example shows the relationship between pointer and one-
dimensional array.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
void main()
{

int a[10], i, n;

cout<<"How many elements? ";
cin>>n;
cout<<"Enter array elements: ";
for(i=0; i<n; i++)

cin>>*(a+i);

cout<<"The given array elements are ";
for(i=0; i<n; i++)

cout<<setw(4)<<*(a+i);

getch();

}

How many elements? 5
Enter array elements: 1 2 3 4 5
The given array elements are 1 2 3 4 5

11.8 Array of pointers:

As we know that there is an array of integers, array of float, similarly,
there can be an array of pointers. Since we know that pointer is a variable which
stores address of another variable, an array of pointers means that it is a collection
of addresses.

The example below shows the array of pointers.

int *iptr[5];
int i=10, j=20, k=30, l=40, m=50;

iptr[0] = &i; *iptr[0] = 10;
iptr[1] = &j; *iptr[1] = 20;
iptr[2] = &k; *iptr[2] = 30;
iptr[3] = &l; *iptr[3] = 40;
iptr[4] = &m; *iptr[4] = 50;

Pointer 253

11.9 Pointers and Strings:

We have already discussed that there is a close relationship between array
and pointers. Similarly there is also a close relationship between strings and
pointers in C++. String is sequence of characters ends with null (‘\0’) character.
Suppose we have declared an array of 5 elements of the data type character.

char s[5];
char *cptr;
cptr = s;

Here, s is array of characters (strings). cptr is character pointer to string. s
also represents character pointer to string.

The elements of the array can be referred to in the program as s[0], s[1],
…. , s[5]. When the program is compiled, the compiler does not save the addresses
of all the elements, but only the name of the array. Here, s gives the base
address of the array. i.e., the address of the first character in the string variable
and hence can be regarded as pointer to character. Since we know that string
always end with null character, it is enough for us to know the starting address
of a string to be able to access entire string. The number of bytes allocated for a
string is determined by the number of characters within string.

Let us now consider a string constant “HELLO”. s is pointer to the
memory location where ‘H’ is stored. Here, s can be viewed as a character array
of size 6, the only difference being that a can be reassigned another memory
location.

 char s[5] = “Hello”;

Here, s gives address of ‘H’.
*a gives ‘H’
a[0] gives ‘H’
a++ gives address of ‘E’
*a++ gives ‘E'

11.10 Pointers as Function Parameters.

A pointer can be a parameter. It works like a reference parameter to allow
change to argument from within the function.

 void swap(int *x, int *y)
 {

int temp;
temp = *x;

 *x = *y;
 *y = temp;

}
swap(&num1, &num2);

H \0
s[0] s[5]

E
s[1]

L
s[2]

L
s[3]

O
s[4]

Pointer254

11.11 Pointers and Structures

We can create pointers to structure variables.

 struct student
{

int rollno;
float fees;

};

student s;
student *sp = &s;
(*sp).rollno = 104;

The above statements can be written using the operator -> as
ptr -> member:
sp -> rollno = 104;

11.12. Memory allocation of pointers (Dynamic and Static)

The compiler allocates the required memory space for a declared variable.
For example, integer variable it reserves 2- bytes, float variable it reserves 4-
bytes, character variable it reserves 1-byte and so on. Therefore every data and
instruction that is being executed must be allocated some space in the main or
internal memory. Memory allocation is done in two ways:

 Static allocation of memory
 Dynamic allocation of memory

11.12.1 Static allocation of memory

In the static memory allocation, the amount of memory to be allocated is
predicted and pre known. This memory is allocated during the compilation itself.
All the variables declared normally, are allocated memory statically.

Example: int a; //Allocates 2 bytes of memory space during the
//compilation time.

11.12.2 Dynamic allocation of memory (new and delete)

In the dynamic memory allocation, the amount of memory to be allocated
is not known. This memory is allocated during run-time as and when required.

C++ supports dynamic allocation and deallocation of objects using the
new and delete operators. These operators allocate memory for objects from a
pool called the free store. The new operator calls the special function operator
new and the delete operator calls the special function operator delete.

We can allocate storage for a variable while program is running by using
new operator. Dynamic allocation is perhaps the key to pointers. It is used to
allocate memory without having to define variables and then make pointers

Pointer 255

point to them. Although the concept may appear confusing, it is really simple.
The following codes demonstrate how to allocate memory for different variables.

To allocate memory of type integer, int *iptr = new int;

int *pNumber;
pNumber = new int;

The first line declares the pointer, pNumber. The second line then allocates
memory for an integer and then makes pNumber point to this new memory.
Here is another example, this time using a double:

double *pDouble;
pDouble = new double;

To allocate memory for array, double *dptr = new double[25];

To allocate dynamic structure variables or objects,

student sp = new student; //student is tag name of structure

The formula is the same every time, so you can’t really fail with this bit.
What is different about dynamic allocation, however, is that the memory you
allocate is not deleted when the function returns, or when execution leaves the
current block. So, if we rewrite the above example using dynamic allocation, we
can see that it works fine now:

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
int *p;
void SomeFunction()
{
 // make p pointer point to a new integer
 p = new int;
 *p = 25;
}

void main()
{
 SomeFunction(); // make pPointer point to something
 cout<<"Value of *p: "<<*p;
}

When SomeFunction is called, it allocates some memory and makes p
point to it. This time, when the function returns, the new memory is left intact,
so p still points to something useful.

Output Value of *p: 25

Pointer256

delete pointer:

Memory that is dynamically allocated using the NEW operator can be freed using
delete operator. THe delete operator calls the operator delete functio, which
frees memory back to the avalable pool.

Releasing Dynamic Memory

Use delete function to free dynamic memory as: delete iptr;

To free dynamic array memory, delete [] dptr;

To free dynamic structure, delete student;

Static allocation of memory Dynamic allocation of memory

11.13 Free store(heap memory)

Free store is a pool of unallocated memory heap given to a program that is
used by the program for dynamic allocation during execution.

11.14 Memory Leak

If the objects, that are allocated memory dynamically, are not deleted
using delete, the memory block remains occupied even at the end of the program.
Such memory blocks are known as orphaned memory blocks. These orphaned
memory blocks when increase in number, bring adverse effect on the system.
This situation is called memory leak.

11.15 Self Referential Structure

The self referential structures are structures that include an element that
is a pointer to another structure of the same type.

Memory is allocated before the
execution of the program begins.
(During Compilation)

No memory allocation or deallocation
actions are performed during
Execution.

Variables remain permanently
allocated.

Implemented using stacks and
heaps.

Memory is allocated during the
execution of the program.

Memory Bindings are established
and destroyed during the Execution.

Allocated only when program unit is
active.

Implemented using data segments.

Pointer 257

struct node
{

 i n t d a t a ;

 n o d e * n e x t ;

}

11.16 Pointers and functions

A function is named unit of a group of program statements designed to
perform a specific task and returns single value. There is a close relationship
between pointers and functions. We know that a function uses arguments in
order to carry its assignment. The arguments are usually provided to the function.
When necessary, a function also declares its own variable to get the desired
return value. Like other variables, pointers can be provided to a function, with
just a few rules. When declaring a function that takes a pointer as an argument,
make sure you use the asterisk for each argument. When calling the function,
use the references to the variables. The function will perform its assignment on
the referenced variable(s). After the function has performed its assignment, the
changed value(s) of the argument(s) will be preserved and given to the calling
function. To pass pointer arguments, use the asterisks when declaring the
function and use the ampersand (&) when calling the function.

Invoking of function can be done by following two methods:

 By passing the references.

 By passing the pointers.

11.16.1. Invoking functions by passing the references

When parameters are passed to the functions by reference, the formal
parameters become reference (or aliases) to the actual parameters in the calling
function. This means that invoking the called function does not create its own
copy of original values, rather than, it refers to the original values by different
names i.e., their references. Thus the called function works with the original
data and any change in the values gets reflected to the data.

The call by reference method is useful in situation where the values of the
original variable are to be changed using a function. Say, for instance a function
is to be invoked that swap two variables that are passed by references. The
following example program explains it.

Program to swap the values of two variables using pass-by-reference
method:

#include <iostream.h>
#include <conio.h>
#include <iomanip.h>
void main()
{

Pointer258

void swap(int &, int &);
int a=10, b=30;

cout<<“Original values: “;
cout<<“a = “<<a<<“ and b = “<<b<<endl;
swap(a,b);
cout<<“values after swapping: “;
cout<<“a = “<<a<<“ and b = “<<b<<endl;
getch();

}
void swap(int &x , int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}
void swap(int &x , int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

Original values: a = 10 and b = 30
Values after swapping: a = 30 and b = 10

In the above program the function swap() creates reference x for first
incoming integer and reference y for second incoming integer. Thus the original
values are worked with, but by using the names x and y. Notice that the, function
call statement is simple one. i.e., swap(a, b);

But the function declaration (prototype) and definition include the
reference symbol &. The function declaration and definition, both start as: void
swap(int &x , int &y)

Therefore, by passing the references the function works with the original
values (i.e., the same memory area in which original values are stored) but in
case alias names to refer to them. Thus the values are not duplicated. The same
happens when pointers are passed but in different manner.

11.16.2. Invoking functions by passing the pointers

When the pointers are passed to the function, the addresses of actual
arguments in the calling function are copied into formal arguments of the called
function. This means that using formal arguments (the addresses of original

Pointer 259

values) in the called function, we can make changes into the actual arguments
of the calling function, therefore here also, the called function does not create
own copy of original values rather, it refers to the original values by the addresses(
passed through pointers) it receives.

To swap two values, we have seen how the passing references method
works. The same can be achieved by passing addresses through pointers. The
following example program explains it.

Program to swap values of two variables using pass by references method:

#include <iostream.h>
#include <conio.h>
void main()
{

void swap(int *x int *y);
int a=10,b=30;

cout<<“Original values: “;
cout<<“a = “<<a<<“ and b=”<<b<<endl;

swap(&a, &b);
cout<<“values after swapping: “;
cout<<“a = “<<a<<“ and b = “<<b<<endl;
getch();

}

void swap(int *x , int *y)
{

int temp;

temp= *x;
*x = *y;
*y = *temp;

}

Original values: a = 10 and b = 30
Values after swapping: a = 30 and b = 10

The above program invokes swap() by passing addresses of a and b. i.e.,
swap(&a , &b); Here, &a and &b pass the addresses of a and b respectively.

The function definition receives the incoming addresses in corresponding pointers
x and y. Notice the function declaration.

void swap(int *x, int *y);

Thus, we have seen that using call-by-reference, in both ways, we are able
to return more than one value at a time (we sent back changed values of two

Pointer260

variables a and b), which are not possible using ordinary return statement. A
return statement can return only one value from a function at a time.

11.17 Memory Comes, Memory Goes

There’s always a complication and this one could become quite serious,
although it’s very easy to remedy. The problem is that although the memory
that you allocate using dynamic allocation is conveniently left intact, it actually
never gets deleted automatically. That is, the memory will stay allocated until
you tell the computer that you’ve finished with it. The upshot of this is that if
you don’t tell the computer that you’ve finished with the memory, it will be
wasting space that other applications or other parts of your application could be
using. This eventually will lead to a system crash through all the memory being
used up, so it’s pretty important, freeing the memory when you’ve finished with
it is very simple:

11.18 Pointers and objects

As we know that there is pointer to variables, pointer to strings, pointer to
structures, similarly there is pointer to objects. The pointers pointing to objects
are referred to as object pointers.

Declaration of pointers to objects

class_name *object-pointer;

Here, class_name is the name of an already defined class and object-
pointer is the pointer to an object of this classtype.

Example: employee *eptr;

Here, employee is an already defined class. When accessing members of a
class using an object pointer, the arrow operator (->) is used instead of dot (.)
operator.

The following program illustrates how to access an object given a pointer to it.

#include<iostream.h>
#include <iomanip.h>
#include<conio.h>
class emp
{

private:
int empno;
char name[20];
float salary;

public:
void get();
void display();

Pointer 261

};

void emp::get()
{

cout<<“Enter employee number: “;
cin>>empno;
cout<<“Enter employee name: “;
cin>>name;
cout<<“Enter employee salary: “;
cin>>salary;

}
void emp::display()
{

cout<<“Employee number: “<<empno<<endl;
cout<<“Employee name: “<<name<<endl;
cout<<“Employee salary: “<<salary;

}
void main()

{

emp e, *ep;

ep = &e;
clrscr();
ep->get();
ep->display();
getch();

}

Enter employee number: 2505
Enter employee name: Harshini
Enter employee salary: 6500.00
Employee number: 2505
Employee name: Harshini
Employee salary: 6500.00

The given program is self referential. Here, *ep is pointer to an object.

11.19 this pointer
Every object in C++ has access to its own address through an important

pointer called this pointer. The this pointer is an implicit parameter to all member
functions. Therefore, inside a member function, this may be used to refer to the
invoking object.

Pointer262

Friend functions do not have a this pointer, because friends are not
members of a class. Only member functions have this pointer.

Points to Remember:

 Pointers are a powerful concept in C++ and have following advantages.

 It is possible to write efficient programs
 Memory is utilized properly
 Dynamically allocate & de allocate-memory
 Easy to deal with hardware components
 Establishes communication between program and data

 A pointer is a variable that holds a memory address, usually the location
of another variable in memory.

 Following operations that can be performed over pointers.

 We can add an integer value to a pointer.
 We can subtract an integer value from a pointer,
 We can compare two pointers. if they point the elements of the

same array
 We can subtract one pointer from another pointer if both point to

the same array.

 Following operations that cannot be performed over pointers.

 Addition of two pointers
 Subtraction of one pointer from another pointer when they do not

point to the same array
 Multiplication of two pointers
 Division of two pointers

 There is a close relationship between arrays and pointers in C++.

 C++ allows us to use the name of the array a , without any subscript, as
another name for &a[0].

 Array of pointers means that it is a collection of address.

 There is also a close relationship between strings and pointers in C++.

 A pointer can be a parameter. It works like a reference parameter to allow
change to argument from within function

 We can create pointers to structure variables

 In the static memory allocation, the amount of memory to be allocated is
predicted and pre known.

Pointer 263

 In the dynamic memory allocation, the amount of memory to be allocated
is not known. This memory is allocated during run-time as and when
required.

 We can allocate storage for a variable while program is running by using
new operator.

 Use delete to free dynamic memory.

 Free store is a pool of unallocated heap memory given to a program that is
used by the program for dynamic allocation during execution.

 Memory leak: If the objects, that are allocated memory dynamically, are
not deleted using delete, the memory block remains occupied even at the
end of the program. Such memory blocks are known as orphaned memory
blocks. These orphaned memory blocks when increase in number, bring
adverse effect on the system. This situation is called memory leak

 The self referential structures are structures that include an element that
is a pointer to another structure of the same type.

 There is a close relationship between pointers and functions. We know
that a function uses arguments in order to carry its assignment.

 Invoking of function can be done by following two methods.

 By passing the references

 By passing the pointers

 The pointers pointing to objects are referred to as object pointers.

 Every object in C++ has access to its own address through an important
pointer called this pointer.

Pointer264

One marks questions.
1. What do you mean by pointer?.

2. Mention any one advantage of pointer?

3. What is address operator?

4. What is pointer operator?

5. How to declare pointer?

6. How to initialize pointer?

7. What is static memory?

8. What is dynamic memory?

9. What is free store?

10. Write a definition for a variable of type pointer to float.

11. What is new operator in C++?

12. What is delete operator in C++?

Two marks questions.
1. What do you mean by pointer? Explain with example.

2. Mention any 2 advantages of pointer?

3. What is address operator? Give example.

4. What is pointer operator? Give example.

5. How to declare pointer? Give example.

6. How to initialize pointer? Give example.

7 . What is static memory?

8. What is dynamic memory?

9. What is free store?

10. Illustrate the use of “self referential structures” with the

help of example.

11. What is new operator in C++?

12 What is delete operator in C++?

13. What is array of pointers? Give example.

Review Questions

Pointer 265

Three marks questions:
1. What are the advantages of pointer?

2. How dynamic memory allocation is different from static memory

 allocation.

3. What is new operator in C++? Give example.

4. What is delete operator in C++? Give example.

5. Show the general form new and delete operator in C++?

6. What is array of pointers? Give example.

7. What is the relationship between array and pointers? Give example.

8 What is the relationship between string and pointers? Give example.

9. What is the relationship between structures and pointers? Give

example.

10. What is the relationship between object and pointers? Give example.

Five marks questions:
1. Show the general form new and delete operator in C++?

2. What is the relationship between object and pointers? Give example.

3. Explain with example by passing the reference.

4. Explain with example by passing the pointers.

Data file handling266

CHAPTER 12

DATA FILE HANDLING

OBJECTIVES

 To understand the concepts of files.

 Usage of types of files.

 The role of text and binary files.

 Concept of opening and closing of files

 Concept of input and output operations in text files.

 Concept of input and output operations in binary files.

 Concept of file pointers and their manipulations.

Data file handling 267

12.1 Introduction:

We have already used the cin and cout for handling the input and ouput
operations. They are used to accept inputs through keyboard and display outputs
on the screen. C++ provides a rich set of operations for both unformatted and
formatted I/O operations. In C++, these IO operations are implemented through
iostream library.

The C++ standard libraries provide an extensive set of input/output
capabilities which we will see in subsequent topics. This chapter will discuss
very basic and most common I/O operations required for C++ programming.

C++ I/O occurs in streams, which are sequences of bytes. If bytes flow
from device like a keyboard, a disk drive, or a network connection etc. to main
memory, this is called input operation and if bytes flow from main memory to a
device like a display screen, a printer, a disk drive, or a network connection etc.,
this is called output operation.

Most computer programs work with files. This is because files help in
storing information permanently. Word processors create document files.
Database programs create files of information. Compilers read source files and
generate executable files. So, we see, it is the files that are mostly worked with,
inside programs. A file itself is a bunch of bytes stored on some storage device
like tape or magnetic disk etc.

In C++, file input/output facilities are implemented through a header file
of C++ standard library. This header file is fstream.h.

In C++, a file, at its lowest level, is interpreted simply as a sequence, or
stream of bytes. In C++, file I/O library manages the transfer of these bytes. At
this level, the notion of a data type is absent.

On the other hand, file, at user level, consists of a sequence of possibly
intermixed data types-characters, arithmetic values and class objects.

The fstream library predefines a set of operations for handling files related
input and output. It defines certain classes that help to perform file input and
output. For example, ifstream class ties a file to the program for input. ofstream
class ties a file to the program for output and fstream classifies a file to the
program for both input and output. File manipulation and related operations
using streams are the topics we are going to discuss in this chapter.

Data file handling268

12.2 fstream.h header file

The C++ input/output operations are very much similar to the console
input and output operations. The file operations also make use of streams as an
interface between the programs and the files.

A stream is a general name given to a flow of data at the lowest level; data
is just the binary data without any notion of data type. Different streams are
used to represent different kinds of data flow such as whether data is flowing
into the memory or out of the memory. Each stream is associated with a particular
class, which contains member functions and definitions for dealing with that
particular kind of data flow. For example, the ifstream class represents input
disk files.

The stream that supplies data to the program is known as input stream. It
reads the data from the file and hand it over to the program. The stream that
receives data from the program is known as output stream. It writes the received
data to the file. Following figure shows it.

The information / data stored under a specific name on a storage
device, is called a file.

Stream refers to a sequence of bytes

Data file handling 269

The fstream base is derived from the basic class ios. The class ifstream is
derived from both istream and fstream base and similarly, the class ofstream is
derived from both the ostream and fstream base. Both ifstream and ofstream act
as base classes for fstream class. The class filebuf is derived from class streambuf.
The complete class hierarchy is shown above.Central to file handling are three
classes. They are ifstream, ofstream and fstream.

That is why, if you include fstream.h file in your file handling program,
you need not to include iostream.h file as classes of fstream.h inherit from
iostream.h only.The functions of these classes have summarized in the below
table.

Meanings

It sets the file buffers to read and write.

It provides the facilities for file operations and consists of open(
) and close() member functions. This is base class for fstream,
ifstream, ofstream.

Stream class to read from files. It provides input operations
for file. It inherits the function get(), getline(),read() and
functions supporting random access (seekg() and tellg()) from
istream class defined inside iostream.h file.

Stream class to write on files. It provides output operations
for file. It inherits the function put(), write()and functions

fig: Stream class hierarchy for I/O operations:

Classes

filebuf

fstreambase

ifstream

ofstream

12.2.1 Classes for file stream operation

Data file handling270

supporting random access (seekp() and tellp ()) from
ostream class defined inside iostream.h file.

Stream class to both read and write from/to files.It
provides support for simultaneous input and output
operations. It inherits all the functions from istream
and ostream classes through iostream class defined
inside iostream.h file.

12.3 Types of data Files:

Files are used to store data or information permanently for future use.
Depending on how data are stored and retrieved, the files are classified into two
types. They are Text file and Binary file.

12.3.1 Text file:

It is a file that stores information in ASCII characters. In text files, each
line of text is terminated with a special character known as EOL (End- of-line)
character or delimiter character. When this EOL character is read or written,
certain internal translations take place.

12.3.2 Binary file:

It is a file that contains information in the same format as it is held in
memory. In binary files, no delimiters are used for a line and no translations
occur here.

12.4 Opening and Closing files:

In C++, while opening a file, we need the stream like input, output and
input_output. To create an input stream you must declare the stream to be of
class ifstream. To create an output stream you must declare the stream to be of
class ofstream. Streams that will be performing both input and output operations
must be declared as class fstream.

Opening a file can be accomplished in two ways:

 Opening file using constructor
 Opening file using open() member function

The first method is preferred when a single file is used with a stream.
However for managing multiple files with the same stream, the second method
is preferred.

12.4.1 Opening file using constructor:

The syntax of opening a file for output purpose only using an object of
ofstream class and the constructor is as follows:

ofstream ofstream _object(“file_name”);

fstream

Data file handling 271

ofstream _object is an object of type ofstream and “file name” is any valid
identifier of a file to be opened for output purpose only.

Example: ofstreamfout(“results.dat”); //output only
ofstreamfout(“text.dat”); //output only

fout is declared to be an object of ofstream type and it is made to represent
the file results.dat and text.dat opened for output purpose only.

The syntax of opening a file for input purpose only using an object of
ifstream class and the constructor is as follows.

ifstream ifstream _object(“file_name”);

ifstream _object is an object of type ifstream and “file name” is any valid
identifier name of a file to opened for input purpose only.

Example: ifstream fin(“results.dat”); //input only
ifstream fin(“text.dat”); //input only

fin is declared to be an object of ifstream type and it is made to represent
the file results.dat and text.dat opened for input purpose only.

12.4.2 Opening file using open():

The syntax for opening a file for output purpose only using an object of
ofstream class and open() member function is as follows:

ofstream-object.open(“filename”)

ofstream-object is an object of type ofstream and “filename” is any valid
name of a file to be opened for output purpose only.

Example: ofstream ofile;
ofile.open(“data1”);
ofile.open(“text.dat”);

ofile is declared to be an object of ofstream type and is made to represent
the file data1 or text.dat opened for output purpose only.

The syntax for opening a file for input purpose only using an object of
ifstream class and open() member function is as follows:

ifstream-object.open(“filename”)

ifstream-object is an object of type ifstream and “file name” is any valid
name of a file to be opened for input purpose only.

Example: ifstream ifile;
ifile.open(“data1”);
ifile.open(“text.dat”);

Data file handling272

ifile is declared to be an object of ifstream type and is made to represent
the file data1 or text.dat opened for output purpose only.

If we have to open a file for both input and output operations, we use
objects of fstream class. We know that the class fstream is derived from both
ifstream and ofstream. As a result objects of the class can invoke all the members
of the function of its base class.

The syntax for opening a file, an object of type fstream class and the
constructor is as follows:

fstream fstream-object(“filename”, mode)

 The syntax for opening a file an object of type fstream class and the open
() member function is as follows:

 fstream-object.open(“filename”,mode)

The need of mode is provided in the following table:

12.4.3. Concepts of file modes (in, out, app modes)

File mode parameter Meaning Stream type
ios::app Append to end of file ofstream
ios::in open file for reading only ifstream
ios::out open file for writing only ofstream
ios::ate Open file for updation and move ifstream ,

the file pointer to the end of file ofstream
ios:binary Opening a binary file ifstream ,

ofstream
ios::noreplace Turn down opening if the file

already exists ofstream
ios::nocreate Turn down opening if the file

does not exists ofstream
ios::trunc On opening, delete the contents of file ofstream

All these flags can be combined using the bitwise operator OR (|).

Example: fstream fout(“text.dat”,ios::out); open text.dat in output mode
fstream fin(“text.dat”,ios::in); open text.dat in input mode
fstream file;
file.open (“example.bin”, ios::out | ios::app | ios::binary);

If we want to open the file “example.bin” in binary mode to add data we
could do it by the above call to member function.

Data file handling 273

12.4.4. Closing File:

We learn that opening a file establishes the linkage between a stream
object and an operating system file. After the intended operations are done with
the file, the file should be safely saved on the secondary storage for later retrieval.
This is done by the member function close() The function on its execution removes
the linkage between the file and the stream object.

Syntax: stream_object.close();
fout.close();
fin.close();

12.5. Input and output operation on text files:

We know that a text file consists of a group of ASCII values. The data in
text files are organized into lines with new line character as terminator. Text
files need following types of character input and output operations:

 put() function
 get() function

put(): The put() member function belongs to the class ofstream and writes a
single character to the associated stream.

Syntax: ofstream_object.put(ch);

ch is character constant or char variable. The function writes ch onto the
file represented by ofstream_object.

char ch = ‘a’;
ofstream fout(“text.txt”);
fout.put(ch);

Write the character stored in ch onto the file represented by the object
fout. i.e., text.txt.

get(): The get() member function belongs to the class ifstream and the function
get() reads a single character from the associated stream.

Syntax: ifstream_object.get(ch);

ch is character constant or char variable. The function reads ch from the
file represented by the ifstream_object into the variable ch.

char ch = ‘a’;
ifstream fin(“text.txt”);
fin.get(ch);

Reads a character into the variable ch the current byte position from the
file represented by the object fin, i.e., text.txt.

Data file handling274

String I/O:

The getline() function:

It is used to read a whole line of text. It belongs to the class ifstream.

Syntax: fin.getline(buffer, SIZE);

Reads SIZE characters from the file represented by the object fin or till
the new line character is encountered, whichever comes first into the buffer.

Example: char book[SIZE];
fstream fin;
fin.getline(book, SIZE);

Input and output operation on binary files:

The binary files are of very much use when we have to deal with database
consisting of records. Since the records usually comprise heterogeneous data
types, the binary files help optimize storage space and file I/O would be faster
when compared to text files. Binary files needs following types of input and
output operations.

 write() member function
 read() member function

write(): The write() member function belongs to the class ofstream and which
is used to write binary data to a file.

Syntax: ofstream_object.write((char *) &variable, sizeof(variable));

fout is an object of type ofstream. The function requires two arguments.
The first argument ofstream_object is the address of the variable, the contents of
which are written to the file and the second argument is the size of the variable.
The address of the variable is type casted to pointer to char type. It is because
the write function does not bother to know the type of variable. It requires data
in terms of only bytes. The function writes the contents of variable to the file
represented by the object fout.

Example: student s;
ofstream fout(“std.dat”,ios::binary);
fout.write((char*) &s, sizeof(s));

Write the contents of the object s to the file std.dat.

read(): The read() member function belongs to the class ifstream and which
is used to read binary data from a file.

Syntax: ifstream_object.read((char *) &variable, sizeof(variable));

ifstream_object is an object of type ifstream. The function requires two
arguments. The first argument is the address of the variable, the contents of
which are read from the file and the second argument is the size of the variable.

Data file handling 275

The address of the variable is type casted to pointer to char type. It is because
the read function does not bother to know the type of variable. It requires data
in terms of only bytes. The function reads a record from the file represented by
the object fin to the object std.

Example: student s;
ifstream fin(“std.dat”,ios::binary);
fin.read((char*) &s, sizeof(s));

Read a student record from the file std.dat into the object s.

12.6. Detecting end of file:

While reading the contents of a file, care has to be taken to see to it that
the operation does not cross the end of file. The ios class provides a member
function by name eof(), which helps in detecting the end of file. Once the end of
file is detected with the use of eof() member function, we can stop reading further.

eof() returns true (non zero) if end of file is encountered while reading;
otherwise return false(zero).

if(fin.eof())
{

statements;
}

This is used to execute set statements on reaching the end of the file
represented by the object fin.

while (!fin.eof())
{

statements;
}

This is used to execute set statements as long as the end of the file fin is
not reached.

12.7. File pointers and their manipulation:

In C++, the file I/O operations are associated with the two file pointers,
known as get pointer and the put pointer. These are synonymous for input
pointer and output pointer respectively. They are useful in traversing the opened
file while reading or writing.

 ifstream, like istream, has a pointer known as the get pointer that
points to the element to be read in the next input operation.

 ofstream, like ostream, has a pointer known as the put pointer that
points to the location where the next element has to be written.

Data file handling276

When an input or output operation is performed, the appropriate pointer
is automatically advanced. So the programmer need not bother about
incrementing the file pointer to the next location inside the file for the next
action.

There are three modes under which we can open a file:

 Read only mode
 Write only mode
 Append mode

When a file is opened in a read only mode, the get pointer is automatically
set to the very first byte (0th byte) of the file. This helps to read the file contents
from the beginning (The bytes in a file is numbered starting from zero).

Similarly, when a file is opened in a write only mode, the contents of file
are erased (if it exists) and the put pointer is set to the first byte of the file, so
that we can write data from the beginning. In some situations, it would be
necessary for us to add new data (or text) to the existing file. In this case we have
to open the file in append mode. When a file is opened in a append mode, the
put pointer moves to the end-of-file, so that we write new data from that location.

These internal stream pointers that point to the reading or writing locations
within a stream can be manipulated using the following member functions:

 seekg()
 seekp()
 tellg()
 tellp()

seekg():

Move the get pointer to a specified location from the beginning of a
file. There are two types:

 seekg(long);
 seekg(offset, seekdir);

The seekg(long) moves the get pointer to a specified location from the
beginning of a file.

Example: inf.seekg(20) ;

The above example tells that the get pointer points to 20th byte in a file
from 0th byte.

The seekg(offset, seekdir) has two arguments: offset and seekdir. The offset
indicates the number of bytes the get pointer is to be moved from seekdir
position.

Data file handling 277

The offset takes long data type and seekdir (direction for seeking the offset
position inside a file) takes one of the following three seek direction constants.
These constants are defined in ios class.

Constant Meaning

 ios::beg Offset specified from the beginning of the file

 ios::cur Offset specified from the current position of the get pointer

 ios::end Offset specified from the end of the file

 Examples: inf.seekg(0, ios::beg);

Move the get pointer to the 0th byte (i.e., beginning of the file).

inf.seekg(20, ios::beg);

Moves the get pointer to the 20th byte (i.e., from current position of the file
in forward direction).

inf.seeg(-20, ios::beg);

The above example tells that the get pointer points to 20th byte in a file
from end of file in backward direction.

seekp():

Move the put pointer to a specified location from the beginning of a file.
There are two types:

 seekp(long);
 seekp(offset, seekdir);

The seekp(long) moves the put pointer to a specified location from the
beginning of a file.

Example: inf.seekg(20) ;

The above example tells that the put pointer points to 20th byte in a file
from 0th byte.

The seekp(offset, seekdir) has two arguments offset and seekdir. The offset
indicates the number of bytes the put pointer is to be moved from seekdir
position.

The offset takes long data type and seekdir (direction for seeking the offset
position inside a file) takes one of the following three seek direction constants.
These constants are defined in ios class (see above table).

Examples: inf.seekp(0, ios::beg);

Move the put pointer to the 0th byte (i.e, beginning of the file) for writing.

inf.seekg(20, ios::beg) ;

Data file handling278

Move the put pointer to the 20th byte (i.e, from current position of the file
in forward direction) for writing.

inf.seekg(-20, ios::beg) ;

The above example tells that the put pointer points to 20th byte in a file
from end of file in backward direction.

tellg() member function:

The ifstream class provides the member function name tellg(). The purpose
of the function is to return current position of the get pointer.

Syntax: int position;
position = fin.tellg();

tellp() member function:

The ifstream class provides the member function name tellp(); The purpose
of the function is to return current position of the put pointer.

Syntax: int position;
position = fin.tellp();

Basic operation on binary file in C++

The basic Operation on Binary File in C++ are

1. Searching.

2. Appending data.

3. Inserting data in sorted files.

4. Deleting a record

5. Modifying data

Points to remember:

 File: The information / data stored under a specific name on a storage
device, is called a file.

 Stream: It refers to a sequence of bytes.

 ifstream: Stream class to read from files. It provides input operations
for file.

 ofstream: Stream class to write on files. It provides output operations
for file.

 fstream: Stream class to both read and write from/to files.

 Text file: It is a file that stores information in ASCII characters.

Data file handling 279

 Binary file: It is a file that contains information in the same format as it is
held in memory.

 File can be opened in two ways :

a. Opening file using constructor: Useful when a single file used with
stream.

b. Opening file using open(): Useful for managing multiple files with
the same stream.

 The classes defined with inside fstream.h derive from classes under
iostream.h.

 File can be closed using function close ().

 File modes: Describes how a file is to be used.

 ios::in: Open file for reading only.

 ios::out: Open file for writing only.

 ios::app: Append to end of file.

 The put() member function belongs to the class ofstream and writes a
single character to the associated stream.

 The get() member function belongs to the class ifstream and the function
get() reads a single character from the associated stream.

 getline(): It is used to read a whole line of text. It belongs to the class
ifstream.

 The write() member function belongs to the class ofstream and which is
used to write binary data to a file.

 The read() member function belongs to the class ifstream and which is
used to read binary data from a file.

 eof():Helps in detecting the end of file.

 eof(): returns true (non-zero) if end-of-file is encountered while reading,
otherwise return false(zero).

 seekg():Moves the get pointer to a specified location from the beginning of
a file.

 The seekg(long) moves the get pointer to a specified location from the
beginning of a file.

 seekp():Moves the put pointer to a specified location from the beginning
of a file.

Data file handling280

 tellg(): The ifstream class provides the member function name tellg(); The
purpose of the function is to return current position of the get pointer.

 tellp(): The ifstream class provides the member function name tellp(); The
purpose of the function is to return current position of the put pointer.

One marks questions:

1. Which header file is required for file handling functions in C++.
2. What is stream?
3. Name the streams generally used for file I/O.
4. What are output streams?
5. What are input streams?
6. Mention the methods of opening file within C++ program.
7. Write the member functions belonging to fstream class.
8. What is ifstream class
9. What is ofstream class.
10. Write the member functions belonging to ofstream class.
11. Write the member functions belonging to ifstream class.
12. Name the stream classes supported by C++ for file input.
13. Name the stream classes supported by C++ for output.
14. Mention the file modes.
15. What is ios :: in?
16. What is ios::out?
17. Mention the types of file.
18. What is text file.
19. What is binary file.
20. What is the use of write () function.
21. What is the use of writeln () function.
22. What is the use of get () function.
23. What is the use of put () function.
24. What is the use of getline () function.
25. What is the use of read () function.
26. What is the use of seekp () function.
27. What is the use of seekg () function.
28. What is the use of eof () function.

Two marks questions:
1. What is stream? Name the streams generally used for file I/O.
2. What are input and output streams?
3. Mention the methods of opening file within C++ . Discuss any one.
4. Write the member functions belonging to fstream class.
5. Differentiate between ifstream class and ofstream class.
6. Differentiate between read () and write ().
7. Differentiate between get () and getline ().

Data file handling 281

8. Write the member functions belonging to ofstream class.
9. Write the member functions belonging to ifstream class.
10. Name the stream classes supported by C++ for file input and output.
11. What are the advantages of saving data in Binary form

Three marks questions:
1. Mention the methods of opening file within C++ program. Discuss.
2. Differentiate between ifstream class and ofstream class.
3. Differentiate between read () and write ().
4. Differentiate between get () and getline ().
5. Name the stream classes supported by C++ for file input and output.
6. Mention the types of file. Explain any one.
7. What are the advantages of saving data in 1.Binary form. 2. Text form.

Five marks questions:
1. What are input and output streams?
2. What is significance of fsream.h header file.
3. Mention the methods of opening file within C++, Discuss.
4. Differentiate between ifstream class and ofstream class.
5. Differentiate between read () and write () with example.
6. Differentiate between get () and getline () with example.
7. Explain any three file modes.
8. Differentiate between ios::in and ios::out.

Data Concepts282

CHAPTER 13

DATABASE CONCEPTS

OBJECTIVES

 To understand the concept of database.

 Various terms used in database.

 To understand various data model.

 To understand how the keys are used in database

 Data warehouse and datamining.

Data Concepts 283

13.1 Introduction :
The large and complex data which are collected, entered, stored and accessed
based on the users needs are in the form of queries. Unique softwares are
developed and used, which are highly secured and complex. This chapter will
illustrate the database concepts.

Today the database is used everywhere and in all walks of life. The database
is becoming the backbone of all the softwares from standalone, client-server,on-
line, mainframe, supercomputers etc. For example use in business,
government agency, service organization etc. Wherever the data and information
is required, there the database software is used and the results are presented in
the form of reports or graphical representation, which are easier for
understanding, so that furture activities can be carried out based on these reports.

One of the area where database is used can be schools; for example. The Fees
payment software. The basic requirements for new student admission are Name,
student id, admission no, father name, class, section, amount, date of entry into
the school are entered and saved. Some of the activities can be admission fees/
annual fees, monthly fees, late payment etc., created and the respective reports
are generated.
DATABASE

Data Concepts284

13.2 APPLICATION OF DATABASE:
Databases are widely used. Here are some representative applications:

1. Banking: For customer information, accounts, and loans, and banking
transactions.

2. Water meter billing : The RR number and all the details are stored in
the database and connected to the server based works.

3. Rail and Airlines: For reservations and schedule information. Airlines
were among the first to use databases in a geographically distributed
manner terminals situated around the world accessed the central
database system through phone lines and other data networks.

4. Colleges : For student information, course registrations, and grades.
5. Credit card transactions: For purchases on credit cards and generation

of monthly statements.
6. Telecommunication: For keeping records of calls made, generating

monthly bills, maintaining balances on prepaid calling cards, and storing
information about the communication networks.

7. Finance: For storing information about holdings, sales, and purchases
of financial instruments such as stocks and bonds.

8. Sales: For customer, product, and purchase information.
9. Manufacturing: For management of supply chain and for tracking

production of items in factories, inventories of items in warehouses/
stores, and orders for items.

10.Human resources: For information about employees recruitment, salaries,
payroll taxes and benefits, and for generation of paychecks.

13.3 Origin of data

The fact is something that is really occurred or is actually the case. The
things that are happening and happened in real form or virtual form are
considered to be fact. The fact is pursued by sense organs.

Data: Data is a collection of facts, figures, statistics, which can be
processed to produce meaningful information.

The process of converting fact to data will be the first task, for any person
in database concepts. The human intervention is mandatory for converting from
fact to data form. The data may be in the form of letters, numbers, symbols,
images, sound, video etc. The origin of fact can be from the organization/within
or outside organization or any part of universe. For example the marks obtained
by the student in the exam is 80, 80 is the fact, on the marks card the 80
entered will be in numberic symbols which is data.

Data Concepts 285

The different forms of data and its representation is illustrated. One such form
is sound represented using musical notes (software generated), these notes is
stored in the form of bytes in the sound file(software digitized). In the
hardware data is stored in the form of bits.

Fig. 13.1 Different forms of data
Information: Information is processed data with some definite mean-

ing. Information represents facts, figures, or statistics, which have proper
meaning.

For example, in the marks card of the student total marks, percentage
and the result are processed data known as the information.

13.4 Evolution of Database - Manual File systems

Historically, When the file management came into existence, such systems
were often manual, paper-and-pencil systems. The papers within these systems
were organized to facilitate the expected use of the data. Typically, this was
accomplished through a system of file folders and filing cabinets. As long as a
collection of data was relatively small and an organization’s users had few reporting
requirements, the manual system served its role well as a data repository.
However, as organizations grew and as reporting requirements became more
complex, keeping track of data in a manual file system became more difficult.
Therefore, companies looked to computer technology for help.

Data Concepts286

Computerized File systems

Initially, the computer files within the file system were similar to the manual
files. The description of computer files requires a specialized vocabulary.
Every discipline develops its own terminology to enable its practitioners to
communicate clearly.

Differences between Manual and Computerized data processing

13.5 DATA PROCESSING CYCLE

The way information is processed in a computer information management system.
The information processing cycle consists of five specific steps:

1. Data input– This is any kind of data- letters, numbers, symbols, shapes,
images or whatever raw material put into the computer system that needs
processing. Input data is put into the computer using a keyboard, mouse or
other devices such as the scanner, microphone and the digital camera. In general
data must be converted to computer understandable form (English to machine
code by the input devices).

2. Data processing – The processing is a series of actions or operations from the
input data to generate outputs. some of the operations are classification based
on some condition, calculation, sorting, indexing, accessing data, extracting
part of filed/attribute, substring etc., convertion of data into information by the
central processing unit. For example; when the computer adds 4+4=8 that is an
act of processing.

3. Storage - Data and information not currently being used must be stored so it
can be accessed later. There are two types of storage; primary and secondary
storage. Primary storage is the computer circuitry that temporarily holds data

Manual Data processing Computerized Electronic Data
processing

The Volume of the data, which can be
processed, is limited in a desirable time.

The volume of data which can be
processed can be very large.

Manual data processing requires large
quantity of paper

Reasonable less amount of paper is
used.

The speed and accuracy at which the job
is executed is limited.

The job executed is faster and
Accurate.

Labour cost is high. Labour cost is economical.
Storage medium is paper Storage medium is Secondary

storage medium.

Data Concepts 287

Fig 13.3 Table with rows and columns

DATA PROCESSING CYCLE

waiting to be processed (RAM) and it is inside the computer. Secondary storage
is where data is held permanently. A floppy disk, hard disk or CD- ROM is

examples of this kind of
storage.

4 . O u t p u t – T h e
r e s u l t (i n f o r m a t i o n)
obtained after processing
the data must be
presented to the user in
user understandable form.
The result may be in form
of reports(hardcopy/
softcopy). Some of the
output can be animated
with sound and video/
picture.

5. Communication – Computers nowadays have communication ability which
increases their power. With wired or wireless communication connections, data
may be input from afar, processed in a remote area and stored in several different
places and then be transmitted by modem as an e-mail or posted to the website
where the online services are rendered.

13.6 Database terms :

File : File is basic unit of storage in computer system. The file is the large
collection of related data.

Database: A Database is a collection of logically related data organized in a way
that data can be easily accessed, managed and updated.

Tables : In Relational database, a table is a collection of data elements orga-
nized in terms of rows and columns. A table is also considered as convenient
representation of relations. Table is the most simplest form of data storage.
Below is an example :

 Table : Employee,
Columns :Emp_Id,NAME,AGE,SALARY
Rows :There are four rows.

Fig. 13.2 Data Processing cycle

Employee table

Emp_ID NAME AGE SALARY
1 RAJAPPA 43 45000.00
2 ALEX 37 56444.00
3 RAMESH 55 56000.00
4 IMRAN 28 60000.00

Data Concepts288

Records: A single entry in a table is called a Record or Row. A Record in a
table represents set of related data. Following is an example of single record.
Tuple :Records are also called the tuple.
Fields : Each Columns is identified by a distinct header called attribute or field
Domain :Set of values for an attribute in that column.
An Entity is an object such as a table or Form An Entity Relationship is how
each table link to each other

13.7 Data types of DBMS(Data types in DBMS)

1. Integer – Hold whole number without fractions.
2. Single and double precision – Seven significant value for a number.
3. Logical data type-Store data that has only two values true or false.
4. Characters – Include letter, number, spaces, symbols and punctuation.
Characters fields or variables store text information like name, address, but
size will be one byte.
5. Strings – Sequence of character more than one. Fixed length is 0 to 63Kb and
dynamic strings length range from 0 to 2 billion characters.
6. Memo data type – Store more than 255 characters. A memo fields can store
up to 65536 characters. Long documents can store OLE objects.
7. Index fields –Used to store relevant information along with the documents.
The document input to an index field is used to find those documents when
needed. The programs provides up to 25 user definable index fields in an index
set. Name drop-down look-up list, Standard, auto-complete History list.
8. Currency fields – The currency field accepts data in dollar form by default.
9. Date fields -The date fields accepts data entered in date format.
10. Text fields – Accepts data as an alpha-numeric text string.

Fig 13.4 Different database terms

Fig 13.5 Single persons details

Data Concepts 289

13.8 DBMS-DATABASE MANAGEMENT SYSTEM

A DBMS is a software that allows creation,
definition and manipulation of database. DBMS is
actually a tool used to perform any kind of
operation on data in database. DBMS also provides
protection and security to database. It maintains
data consistency in case of multiple users. Here
are some examples of popular DBMS, MySql,
Oracle, Sybase, Microsoft Access and IBM DB2 etc.

The primary goal of a DBMS is to provide a way to store and retrieve database
information that is both convenient and efficient.

Features of Database System

Database approach came into existence due to the overcome of the drawbacks of
file processing system. In the database approach, the data is stored at a central
location and is shared among multiple users. Thus, the main advantage of DBMS

is centralized data management. The
centralized nature of database system
provides several advantages, which overcome
the limitations of the conventional file
processing system. These advantages are
listed here.

 Controlled data redundancy: During
database design, various files are integrated
and each logical data item is stored at central
location. This eliminates
replicating(duplication) the data item in
different files, and ensures consistency and

saves the storage space. Note that the redundancy in the database systems
cannot be eliminated completely as there could be some performance and
technical reasons for having some amount of redundancy. However, the DBMS
should be capable of controlling this redundancy in order to avoid data
inconsistencies.

 Enforcing data integrity: In database approach, enforcing data integrity is
much easier. Data integrity refers to the validity of data and it can be compromised

Fig 13.6 Features of DBMS

Data Concepts290

in a number of ways. Data integrity constraints can be enforced automatically
by the DBMS, and others may have to be checked by the application programs.

 Data sharing: The data stored in the database can be shared among multiple
users or application programs. Moreover, new applications can be developed to
use the same stored data. Due to shared data, it is possible to satisfy the data
requirements of the new applications without having to create any additional
data or with minimal modification.

 Ease of application development: The application programmer needs to
develop the application programs according to the users’ needs. The other issues
like concurrent access, security, data integrity, etc., are handled by the RDBMS
itself. This makes the application development an easier task.

 Data security: Since the data is stored centrally, enforcing security constraints
is much easier. The RDBMS ensures that the only means of access to the database
is through an authorized channel only. Hence, data security checks can be
carried out whenever access is attempted to sensitive data. To ensure security, a
RDBMS provides security tools such as user codes and passwords. Different
checks can be established for each type of access (addition, modification, deletion,
etc.) to each piece of information in the database.

 Multiple user interfaces: In order to meet the needs of various users having
different technical knowledge, DBMS provides different types of interfaces such
as query languages, application program interfaces, and graphical user interfaces
(GUI) that include forms-style and menu-driven interfaces. A form-style interface

displays a form to each user and user
interacts using these forms. In menu-
driven interface, the user interaction
is through lists of options known as
menus.

 Backup and recovery: The
RDBMS provides backup and
recovery subsystem that is responsible
for recovery from hardware and
software failures. For example, if the
failure occurs in between the

transaction, the RDBMS recovery subsystem either reverts back the database to
the state which existed prior to the start of the transaction or resumes the
transaction from the point it was interrupted so that its complete effect can be
recorded in the database.

Fig 13.7 Different Layers Database

Data Concepts 291

Note : Why a Spreadsheet Is Not a Database

While a spreadsheet allows for the creation of multiple tables, it does not support
even the most basic data-base functionality such as support for
self-documentation through metadata, enforcement of data types or domains to
ensure consistency of data within a column, defined relationships among tables,
or constraints to ensure consistency of data across related tables. Most users
lack the necessary training to recognize the limitations of spreadsheets for these
types of tasks.

13.9 Data Abstraction

The DBMS architecture describes how data in the database is viewed by the
users. It is not concerned with how the data is handled and processed by the
RDBMS. The database users are provided with an abstract view of the data by
hiding certain details of how data is physically stored. This enables the users
to manipulate the data without worrying about where it is located or how it is
actually stored.

In this architecture, the overall database description can be defined at three
levels, namely, internal, conceptual, and external levels and thus, named three-
level RDBMS architecture. This architecture is proposed by ANSI/SPARC
(American National Standards Institute/Standards Planning and Requirements
Committee) and hence, is also known as ANSI/SPARC architecture.

· Internal level: Internal level is
the lowest level of data
abstraction that deals with the
physical representation of the
database on the computer and
thus, is also known as physical
level. It describes how the data
is physically stored and
organized on the storage
medium. At this level, various
aspects are considered to
achieve optimal runtime
performance and storage space
utilization. These aspects include
storage space allocation
techniques for data and indexes,
access paths such as indexes,

Fig 13.8 Different Levels of Database

Data Concepts292

data compression and encryption techniques, and record placement.

Conceptual level: This level of abstraction deals with the logical structure of the entire database

and thus, is also known as logical level. Conceptual level describes what data is stored in the

database, the relationships among the data and complete view of the user’s requirements without

any concern for the physical implementation. That is, it hides the complexity of physical storage

structures.

The conceptual view is the overall view of the database and it includes all the
information that is going to be represented in the database.

External level: External level is the highest level of abstraction that deals with
the user’s view of the database and thus, is also known as view level. In general,
most of the users and application programs do not require the entire data stored
in the database. The external level describes a part of the database for a particular
group of users. It permits users to access data in a way that is customized according
to their needs, so that the same data can be seen by different users in different
ways, at the same time. In this way, it provides a powerful and flexible security
mechanism by hiding the parts of the database from certain users, as the user is
not aware of existence of any attributes that are missing from the view.

DBMS users : The broad classification of dbms users are

1. Application programmers and system analysts: System analsysts determine
the requirement of end users; especially naive, parametric end users, and develop
specifications for transactions that meet these requirements.Application
programmers implement these parameters in programs.
2. End users : People who require access to the database for querying updating
and generating reports. The database exists primarily for/their use.
3. Database Administrator (DBA): DBA is responsible for authorization access to

the database for coordinating and
monitoring its use, and for
acquiring the needed software
and hardware resources.

4. Database designers: Database
designers are responsible for
identifying the data to be stored
in the database for choosing
appropriate structures to
represent and store the data.
Schema objects are database

objects that contain data or govern or perform operations on data.

Data Concepts 293

13.10 Data Independence:
Data Independence is an ability of a database to modify a schema definition at
one level without affecting a schema in the next higher level (the ability to change
the conceptual schema without affecting the external schemas or application
programs). Data independence occurs because when the schema is changed at
one level, the schema at next level remains unchanged and only the mapping
between the two levels is changed. Two types of data independence are:
1. Physical Data Independence. 2. Logical Data Independence

All schemas are logical and actual data is stored in bit format on the disk. Namely
storage medium: Hard disk (all the files will be stored), floppies, drum, tapes, SD
etc., System designs choose to organize, access and process records and files in
different ways depending on the type of application and the needs of users. The
three commonly used file organizations used in dbms/rdbms data processing
applications are sequential, direct and indexed sequential access method(ISAM).
The selection of a particular file organization depends upon the application used.
To access a record some key field or unique identifying value that is found in
every record in a file is used.

Serial File Organization : With serial file organization, records are arranged
one after another, in no particular order-other than, the chronological order in
which records are added to the file. Serial organization is commonly found in
the transaction data. Where records are created in a file in the order in which
transaction takes place. Serial file organization provides advantages like fast

Fig 13.9 Data Independence
Physical Data independence

Data Concepts294

access to next records in sequence, stored in economical storage media and
easy to do the file backup facility, updating is slowly in this file organization.

Sequential File organization : Records are stored one after another in an
ascending or descending order determined by the key field of the records.
Example payroll file, records are stored in the form of employee id. Sequentially
organized files that are processed by computer systems are normally stored on
storage media such as magnetic tape, punched cards, or magnetic disks. To
access these records the computer must read the file in sequence from the
beginning. The first record is read and processed first, then the second record in
the file sequence, and so on. To locate a particular record, the computer program
must read in each record in sequence and compare its key field to the one that
is needed. The retrieval search ends only when the desired key matches with
the key field of the currently read record. On an average, about half of the file
has to be searched to retrieve the desired record from a sequential file.

Fig 13.10 File organisation

Data Concepts 295

Random/Direct Access File Organization: Direct access file organization allow
immediate direct access to individual records on the file. The record are stored
and retrieved using a relative record number, which gives the position of the
record in the file. This type of organization also allows the file to accessed
sequentially. The primary storage in a CPU truly provides for direct access.
There are some devices outside the CPU which can provide the direct feature;the
direct access storage devices have the capability of directly reaching any location.
Although there are several types of storage devices including discs and other
mass storage.

Self(direct) Addressing: Under self-direct addressing, a record key is used as
its relative address. Therefore, anyone can compute the record’s address from
the record key and the physical address of the first record in the file.
Advantage is self-addressing no need to store an index.
Disadvantages are, the records must be of fixed length, if some records are
deleted the space remains empty.

Random access method : Records are stored on disk by using a hasing algorithm.
The key field is fed through hashing algorithm and a relative address is created.
This address gives the position on the disk where the record is to be stored. The
desired records can be directly accessed using randomizing procedure or hashing
without accessing all other records in the file. Randomizing procedure is
characterized by the fact that records are stored in such a way that there is no
relationship between the keys of the adjacent records. The technique provide for
converting the records key number to a physical location represented by a disk
address through a computational procedure.
Advantages : The access to, and retrieval of a records is quick and direct.
Transactions need not be stored and placed in sequence prior to processing
Best used for online transaction.

Disadvantages: Address generation overhead is involved for accessing each record
due to hashing function.
May be less efficient in the use of storage space than sequentially organized
files.

Indexed Sequential Access Method(ISAM): ISAM is the hybrid between
sequential and direct access file organization. The records within the file are
stored sequentially but direct access to individual records is possible through an
index. Indexing permit access to selected records without searching the entire
file.

Advantages: ISAM permits efficient and economical use of sequential processing
techniques when the activity ratio is high.
Permits direct access processing of records in a relatively efficient way when the
activity ratio is low.

Data Concepts296

Cylinder Highest
Record key
in the cylinder

1 84
2 250
3 398
4 479

Cylinder 1 track index
Track Highest

Record key
in the cylinder

1 84
2 250
3 398
4 479

Cylinder 2 track index
Track Highest

Record key
in the cylinder

1 95
2 110
3 175
4 250

Disadvantages: Files must be stored in a direct-access storage device. Hence
relatively expensive hardware and software resources are required.
Access to records may be slower than direct file.
Less efficient in the use of storage space than some other alternatives.

 Different types of Architecture

The design of a Database Management System highly depends on its architecture.
It can be centralized or decentralized or hierarchical. DBMS architecture can be
seen as single tier or multi-tier. N-tier architecture divides the whole system
into related but independent n modules, which can be independently modified,
altered, changed or replaced.

Database architecture is logically divided into three types.
1. Logical one-tier In 1-tier architecture,
2. Logical two-tier Client / Server architecture
3. Logical three-tier Client/Server architecture

Logical one-tier In 1-tier architecture
In 1-tier architecture, DBMS is the only entity where user directly sits on DBMS
and uses it. Any changes done
here will directly be done on
DBMS itself. It does not provide
handy tools for end users and
preferably database designer
and programmers use single
tier architecture.

Fig 13.11 Table describing ISAM

Fig 13.12 Logical one tier
architecture

Data Concepts 297

Two-tier Client / Server Architecture

Two-tier Client / Server architecture is used for User Interface program and
Application Programs that runs on client side. An interface called ODBC (Open
Database Connectivity) provides an API that allows client side program to call
the DBMS. Most DBMS vendors provide ODBC drivers. A client program may
connect to several DBMS's. In this architecture some variation of client is also
possible for example in some DBMS's more functionality is transferred to the
client including data dictionary, optimization etc. Such clients are called Data
server.

Fig 13.13 2-Level Tier Architecture

Logical two-tier Client / Server architecture

Data Concepts298

Three-tier Client / Server Architecture
Three-tier Client / Server database architecture is commonly used architecture
for web applications. Intermediate layer called Application server or Web Server
stores the web connectivity software and the business logic (constraints) part of
application used to access the right amount of data from the database server.
This layer acts like medium for sending partially processed data between the
database server and the client.

 Database (Data) Tier: At this tier, only database resides. Database along with
its query processing languages sits in layer-3 of 3-tier architecture. It also
contains all relations and their constraints.

 Application (Middle) Tier: At this tier the application server and program,
which access database, resides. For a user this application tier works as
abstracted view of database. Users are unaware of any existence of database
beyond application. For database-tier, application tier is the user of it.
Database tier is not aware of any other user beyond application tier. This tier
works as mediator between the two.

 User (Presentation) Tier: An end user sits on this tier. From a users aspect
this tier is everything. He/she doesn't know about any existence or form of
database beyond this layer. At this layer multiple views of database can be
provided by the application. All views are generated by applications, which
reside in application tier. Multiple tier database architecture is highly
modifiable as almost all its components are independent and can be changed
independently.

Fig 13.14 3-Level Tier Architecture

13.11 Database Model

A database model or simply a data model is an abstract model that describes
how the data is represented and used. A data model consists of a set of data

Data Concepts 299

structures and conceptual tools that is used to describe the structure (data
types, relationships, and constraints) of a database.

A data model not only describes the structure of the data, it also defines a set
of operations that can be performed on the data. A data model generally
consists of data model theory, which is a formal description of how data may
be structured and used, and data model instance, which is a practical data
model designed for a particular application. The process of applying a data
model theory to create a data model instance is known as data modeling.

The main objective of database system is to highlight only the essential
features and to hide the storage and data organization details from the user.
This is known as data abstraction. A database model provides the necessary
means to achieve data abstraction.

A Database model defines the logical design of data. The model describes the
relationships between different parts of the data.
In history of database design, three models have been in use.
 * Hierarchical Model
 * Network Model
 * Relational Model

13.11.1 Hierarchical Model

The hierarchical data model is the oldest type of data model, developed by IBM
in 1968. This data model organizes the data in a tree-like structure, in which
each child node (also known as dependents) can have only one parent node.
The database based on the hierarchical data model comprises a set of records
connected to one another through links. The link is an association between two
or more records. The top of the tree structure consists of a single node that does
not have any parent and is called the root node.

The root may have any number of dependents; each of these dependents may
have any number of lower level dependents. Each child node can have only one
parent node and a parent node can have any number of (many) child nodes. It,
therefore, represents only one-to-one and one-to-many relationships. The
collection of same type of records is known as a record type.

For simplicity, only few fields of each record type are shown. One complete
record of each record type represents a node.

Data Concepts300

In this model each entity has only one parent but can have several children . At
the top of hierarchy there is only one entity which is called Root.

Hierarchical Model Example

Advantage Dis-advantage

The hierarchical data model is that
the data access is quite predictable
in the structure and, therefore, both
the retrieval and updates can be
highly optimized by the DBMS.

The main drawback of this model is
that the links are ‘hard coded’ into
the data structure, that is, the link is
permanently established and cannot
be modified. The hard coding makes
the hierarchical model rigid. In
addition, the physical links make it
difficult to expand or modify the
database and the changes require
substantial redesigning efforts.

Fig 13.15 Hierarchical Model

13.11.2 Network Model

The first specification of network data model was presented by Conference on
Data Systems Languages (CODASYL) in 1969, followed by the second specification
in 1971. It is powerful but complicated. In a network model the data is also
represented by a collection of records, and relationships among data are
represented by links. However, the link in a network data model represents an
association between precisely two records. Like hierarchical data model, each
record of a particular record type represents a node. However, unlike hierarchical
data model, all the nodes are linked to each other without any hierarchy. The
main difference between hierarchical and network data model is that in

Data Concepts 301

hierarchical data model, the data is organized in the form of trees and in network
data model, the data is organized in the form of graphs.
In the network model, entities are organized in a graph, in which some
entities can be accessed through several path

Network Model of database
Fig 13.16 Network Model of database

Advantage Dis-advantage

The network data model is that a
parent node can have many child
nodes and a child can also have
many parent nodes. Thus, the
network model permits the modeling
of many-to-many relationships in
data.

The network data model is that it
can be quite complicated to maintain
all the links and a single broken link
can lead to problems in the
database. In addition, since there are
no restrictions on the number of
relationships, the database design
can become complex.

13.11.3 Relational Model
The relational data model was developed by E. F. Codd in 1970. In the relational
data model, unlike the hierarchical and network models, there are no physical
links. All data is maintained in the form of tables (generally, known as relations)
consisting of rows and columns. Each row (record) represents an entity and a
column (field) represents an attribute of the entity. The relationship between
the two tables is implemented through a common attribute in the tables and not
by physical links or pointers. This makes the querying much easier in a relational
database system than in the hierarchical or network database systems. Thus,

Data Concepts302

the relational model has become more programmer friendly and much more
dominant and popular in both industrial and academic scenarios. Oracle, Sybase,
DB2, Ingres, Informix, MS-SQL Server are few of the popular relational DBMSs.

In this model, data is organized in two-dimensional tables called relations. The
tables or relation are related to each other.
Relational Model of database

Fig 13.17 Relational Model of database

13.12 Codd’s Rule
E.F Codd was a Computer Scientist who invented Relational model for Database
management. Based on relational model, Relation database was created. Codd
proposed 13 rules popularly known as Codd’s 12 rules to test DBMS’s concept
against his relational model. Codd’s rule actually define what quality a DBMS
requires in order to become a Relational Database Management System(RDBMS).
Till now, there is hardly any commercial product that follows all the 13 Codd’s
rules. Even Oracle follows only eight and half out(8.5) of 13. The Codd’s 12 rules
are as follows.
 Rule zero
This rule states that for a system to qualify as an RDBMS, it must be
able to manage database entirely through the relational capabilities.
Rule 1 : Information rule
All information(including meta-deta) is to be represented as stored data
in cells of tables. The rows and columns have to be strictly unordered.
Rule 2 : Guaranteed Access
Each unique piece of data(atomic value) should be accessible by :
Table Name + primary key(Row) + Attribute(column).
NOTE : Ability to directly access via POINTER is a violation of this rule.
 Rule 3 : Systemetic treatment of NULL

Basic Rules for the Realational Datamodel

Data Concepts 303

Rule 3 : Systemetic treatment of NULL
Null has several meanings, it can mean missing data, not applicable or
no value. It should be handled consistently. Primary key must not be
null. Expression on NULL must give null.
Rule 4 : Active Online Catalog
Database dictionary(catalog) must have description of Database.
Catalog to be governed by same rule as rest of the database. The same
query language to be used on catalog as on application database.
Rule 5 : Powerful language
One well defined language must be there to provide all manners of access
to data. Example: SQL. If a file supporting table can be accessed by any
manner except SQL interface, then its a violation to this rule.
Rule 6 : View Updation rule
All view that are theoretically updatable should be updatable by the system.
Rule 7 : Relational Level Operation
There must be Insert, Delete, Update operations at each level of relations. Set
operation like Union, Intersection and minus should also be supported.
Rule 8 : Physical Data Independence
The physical storage of data should not matter to the system. If say, some file
supporting table were renamed or moved from one disk to another, it should
not effect the application.
Rule 9 : Logical Data Independence
If there is change in the logical structure(table structures) of the database the
user view of data should not change. Say, if a table is split into two tables, a
new view should give result as the join of the two tables. This rule is most
difficult to satisfy.
Rule 10 : Integrity Independence
The database should be able to con-force its own integrity rather than using
other programs. Key and Check constraints, trigger etc should be stored in
Data Dictionary. This also make *RDBMS* independent of front-end.
Rule 11 : Distribution Independence
A database should work properly regardless of its distribution across a
network. This lays foundation of distributed database.
Rule 12 : Non-subversion rule
If low level access is allowed to a system it should not be able to subvert or
bypass integrity rule to change data. This can be achieved by some sort of
looking or encryption.

Data Concepts304

13.13 Logical database concepts : Normalization, Entities, attributes, relations
13.13.1 Normalization Rule: Normalization is the process of organizing data in
a database. This includes creating tables and establishing relationships between
those tables according to rules designed both to protect the data and to make
the database more flexible by eliminating redundancy and inconsistent
dependency.

There are a few rules for database normalization. Each rule is called a “normal
form.” If the first rule is observed, the database is said to be in “first normal
form.” If the first three rules are observed, the database is considered to be in
“third normal form.” Although other levels of normalization are possible, third
normal form is considered the highest level necessary for most applications.
As with many formal rules and specifications, real world scenarios do not always
allow for perfect compliance. In general, normalization requires additional tables
and some customers find this cumbersome. If you decide to violate one of the
first three rules of normalization, make sure that your application anticipates
any problems that could occur, such as redundant data and inconsistent
dependencies.

Normalization rule are divided into following normal form.
 1. First Normal Form
 2. Second Normal Form
 3. Third Normal Form
 4. BCNF

First Normal Form (1NF)
A row of data cannot contain repeating group of data i.e each column must have
a unique value. Each row of data must have a unique identifier i.e *Primary key*.
For example consider a table which is not in First normal form
Student Table :

You can clearly see here that student name Daryl is used twice in the table and
subject *maths* is also repeated. This violates the *First Normal form*. To reduce
above table to *First Normal form* break the table into two different tables

Data Concepts 305

Library_id S_Name Issue_id Issue_name Book_detail
101 RAMU 10 Rakesh C++
102 RAMU 11 Rakesh Java
103 Zama 12 Gopal MATHS
104 SATISH 13 Gopal MATHS

S_id S_Name S_Subject
401 Daryl Maths
402 Ramesh Physics
403 Rakshana Maths
404 Nakshatria Computer Science

Fig 13.18 1NF Student table with S-id,S_name,S_subject

Fig 13.19 Student table with 1NF rule rewritten

Suject_id S_id S_Subject
35 401 Maths
35 401 Maths
33 403 Physics
34 404 Chemistry
41 405 Computer Science

New Student Table :

Subject Table :

In Student table concatenation of subject_id and student_id is the Primary key.
Now both the Student table and Subject table are normalized to first normal
form

Second Normal Form (2NF)

A table to be normalized to Second Normal Form should meet all the needs of
First Normal Form and there must not be any partial dependency of any column
on primary key. It means that for a table that has concatenated primary key,
each column in the table that is not part of the primary key must depend upon
the entire concatenated key for its existence. If any column depends only on
one part of the concatenated key, then the table fails Second normal form. For
example, consider a table which is not in Second normal form.

Library Table :

In Library table concatenation of Library_id and issue_id is the primary key.
This table is in First Normal form but not in Second Normal form because there
are partial dependencies of columns on primary key. S_Name is only dependent
on Library_id, Issue_name is dependent on Issue_id and there is no link between
Book_detail and S_name.

Data Concepts306

Library_id S_Name Issue_Detail Table :

Library_id S_Name
101 RAMU
102 RAMU
103 Zama
104 SATISH

Issue_id Issue_name
10 Rakesh
11 Rakesh
12 Gopal
13 Gopal

Book_Detail Table :

Library_id Issue_id Book_detail
101 10 C++
102 11 Java
103 12 MATHS
104 13 MATHS

Fig 13.20 2NF Library Tablewith primary key and Issue key

To reduce Library table to Second Normal form break the table into
following three different tables.
Library_id S_Name
Library_id S_Name
101 RAMU
102 RAMU
103 Zama
104 SATISH

Issue_Detail Table :

Issue_id Issue_name
10 Rakesh
11 Rakesh
12 Gopal
13 Gopal

Book_Detail Table :

Library_id Issue_id Book_detail
101 10 C++
102 11 Java
103 12 MATHS
104 13 MATHS

Now all these three table comply with Second Normal form.

Data Concepts 307

Now all these three table comply with Second Normal form.

Third Normal Form (3NF)

Third Normal form applies that every non-prime attribute of table must be
dependent on primary key. The transitive functional dependencyshould be
removed from the table. The table must be in Second Normal form.
For example, consider a table with following fields.

Student_Detail Table :

Student_id Student_name DOB Street city State Pin

In this table Student_id is Primary key, but street, city and state depends upon
pin. The dependency between pin and other fields is called transitive dependency.
Hence to apply 3NF, we need to move the street, city and state to new table, with
pin as primary key.

New Student_Detail Table :

The advantage of removing transitive dependency is,

 * Amount of data duplication is reduced.
 * Data integrity achieved.

Boyce and Codd Normal Form (BCNF)
BCNF is a higher version of the Third Normal form. This form deals with certain
type of anamoly that is not handled by 3NF. A 3NF table which does not have
multiple overlapping candidate keys is said to be in BCNF.

 When a relation has more than one candidate key, anomalies may result
even though the relation is in 3NF.

 3NF does not deal satisfactorily with the case of a relation with overlapping
candidate keys

 i.e. composite candidate keys with at least one attribute in common.

Student_id Student_name DOB pin

Address Table :

pin Street city state

Data Concepts308

13.13.2 Entity-Relationship Diagram

ER-Diagram is a visual representation of data that describes how data is
related to each other.

Fig 13.21 Entity-Relationship Symbols

 BCNF is based on the concept of a determinant.

 A determinant is any attribute (simple or composite) on which some other
attribute is fully functionally dependent.

 A relation is in BCNF is, and only if, every determinant is a candidate key.

Consider the following relation and determinants.

 R(a,b,c,d)

 a,c -> b,d

 a,d -> b

Here, the first determinant suggests that the primary key of R could be changed
from a,b to a,c. If this change was done all of the non-key attributes present in
R could still be determined, and therefore this change is legal. However, the
second determinant indicates that a,d determines b, but a,d could not be the
key of R as a,d does not determine all of the non key attributes of R (it does not
determine c). We would say that the first determinate is a candidate key, but the
second determinant is not a candidate key, and thus this relation is not in
BCNF (but is in 3rd normal form).

„A relation R(X) is in Boyce–Codd Normal Form if for every non-trivial functional
dependency Y->Z defined on it, Y contains a key K of R(X). That is, Y is a
superkey for R(X).

Data Concepts 309

Components of E-R Diagram

The E-R diagram has three main components.

1) Entity

An Entity can be any object, place, person or class. In E-R Diagram, an entity is
represented using rectangles. Consider an example of an Organization.
Employee, Manager, Department, Product and many more can

be taken as entities from an Organization.

Weak entity is an entity that depends on
another entity. Weak entity doen’t have key
attribute of their own. Double rectangle
represents weak entity.

2) Attribute

An Attribute describes a property or characteristic of an entity. For
example, Name, Age, Address etc. can be attributes of a Student. An attribute is
represented using eclipse.
Attribute

Entity In E-R Diagram

Attribute Attribute exam ple

Fig 13.22 Entity and example

Fig 13.23 Entity with loan and payment

Fig 13.24 Attribute with example

Data Concepts310

Key Attribute Key attribute
represents the main characteristic
of an Entity. It is used to represent
Primary key. Ellipse with
underlying lines represent Key
Attribute.

Composite Attribute : An
attribute can also have their own
attributes. These attributes are
known as Composite attribute.

composite attribute example

3) Relationship
A Relationship describes relations between entities. Relationship is
represented using diamonds.

There are three types of relationship that exist between Entities.
 * Binary Relationship
 * Recursive Relationship
 * Ternary Relationship

Relationship Relationship example

Fig 13.25 Attribute key with primary key

Fig 13.26 Composite attribute

Fig 13.27 Relationship with example

Data Concepts 311

Binary Relationship

Binary Relationship means relation between two Entities. This is further
divided into three types.
 1. One to One : This type of relationship is rarely seen in real world.

 The above example describes that one student can enroll only for one course
and a course will also have only one Student. This is not what you will usually
see in relationship.

 2. One to Many : It reflects business rule that one entity is associated with
many number of same entity. For example, Student enrolls for only one Course
but a Course can have many Students.

one-to-one example

One to Many

Fig 13.28 1:1 Relationship with example

Fig 13.29 1:M Relationship with example

Data Concepts312

The arrows in the diagram describes that one student can enroll
 for only one course.

 3. Many to Many : The above diagram represents that many students can
enroll for more than one courses.

PARTICIPATION CONSTRAINTS

 Total Participation: Each entity in the entity is involved in the relationship.
Total participation is represented by double lines.
 Partial participation: Not all entities are involved in the relation ship.
Partial participation is represented by single line.

Fig 13.30 M:M Relationship with example

Fig 13.31 Total partipation and partial participation

Many to Many

Data Concepts 313

13.13.3 Cardinality

Cardinality specifies how many instances of an entity
relate to one instance of another entity.

Ordinality is also closely linked to cardinality. While
cardinality specifies the occurrences of a relationship,
ordinality describes the relationship as either
mandatory or optional. In other words, cardinality
specifies the maximum number of relationships and
ordinality specifies the absolute minimum number of
relationships.

Cardinality NotationCardinality specifies how many instances of an entity relate
to one instance of another entity.Ordinality is also closely linked to cardinality.
While cardinality specifies the occurances of a relationship, ordinality describes
the relationship as either mandatory or optional. In other words, cardinality
specifies the maximum number of relationships and ordinality specifies the
absolute minimum number of relationships. When the minimum number is
zero, the relationship is usually called optional and when the minimum number
is one or more, the relationship is usually called mandatory.

Fig 13.32 Cardinality

Fig 13.33 Cardinality Notation with examples

Data Concepts314

Fig 13.34 Cardinality Notation

Fig 13.35 Recursive Relationship

Recursive Relationship

Data Concepts 315

Generalization Specialization

Generalization is a bottom-up
approach in which two lower level
entities combine to form a higher
level entity. In generalization, the
higher level entity can also combine
with other lower level entity to make
further higher level entity.

Specialization is opposite to
Generalization. It is a top-down
approach in which one higher level
entity can be broken down into two
lower level entity. In specialization,
some higher level entities may
not have lower-level entity sets at all.

When an Entity is related with itself it is known
as Recursive Relationship.

Aggregration : Aggregration is a process when
relation between two entity is treated as a single

entity. Here the relation between Center and Course, is acting as an Entity in
relation with Visitor.

Fig13.37 Aggregration

Fig13.36 Generalization & Specialization

13.14 Keys
The word “key” is used in the context of relational database design. They are
used to establish and identify relation between tables. The key is a set of one or
more columns whose combined values are unique among all occurrences in a
given table.

Data Concepts316

Fig 13.38 Database terms with example

There are various types of relational keys:
1. Candidate key(ck): A Candidate key is any set of one or more columns

whose combined values are unique among all occurrences(ie tuples or
rows). Since a null value is not guaranteed to be unique, no component of

a candidate key is allowed to be null.
2. Primary key(pk): Primary key is a
candidate key that is most appropriate to
become the main key of the table. Primary
key is a key that uniquely identify each
record in a table. Example student_id,
Employee_id, Bank_acoount_no,
Transfer_certificate_id, Driving_licence_no

etc., by which only one value can exist, no dupilcation can exist.

Data Concepts 317

1.Composite Key : Key that consists of two or more attributes that uniquely
identify an entity occurrence is called
Composite key. But any attribute
that makes up the Composite key is
not a simple key in its own.
Example: Consider a Relation or
Table R1. Let A,B,C,D,E are the
attributes of this relation.

Fig.14.47 Composite Key

Table Employees
Employee_id Name Age city Salary Car_loan_id

1 Rajappa 42 Tumkur 42000 585

Table BMW cars
Car_load_id Model Loan amount EMI No of EMI Balance

585 Basic 1800000 80000 225 1000000

Fig 13.39 Foreign key with example

3. Alternate key/Secondary key(sk): The alternate keys of any table are simply
those candidate keys which are not currently selected as the primary key.
An alternative key is a function of all candidate keys minus the primary
key.

5. Super Key : A superkey is basically all sets of columns for which no two
rows share the same values for those sets. An attribute or set of attributes
that uniquely identifies a tuple within a relation/table. Super Key is a
superset of Candidate key.

6. Foreign key(fk) :A foreign key is a field in a relational table that matches
the primary key column of another table. The foreign key can be used to
cross-reference tables.

Data Concepts318

13.15 Relational Algebra
In order to implement a DBMS, there must exist a set of rules which state how
the database system will behave. For instance, somewhere in the DBMS must
be a set of statements which indicate than when someone inserts data into a
row of a relation, it has the effect which the user expects. One way to specify this
is to use words to write an ‘essay’ as to how the DBMS will operate, but words
tend to be imprecise and open to interpretation. Instead, relational databases
are more usually defined using Relational Algebra.

Relational Algebra is :
 the formal description of how a relational database operates
 an interface to the data stored in the database itself
 the mathematics which underpin SQL operations
Operators in relational algebra are not necessarily the same as SQL operators,
even if they have the same name. For example, the SELECT statement exists in
SQL, and also exists in relational algebra. These two uses of SELECT are not the
same. The DBMS must take whatever SQL statements the user types in and
translate them into relational algebra operations before applying them to the
database.
Terminology
 Relation – a set of tuples.
 Tuple – a collection of attributes which describe some real world entity.
 Attribute – a real world role played by a named domain.
 Domain – a set of atomic values.
 Set – a mathematical definition for a collection of objects which
contains no duplicates.

R(A,B,C,D,E)

A?BCDE This means the attribute 'A' uniquely determines the other attributes
B,C,D,E.

BC?ADE This means the attributes 'BC' jointly determines all the other attributes
A,D,E in the relation.

 Primary Key :A

Candidate Keys :A, BC

Super Keys : A,BC,ABC,AD

 Note : ABC,AD are not Candidate Keys since both are not minimal super keys.

Data Concepts 319

Operators – Write
 INSERT – provides a list of attribute values for a new tuple in a relation.
This operator is the same as SQL.
 DELETE – provides a condition on the attributes of a relation to
determine which tuple(s) to remove from the relation. This operator is the
same as SQL.
 MODIFY – changes the values of one or more attributes in one or more
tuples of a relation, as identified by a condition operating on the attributes of
the relation. This is equivalent to SQL UPDATE.
Operators – Retrieval
There are two groups of operations:
 Mathematical set theory based relations:
UNION, INTERSECTION, DIFFERENCE, and CARTESIAN PRODUCT.

 Special database operations:
SELECT (not the same as SQL SELECT), PROJECT, and JOIN.
Relational SELECT
SELECT is used to obtain a subset of the tuples of a relation that satisfy
a select condition.
For example, find all employees born after 14th Feb 2014:

 SELECTdob ‘14/feb/2014’(employee)
Relational PROJECT
The PROJECT operation is used to select a subset of the attributes of a relation by
specifying the names of the required attributes.
For example, to get a list of all employees surnames and employee numbers:

 PROJECT
surname,empno

(employee)

Fig.13.40 Relational Algebra

Data Concepts320

SELECT and PROJECT
SELECT and PROJECT can be combined together. For example, to get a list of
employee numbers for employees in department number 1:

Figure : Mapping select and project
Set Operations – semantics
Consider two relations R and S.

 UNION of R and S

the union of two relations is a relation that includes all the tuples that are
either in R or in S or in both R and S. Duplicate tuples are eliminated.

 INTERSECTION of R and S

the intersection of R and S is a relation that includes all tuples that are
both in R and S.

 DIFFERENCE of R and S

the difference of R and S is the relation that contains all the tuples that are
in R but that are not in S.

SET Operations – requirements

For set operations to function correctly the relations R and S must be union
compatible. Two relations are union compatible if

 they have the same number of attributes

 the domain of each attribute in column order is the same in both R and
S.

Fig.13.41 Select and project

 PROJECT EMPNO (SELECT DEPTNO=1 (EMPLOYEE))

MAPPING THIS BACK TO SQL GIVEN:

SELECT EMPNO
FROM EMPLOYEE
WHERE DEPTNO=1;

Data Concepts 321

UNION Example

INTERSECTION Example

DIFFERENCE Example

Fig.13.42 Union

Fig.13.44 Difference

Fig.13.43 Intersection

Data Concepts322

CARTESIAN PRODUCT
The Cartesian Product is also an operator which works on two sets. It is
sometimes called the CROSS PRODUCT or CROSS JOIN.
It combines the tuples of one relation with all the tuples of the other relation.
CARTESIAN PRODUCT example

Figure : CARTESIAN PRODUCT
JOIN Operator
JOIN is used to combine related tuples from two relations:
 In its simplest form the JOIN operator is just the cross product of the
two relations.
 As the join becomes more complex, tuples are removed within the cross
product to make the result of the join more meaningful.
 JOIN allows you to evaluate a join condition between the attributes of
the relations on which the join is undertaken.
The notation used is

 R JOINjoin condition S JOIN Example

Figure : JOIN

Fig.13.45 Cartesian product

Fig.13.46 Join

Data Concepts 323

Natural Join

Invariably the JOIN involves an equality test, and thus is often described as an
equi-join. Such joins result in two attributes in the resulting relation having
exactly the same value. A ‘natural join’ will remove the duplicate attribute(s).

 In most systems a natural join will require that the attributes have the
same name to identify the attribute(s) to be used in the join. This may
require a renaming mechanism.

 If you do use natural joins make sure that the relations do not have two
attributes with the same name by accident.

OUTER JOINs

Notice that much of the data is lost when applying a join to two relations. In
some cases this lost data might hold useful information. An outer join retains
the information that would have been lost from the tables, replacing missing
data with nulls.

There are three forms of the outer join, depending on which data is to be kept.

 LEFT OUTER JOIN – keep data from the left-hand table

 RIGHT OUTER JOIN – keep data from the right-hand table

 FULL OUTER JOIN – keep data from both tables

OUTER JOIN example 1

 OUTER JOIN (left/right)Fig.13.47 Outer Join left/right

Data Concepts324

 JOIN example 2

 OUTER JOIN (full)

Consider the following SQL to find which departments have had employees on
the ‘Further Accounting’ course.

 SELECT DISTINCT dname
 FROM department, course, empcourse, employee
 WHERE cname = ‘Further Accounting’
 AND course.courseno = empcourse.courseno
 AND empcourse.empno = employee.empno
 AND employee.depno = department.depno;

The equivalent relational algebra is

 PROJECTdname (department JOINdepno = depno (
 PROJECTdepno (employee JOINempno = empno (
 PROJECTempno (empcourse JOINcourseno = courseno (
 PROJECTcourseno (SELECTcname = ‘Further Accounting’ course)))))))
Symbolic Notation

From the example, one can see that for complicated cases a large amount of
the answer is formed from operator names, such as PROJECT and JOIN. It is
therefore commonplace to use symbolic notation to represent the operators.

 SELECT ->ó (sigma)

 PROJECT -> ð(pi)

 PRODUCT -> ×(times)

 JOIN -> |×| (bow-tie)

Fig.13.48 Outer Join Full

Data Concepts 325

 UNION -> *” (cup)

 INTERSECTION ->)”(cap)

 DIFFERENCE -> - (minus)

 RENAME ->ñ (rho)

Usage

The symbolic operators are used as with the verbal ones. So, to find all
employees in department 1:

 SELECTdepno = 1(employee)
 becomes ódepno = 1(employee)
Conditions can be combined together using ^ (AND) and v (OR). For example,
all employees in department 1 called ‘URS’:

 SELECTdepno = 1 ̂ surname = ‘URS’(employee)
 becomes ódepno = 1 ̂ surname = ‘URS’(employee)
The use of the symbolic notation can lend itself to brevity. Even better, when
the JOIN is a natural join, the JOIN condition may be omitted from |x|. The
earlier example resulted in:

 PROJECTdname (department JOINdepno = depno (
 PROJECTdepno (employee JOINempno = empno (
 PROJECTempno (empcourse JOINcourseno = courseno (
 PROJECTcourseno (SELECTcname = ‘Further Accounting’

course)))))))
becomes

 ðdname (department |×| (
 ðdepno (employee |×| (
 ðempno (empcourse |×| (
 ðcourseno (ócname = ‘Further Accounting’ course)))))))

Data Concepts326

Rename Operator

The rename operator returns an existing relation under a new name.
ñA(B) is the relation B with its name changed to A. For example, find the
employees in the same Department as employee 3.

 Ñemp2.surname,emp2.forenames (
 óemployee.empno = 3 ^ employee.depno = emp2.depno (
 employee × (ñemp2employee)))
Derivable Operators

 Fundamental operators:ó, ð, ×, *”, -, ñ
 Derivable operators: |×|,)”

Equivalence

A|×|cB Ô! ða1,a2,…aN(óc(A × B))
 where c is the join condition (eg A.a1 = B.a1),

 and a1,a2,…aN are all the attributes of A and B without repetition.

C is called the join-condition, and is usually the comparison of primary and
foreign key. Where there are N tables, there are usually N-1 join-conditions. In
the case of a natural join, the conditions can be missed out, but otherwise
missing out conditions results in a ptimizat product (a common mistake to
make).

Equivalences

The same relational algebraic expression can be written in many different
ways. The order in which tuples appear in relations is never significant.

 A ×B Ô! B × A

 A)” B Ô! B)” A

 A *”B Ô! B *” A
 (A – B) is not the same as (B – A)

Data Concepts 327

 óc1 (óc2(A)) Ô! óc2 (óc1(A)) Ô! óc1 ̂ c2(A)

 ða1(A) Ô! ða1(ða1,etc(A))

where etc represents any other attributes of A.

 many other equivalences exist.

While equivalent expressions always give the same result, some may be much
easier to evaluate that others.

When any query is submitted to the DBMS, its query ptimizat tries to find the
most efficient equivalent expression before evaluating it.

13.16 Data warehouse

A data ware house is a repository of an organization’s electronically stored data.
Data warehouse are designed to facilitate reporting and supporting data analysis.
The concept of data warehouses was introduced in late 1980’s. The concept was
introduced to meet the growing demands for management information and
analysis that could not be met by operational systems.

Separate computer databases began to be built that were specifically designed
to support management information and analysis purposes. These data warehouse

Comparing RA and SQL
Relational algebra: SQL:

 Is closed (the result of every
expression is a relation)

 Has a rigorous foundation
 Has simple semantics
 Is used for reasoning, query

optimization, etc.

 Is a superset of relational algebra
 Has convenient formatting

features, etc.
 Provides aggregate functions
 Has complicated semantics
 Is an end-user language

Any relational language as powerful
as relational algebra is called
relationally complete.

A relationally complete language can
perform all basic, meaningful
operations on relations.

SQL is a superset of relational
algebra, it is also relationally
complete.

Data Concepts328

were able to bring in data from a range of different data sources, such as,
mainframe computer, minicomputer, as well as personal computer and office
automation software such as spreadsheets and integrate this information in a
single place. This capability, coupled with user-friendly reporting tools, and
freedom from operational impacts has led to a growth of this type of computer
system.

Data ware house have evolved though several fundamental stages like:

Offline operational databases – Data warehouse in this initial stage are developed
by simply copying the database of an operational system to an off-line server
where the processing load of reporting does not impact on the operational
system’s performance.

Offline data warehouse – Database warehouses in this stages of evolution are
updated on regular time cycle(usually daily, weekly or monthly) form operational
systems and the data is stored in a integrated reporting-oriented data structure.

Real Time data warehouse – Data warehouses are updated on transaction or
event basis, event time an operational system performs a transaction.

Integrated data warehouses – Data warehouses used to generate activity or
transactions that are passed back into the operational systems for use in the
daily activity of the organization.

Components of data warehouses

Data Sources: Data sources refer to any electronic repository of information that
contains data of interest for management use or analytics. From mainframe(IBM
DB2,ISAM,Adabas, etc.), client-server databases (e.g Oracle database, Informix,
Microsoft SQL Server etc.,), PC databases (e.g Microsoft Access), and ESS and
other electronic store of data. Data needs to be passed from these to systems to
the data warehouse either on the transaction-by-transaction basis for real-time
data warehouses or on a regular cycle(e.g daily or weekly) for offline data
warehouses.

Data transformation: The data transformation layer receives data from the data
sources, cleaned and standardizes and loads it into the data repository. This is
often called “staging” data as data often passes through a temporary database
whilst it is being transformed. This activity of transformation data can be
performed either by manually created code or a specific type of software could
be used called an Extract, Transform and load(ETL) tool.

Data Concepts 329

Reporting : The data in the data warehouses must be available to the
organization’s staff if the data warehouses is to be useful. There are a very large
number of applications that perform this function or reporting can be custom-
developed. Some are Bussiness intelligence tools, Executive information systems,
Online Analytical processing(OLAP) Tools, Data Mining etc.,

Metadata: Metadata or “Data about data” is used to inform operators and uses of
the data warehouses about its status and the information held within the data
warehouses.

Operations : Data warehouses operations comprises of the processes of loading,
manipulating and extracting data from the data warehouse. Operations also
cover users management security, capacity management and related functions.

Optional components: In addition the following components also exist in some
data warehouses: 1. Dependent data marts. 2. Logical data marts. 3. Operational
data store.

 Advantages of data ware houses:
1. Enhance end-user access to reports and analysis of information.
2. Increases data consistency.
3. Increases productivity and decreases computing costs.
4. Able to combine data from different sources, in one place.
5. Data warehouses provide an infrastructure that could support changes to

data and replication of the changed data back into the operational systems.
Disadvantages
Extracting, cleaning and loading data could be time consuming.
Data warehouses can get outdated relatively quickly.
Problems with compatibility with systems already in place.
Providing training to end-users.
Security could develop into a serious issue, especially if the data warehouses is
internet accessible.
A data warehouses is usually not static and maintenance costs are high.
13.17 Data Mining : Data mining is concerned with the analysis and picking
out relevant information. It is the computer, which is responsible for finding the
patterns by identifying the underling rules of the features in the data.

Data mining analysis tends to work form the data up and the best techniques
are those developed with an orientation towards large volumes of data, making
use of as much of the collected data as possible to arrive at reliable conclusions
and decisions.

Data Concepts330

The analysis process starts with a set of data, uses a methodology to develop an
optimal representation to the structure of the data during which time knowledge
is acquired. Once knowledge has been acquired this can be extended to larger
sets of data working on the assumption that the larger data set has a structure
similar to the sample data. Again this is analogous to a mining operation where
large amounts of low grade materials are sifted through in order to find something
of value.
Some of the data mining software’s are SPSS, SAS, Think Analytics and G-Sat
etc.
The phases start with the raw data and finish with the extracted knowledge
which was acquired as a result of the following stages:
Selection- Selecting or segmenting the data according to some criteria e.g. all
those people who won a car, in this way subsets of the data can be determined.
Preprocessing – This is the data cleaning stage where certain information is
removed which deemed unnecessary and may slow down queries for e.g.: gender
of the patient. The data is reconfigured to ensure a consistent format as there is
a possibility of inconsistent formats because the data is drawn from several
sources e.g. gender may be recorded as F or M also as 1 or 0.
Transformation – The data is not merely transferred, but transformed. E.g.:
demographic overlays commonly used in market research. The data is made
useable and navigable.
Data mining- This stage is concerned with the extraction of patterns from the
data. A pattern can be defined as given a set of facts(data) F, a language L, and
some measure of certainty C a pattern is a statement S in L that describes
relationships among a subset Fs of F with a certainly c such that S is simpler in
some sense than the enumeration of all the facts in Fs.
Interpretation and Evaluation – The patterns identified by the system are
interpreted into knowledge which can be used to support human decision-making
e.g. prediction and classification tasks, summarizing the content of a database
or explaining observed phenomena.

Summary
> The basic concepts of database that can be used by various users to store

and retrieve thae data in standardized format.
> DBMS features, parts,problems and solutions.
>Three database structures.
> Enitity relations.
> Various relationships.
> Keys
> Database warehouse, Data mining

Data Concepts 331

Review questions
One mark questions

1. What is data?
2. What is information?
3. What is database?
4. What is a field?
5. What is a record?
6. What is an entity?
7. What is an instance?
8. What is an attribute?
9. What is domain?
10.What is a relation?
11.What is a table?
12. What is normalization?
13. What is a key?
14. Give the symbol notation for project.
15.What is data mining?

Two marks questions
1. How database helps us?
2. How do we get data?
3. Name the data types supported by DBMS.
4. What is generalization?
5. What is specification?
6. What is the difference between serial and direct access file organization?
7. Give the advantages and disadvantages of Index Sequential Access

Method.
8. Classify various types of keys used in Database.
9. What is relation Algebra?
10.Give an example for relation selection with example.
11.What is Cartesian product?
12. What is Join operation?
13.What is data warehouse?
14.What is data mining?

Data Concepts332

Three marks questions
1. Mention the applications of database.
2. List different forms of data(any three)
3. Give the difference between Manual and Electronic file systems.
4. Explain Boyce and Codd form (BCNF)
5. Explain any three components of E-R diagram.
6. What is a relationship? Classify and give example.
7. Explain physical data independence.
8. Explain ISAM with example
9.Explain database users
10.Explain hierarchical data model.
11.Explain relational data model.
12.Explain outer Join with example.
13.List the components of data warehouse.

Five marks questions
1. Explain data processing cycle?
2. Explain varius datatypes used in DBMS?
3. Explain Normalization with classifications and example
4. Explain cardinality with example.
5. Explain data independence in detail.
6. Discuss file organization with respect to physical data independence.
7. Explain the features of database system.
8. Explain DBMS Architecture.
9. Explain database model.
10.Explain Codd’s rules for database management.
11.Write compring RA and SQL.
12.List any five types of relational keys.
13.Explain Entity-Relationship in detail.
14. Explain the concept of Data abstraction.
15.Define and explain the phases of data mining.

SQL 333

CHAPTER 14

SQL Commands

OBJECTIVES

 To understand SQL commands usage.

 Learning the data types, expressions, operators.

 The use of syntax and constrains for SQL.

 Commands for DDl and DML.

 Various built in functions SQL.

SQL334

14.1 Introduction:
Structured Query Language helps to make practice on SQL commands which

provides immediate results. SQL is a language of database, it includes database

creation, deletion, fetching rows and modifying rows etc.
SQL is an ANSI (American National Standards Institute) standard but there are
many different versions of the SQL language.
SQL is Structured Query Language, which is a dbase language for storing,
manipulating and retrieving data stored in relational database.
SQL is the standard language for Relation Database System. All relational
database management systems like MySQL, MS Access, Oracle, Sybase, Informix,
postgresql and SQL Server use SQL as standard database language.
Also, they are using different dialects, such as:
 MS SQL Server using T-SQL,
 Oracle using PL/SQL,
 MS Access version of SQL is called JET SQL (native format) etc.
 Allows users to access data in relational database management systems.
 Allows users to describe the data.
 Allows users to define the data in database and manipulate that data.
 Allows embedding within other languages using SQL modules, libraries &
pre-compilers.
 Allows users to create and drop databases and tables.
 Allows users to create view, stored procedure, functions in a database.
 Allows users to set permissions on tables, procedures, and views

Fig 14.1 Database to Query Fig 14.2 SQL languages classifications

SQL 335

History:
1970: Dr. E. F. “Codd” of IBM is known as the father of relational databases. He
described a relational model for databases.
1974: Structured Query Language appeared.
1978: IBM worked to develop Codd’s ideas and released a product named
System/R.
1986: IBM developed the first prototype of relational database and standardized
by ANSI. The first relational database was released by Relational Software and
its later becoming Oracle.
14.1.1 SQL ARCHITECTURE:
When you are executing an SQL command for any RDBMS, the system
determines the best way to carry out your request and SQL engine figures out
how to interpret the task.

There are various components included in the process. These components
are Query Dispatcher, Optimization Engines, Classic Query Engine and SQL
Query Engine, etc. Classic query engine handles all non-SQL queries but SQL
query engine won’t handle logical files.

Fig 14.3 SQL Architecture with different layers

SQL336

MySQLMySQL is an opensource SQL database,which is developed bySwedish companyMySQL AB. MySQL ispronounced "my ess-que-ell," in contrastwith SQL, pronounced"sequel."MySQL is supportingmany differentplatforms includingMicrosoft Windows,the major Linuxdistributions, UNIX,and Mac OS X.MySQL has free andpaid versions,depending on its usage(non-commercial/commercial) and features.MySQL comes with avery fast, multi-threaded, multi-user,and robust SQLdatabase server.

MS SQL ServerMS SQL Server is aRelationalDatabaseManagementSystem developedby Microsoft Inc.Its primary querylanguages are:T-SQL.ANSI SQL.

ORACLEIt is a very large and multi-userdatabase management system.Oracle is a relational databasemanagement system developedby 'Oracle Corporation'.Oracle works to efficientlymanage its resource, a databaseof information, among themultiple clients requesting andsending data in the network.It is an excellent database serverchoice for client/servercomputing. Oracle supports allmajor operating systems forboth clients and servers,including MSDOS, NetWare,UnixWare, OS/2 and most UNIXflavors.

MS ACCESSThis is one of the most popular Microsoftproducts. Microsoft Access is an entry-level database management software. MSAccess database is not only aninexpensive but also powerful databasefor small-scale projects.MS Access uses the Jet database engine,which utilizes a specific SQL languagedialect (sometimes referred to as Jet SQL).MS Access comes with the professionaledition of MS Office package. MS Accesshas easy-to-use intuitive graphicalinterface.

H istory:Developm ent of M ySQLby M ichael W idenius &David Axm arkbeginning in 1994.First internal releaseon 23 M ay 1995.W indow s version w asreleased on 8 January1998 for W indow s 95and NT.Version 3.23: beta fromJune 2000, productionrelease January 2001.Version 4.0: beta fromAugust 2002,production releaseM arch 2003 (unions).Version 4.01: beta fromAugust 2003, Jyotiadopts M ySQ L fordatabase tracking.Version 4.1: beta fromJune 2004, productionrelease October 2004.Version 5.0: beta fromM arch 2005,production releaseO ctober 2005.Sun M icrosystem sacquired M ySQ L AB on26 February 2008.Version 5.1: productionrelease 27 Novem ber2008.

H istory:1987 - Sybasereleases SQ LServer for UN IX.1988 - M icrosoft,Sybase, and Aston-Tate port SQ LServer to O S/2.1989 - M icrosoft,Sybase, and Aston-Tate release SQLServer 1.0 forO S/2.1990 - SQ L Server1.1 is released w ithsupport forW indow s 3.0clients.Aston-Tate dropsout of SQ L Serverdevelopm ent.2000 - M icrosoftreleases SQ LServer 2000.2001 - M icrosoftreleases XM L forSQ L Server W ebRelease 1(dow nload).2002 - M icrosoftreleases SQ LXM L2.0 (renam ed fromXM L for SQ LServer).2002 - M icrosoftreleases SQ LXM L3.0.2005 - M icrosoftreleases SQ LServer 2005 onN ovem ber 7th,2005.

H istory:O racle began in 1977 andcelebrating its 32 w onderfulyears in the industry (from 1977to 2009).1977 - Larry Ellison, Bob M inerand Ed O ates founded Softw areDevelopm ent Laboratories toundertake developm ent w ork.1979 - Version 2.0 of O racle w asreleased and it becam e firstcom m ercial relational databaseand first SQ L database. Thecom pany changed its nam e toRelational Softw are Inc. (RSI).1981 - RSI started developingtools for O racle.1982 - RSI w as renam ed toO racle Corporation.1983 - Oracle released version3.0, rew ritten in C language andran on m ultiple platform s.1984 - Oracle version 4.0 w asreleased. It contained featureslike concurrency control - m ulti-version read consistency, etc.1985 - Oracle version 4.0 w asreleased. It contained featureslike concurrency control - m ulti-version read consistency, etc.2007 - Oracle has releasedO racle11g. The new versionfocused on better partitioning,easy m igration etc.

History:1992 - Access version 1.0 w as released.1993 - Access 1.1 released to im provecom patibility w ith inclusion the AccessBasic program m ing language.The m ost significant transition w as fromAccess 97 to Access 20002010 - Access 2010, a new databaseform at w as introduced ACCDB w hichsupports com plex data types such as m ultivalued and attachm ent fields.

SQL 337

14.2 SQL Commands:
The standard SQL commands to interact with relational databases are CREATE,
SELECT, INSERT, UPDATE, DELETE and DROP. These commands can be classified
into groups based on their nature:
14.2.1 DDL - Data Definition Language:
DDL defines the conceptual schema providing a link between the logical (the
way the user views the data) and the physical (the way in which the data is
stored physically) structures of the database. The logical structure of a database
is a schema. A subschema is the way a specific application views the data form
the database.
Following are the functions of the Data Definition Language (DDL):-
1. DDL define the physical characteristics of each record, filed in the
record, field’s data type, field’s length, field’s logical name and also specify
relationships among those records.
2. DDL describes the schema and subschema.
3. DDL indicates the keys of the records.
4. DDL provides means for associating related records or fields.
5. DDL provides data security measures.
6. DDL provides for the logical and physical data independence.
Few of the basic commands for DDL are :-

Features:High Performance.High Availability.Scalability andFlexibility Runanything.Robust TransactionalSupport.Web and DataWarehouse Strengths.Strong Data Protection.ComprehensiveApplicationDevelopment.Management Ease.Open Source Freedomand 24 x 7 Support.Lowest Total Cost ofOwnership.

Features:High Performance.High Availability.Databasemirroring.Databasesnapshots.CLR integration.Service Broker.DDL triggers.Ranking functions.Row version-basedisolation levels.XML integration.TRY...CATCH.Database Mail.

Features:ConcurrencyRead ConsistencyLocking MechanismsQuiescent DatabasePortabilitySelf-managing databaseSQL*PlusASMSchedulerResource ManagerData WarehousingMaterialized viewsBitmap indexesTable compressionParallel ExecutionAnalytic SQLData miningPartitioning

Features:Users can create tables, queries, formsand reports and connect them togetherwith macros.The import and export of data to manyformats including Excel, Outlook, ASCII,dBase, Paradox, FoxPro, SQL Server,Oracle, ODBC, etc.There is also the Jet Database format(MDB or ACCDB in Access 2007), whichcan contain the application and data inone file. This makes it very convenient todistribute the entire application toanother user, who can run it indisconnected environments.Microsoft Access offers parameterizedqueries. These queries and Access tablescan be referenced from other programslike VB6 and .NET through DAO orADO.The desktop editions of MicrosoftSQL Server can be used with Access as analternative to the Jet DatabaseEngine.Microsoft Access is a file server-based database. Unlike client-serverrelational database management systems(RDBMS), Microsoft Access does notimplement database triggers, storedprocedures, or transaction logging.

SQL338

ComDescription
CR a view of a table, or other object in database
ALTER Modifie

14.2.2 DML - Data Manipulation Language:
1. DML provides the data manipulation techniques like selection, insertion,
deletion, update, modification, replacement, retrieval, sorting and display of data
or records.
2. DML facilitates use of relationship between the records.
3. DML enables the user and application program to be independent of the
physical data structures and database structures maintenance by allowing to
process data on a logical and symbolic basis rather than a physical on a physical
location basis.
4. DML provide for independence of programming languages by supporting
several high-level programming languages like COBOL,PL/1 and C++.
Few of the basic commands for DML are :-
Command Description
INSE

R Creates a record
DCL - Data Control Language:
Command Description
GRAN

TDQL - Data Query Language:
Command Description
SELECT Retrieves certain records from one or more tables

Command Description

CREATE Creates a new table, a view of a table, or other object
in database

ALTER Modifies an existing database object, such as a table.

DROP Deletes an entire table, a view of a table or other object
in the database.

Command Description

INSERT Creates a record

UPDATE Modifies records

DELETE Deletes records

Com m and Description

G RANT G ives a privilege to user

REVO KE Takes back privileges granted from user

Command Description

SELECT Retrieves certain records from one or more tables

SQL 339

14.3 Data types in SQL

SQL data type is an attribute that specifies type of data of any object. Each
column, variable and expression has related data type in SQL.

You would use these data types while creating your tables. You would choose
a particular data type for a table column based on your requirement.

SQL Server offers six categories of data types for your use:

14.3.1 Exact Numeric Data Types:

14.3.2 Floating point numeric Data Types:

 14.3.3 Date and Time Data Types:

Note: Here, datetime has 3.33 milliseconds accuracy whereas small datetime
has 1 minute accuracy.

DATA
TYPE FROM TO

Int -2,147,483,648 2,147,483,647

numeric -10^38 +1 10^38 -1

DATA TYPE FROM TO

Float -1.79E + 308 1.79E + 308

Real -3.40E + 38 3.40E + 38

DATA TYPE FROM TO

datetim e Jan 1 , 1753 D ec 31, 9999

D ate Stores a date like M ARCH 26, 2014

Tim e Stores a tim e of day like 12:30 P .M .

SQL340

14.3.4 Character, Strings Data Types:

14.4 Operator in SQL
An operator is a reserved word or a character used primarily in an SQL statement’s
WHERE clause to perform operation(s), such as comparisons and arithmetic
operations.
Operators are used to specify conditions in an SQL statement and to serve as
conjunctions for multiple conditions in a statement.
 Arithmetic operators
 Comparison operators
 Logical operators
 Operators used to negate conditions
14.4.1 SQL Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20, then:

 Example

DATA
TYPE FROM TO

Char char
Maximum length of 8,000 characters.(Fixed
length non-Unicode characters)

varchar varchar
Maximum of 8,000 characters.(Variable-
length non-Unicode data).

Operator Description Example

+ Addition - Adds values on either side of the operator a + b will
give 30

- Subtraction - Subtracts right hand operand from left hand
operand

a - b will
give -10

* Multiplication - Multiplies values on either side of the
operator

a * b will
give 200

/ Division - Divides left hand operand by right hand operand b / a will
give 2

% Modulus - Divides left hand operand by right hand operand
and returns remainder

b % a
will give
0

SQL 341

14.4.2 Comparison Operators:

Assume variable a holds 10 and variable b holds 20, then:

Show Examples

14.4.3 Logical Operators:

Here is a list of all the logical operators available in SQL.

Show Examples

Operator Description Example

= Checks if the values of two operands are equal or not, if yes
then condition becomes true.

(a = b) is
not true.

!= Checks if the values of two operands are equal or not, if
values are not equal then condition becomes true.

(a != b)
is true.

<> Checks if the values of two operands are equal or not, if
values are not equal then condition becomes true.

(a <> b)
is true.

> Checks if the value of left operand is greater than the value
of right operand, if yes then condition becomes true.

(a > b) is
not true.

< Checks if the value of left operand is less than the value of
right operand, if yes then condition becomes true.

(a < b) is
true.

>=
Checks if the value of left operand is greater than or equal
to the value of right operand, if yes then condition becomes
true.

(a >= b)
is not
true.

<=
Checks if the value of left operand is less than or equal to
the value of right operand, if yes then condition becomes
true.

(a <= b)
is true.

!< Checks if the value of left operand is not less than the value
of right operand, if yes then condition becomes true.

(a !< b)
is false.

!> Checks if the value of left operand is not greater than the
value of right operand, if yes then condition becomes true.

(a !> b)
is true.

Operator Description

ALL The ALL operator is used to compare a value to all values in another
value set.

AND The AND operator allows the existence of multiple conditions in an
SQL statement's WHERE clause.

ANY The ANY operator is used to compare a value to any applicable value in
the list according to the condition.

BETWEEN The BETWEEN operator is used to search for values that are within a
set of values, given the minimum value and the maximum value.

EXISTS The EXISTS operator is used to search for the presence of a row in a
specified table that meets certain criteria.

SQL342

IN The IN operator is used to com pare a value to a list of literal values that
have been specified.

LIKE The LIKE operator is used to com pare a value to sim ilar values using
w ildcard operators.

NO T
The N O T operator reverses the m eaning of the log ical operator w ith w hich
it is used. Eg: NO T EX ISTS, NO T BE TW EE N, NO T IN , etc. This is a
negate operator.

OR The OR operator is used to com bine m ultip le conditions in an SQL
statem ent's W HERE clause.

IS NU LL The NU LL operator is used to com pare a value w ith a NU LL value.

U NIQU E The U NIQU E operator searches every row of a specified table for
un iqueness (no duplicates).

SQL EXPRESSIONs are like formulas and they are written in query language.
You can also use them to query the database for specific set of data.
An expression is a combination of one or more values, operators, and SQL
functions that evaluate to a value.
Syntax:
Consider the basic syntax of the SELECT statement as follows:

SELECT column1, column2, columnN
FROM table_name
WHERE [CONDITION|EXPRESSION];

There are different types of SQL expressions, which are mentioned below:
14.5.1 SQL - Boolean Expressions:
SQL Boolean Expressions fetch the data on the basis of matching single value.
Following is the syntax:

SELECT column1, column2, columnN
FROM table_name
WHERE SINGLE VALUE MATCHTING EXPRESSION;

Consider the EMPLOYEES table having the following records:
Here is simple example showing usage of SQL Boolean Expressions:

SQL> SELECT * FROM EMPLOYEES WHERE age =45;
+----+-------------------+-------+-----------------------+------------------+
| ID | NAME | AGE | ADDRESS| SALARY |
+----+-------------------+------+------------------------+------------------+
|3|Srinivas |45|Mangalore | 37000.00|
+----+-------------------+------+------------------------+------------------+
1 row inset(0.00 sec)

14.5 SQL expression

SQL 343

14.5.2 Numeric Expression:

This expression is used to perform any mathematical operation in any
query. Following is the syntax:

Here numerical_expression is used for mathematical expression or any
formula. Following is a simple examples showing usage of SQL Numeric
Expressions:

There are several built-in functions like avg(), sum(), count() etc., to perform
what is known as aggregate data calculations against a table or a specific table
column.

SELECT numerical_expression as OPERATION_NAME
[FROM table_name
WHERE CONDITION];

SQL> SELECT (15+6) AS ADDITION
+----------+
| ADDITION |
+----------+
|21|
+----------+
1 row inset(0.00 sec)

SQL> SELECT COUNT(*) AS "RECORDS" FROM EMPLOYEES;
+---------+
| RECORDS |
+---------+
|7|
+---------+
1 row inset(0.00 sec)

14.5.3 Date Expressions:

Date Expressions return current system date and time values:

Another date expression is as follows:

SQL> SELECT CURRENT_TIMESTAMP;
+---------------------+
|Current_Timestamp|
+---------------------+
|2014-03-21 06:40:23|
+---------------------+
1 row inset(0.00 sec)

SQL344

SQL> SELECT GETDATE();;
+-------------------------+
| GETDATE |
+-------------------------+
|2014-01-14 12:07:18.140|
+-------------------------+
1 row inset(0.00 sec)

14.6 SQL Constraints:
Constraints are the rules enforced on data columns on table. These are used to
limit the type of data that can go into a table. This ensures the accuracy and
reliability of the data in the database.
Constraints could be column level or table level. Column level constraints are
applied only to one column whereas table level constraints are applied to the
whole table.
Following are commonly used constraints available in SQL:
The constraints available in SQL are Foreign Key, Not Null, Unique, Check.
Constraints can be defined in two ways
1) The constraints can be specified immediately after the column definition.
This is called column-level definition.
2) The constraints can be specified after all the columns are defined. This is
called table-level definition.

14.6.1 SQL Primary key:
This constraint defines a column or combination of columns which uniquely
identifies each row in the table.
Syntax to define a Primary key at column level:
column name datatype [CONSTRAINT constraint_name] PRIMARY KEY
Syntax to define a Primary key at table level:
[CONSTRAINT constraint_name] PRIMARY KEY
(column_name1,column_name2,..)
column_name1, column_name2 are the names of the columns which define
the primary Key.
The syntax within the bracket i.e. [CONSTRAINT constraint_name] is optional.
For Example: To create an employee table with Primary Key constraint, the
query would be like.

SQL 345

Primary Key at column level:
CREATE TABLE employee
(id number(5) PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
salary number(10),
city char(10)
);
or
CREATE TABLE employee
(id number(5) CONSTRAINT emp_id_pk PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
salary number(10),
city char(10)
);
Primary Key at column level:
CREATE TABLE employee
(id number(5),
name char(20),
dept char(10),
age number(2),
salary number(10),
city char(10),
CONSTRAINT emp_id_pk PRIMARY KEY (id)
);
Primary Key at table level:
CREATE TABLE employee
(id number(5), NOT NULL,
name char(20),
dept char(10),
age number(2),
salary number(10),
city char(10),
ALTER TABLE employee ADD CONSTRAINT PK_EMPLOYEE_ID PRIMARY KEY
(id));

SQL346

14.6.2 Foreign key or Referential Integrity :
This constraint identifies any column referencing the PRIMARY KEY in another
table. It establishes a relationship between two columns in the same table or
between different tables. For a column to be defined as a Foreign
Key, it should be a defined as a Primary Key in the table which it is referring.
One or more columns can be defined as Foreign key.

Syntax to define a Foreign key at column level:

[CONSTRAINT constraint_name] REFERENCES
Referenced_Table_name(column_name)
Syntax to define a Foreign key at table level:

[CONSTRAINT constraint_name] FOREIGN KEY(column_name) REFERENCES
referenced_table_name(column_name);

For Example:
1) Lets use the “sports” table and “order_items”.

Foreign Key at column level:
CREATE TABLE product
(product_id number(5) CONSTRAINT pd_id_pk PRIMARY KEY,
product_name char(20),
supplier_name char(20),
unit_price number(10)
);

SQL 347

14.6.3 Not Null Constraint :
This constraint ensures all rows in the table contain a definite value for the
column which is specified as not null. Which means a null value is not
allowed.

Syntax to define a Not Null constraint:
[CONSTRAINT constraint name] NOT NULL

For Example: To create a employee table with Null value, the query would be
like

CREATE TABLE employee
(id number(5),
name char(20) CONSTRAINT nm_nn NOT NULL,
dept char(10),
age number(2),
salary number(10),
CITY char(10)
);

14.6.4 Unique Key:
This constraint ensures that a column or a group of columns in each row have
a distinct value. A column(s) can have a null value but the values cannot be
duplicated.

Syntax to define a Unique key at column level:
[CONSTRAINT constraint_name] UNIQUE

Syntax to define a Unique key at table level:
[CONSTRAINT constraint_name] UNIQUE(column_name)
For Example: To create an employee table with Unique key, the query would
be like,

SQL348

14.6.5 Check Constraint :
This constraint defines a business rule on a column. All the rows must satisfy
this rule. The constraint can be applied for a single column or a group of
columns.
Syntax to define a Check constraint:
[CONSTRAINT constraint_name] CHECK (condition)
For Example: In the employee table to select the gender of a person, the query
would be like
Check Constraint at column level:

14.7 Implementation of SQL commands:

In this chapter the SQL commands are explained along with the syntax
and example, which are worked out in SQL 8.1i. The example is taken as
employees table and all the syntax like create, alter, drop are illustrated with
the example and DML commands like insert,select,where,order,group etc. are
geiven.

14.7.1 CREATE TABLE statement is used to create a new table.

Basic syntax of CREATE TABLE statement is as follows:

CREATE TABLE table_name(
column1 datatype,
column2 datatype,
column3 datatype,

.....
columnN datatype,
PRIMARY KEY(one or more columns)

);

CREATE TABLE is the keyword telling the database system what you want to do.
In this case, you want to create a new table. The unique name or identifier for
the table follows the CREATE TABLE statement.

Then in brackets comes the list defining each column in the table and what sort
of data type it is. The syntax becomes clearer with an example below.

A copy of an existing table can be created using a combination of the CREATE
TABLE statement and the SELECT statement.

You can check complete details at Create Table Using another Table.

Following is an example, which creates a EMPLOYEES table with ID as primary
key and NOT NULL are the constraints showing that these fields cannot be
NULL while creating records in this table:

SQL 349

You can verify if your table has been created successfully by looking at the
message displayed by the SQL server, otherwise you can use DESC command as
follows:

Now, you have EMPLOYEES table available in your database which you can use
to store required information related to EMPLOYEES.

The SQL DROP TABLE statement is used to remove a table definition and
all data, indexes, triggers, constraints, and permission specifications for that
table.

NOTE: You have to be careful while using this command because once a table is
deleted then the table along with information available in the table would also
be lost forever.

Syntax: Basic syntax of DROP TABLE statement is as follows:

DROP TABLE table_name;

* Drop statement:

14.7.2 Alter statement The table can be modified or changed by using the
Alter Command. The command is ALTER table Table Tablename(columnname
datatype(size);

SQL350

Example: Let us first verify EMPLOYEES table and then we would delete it
from the database:

This means EMPLOYEES table is available in the database, so let us drop it as
follows:

14.7.3 Insert: The SQL INSERT INTO Statement is used to add new rows of data
to a table in the database.

Syntax:

There are two basic syntaxes of INSERT INTO statement as follows:

Here, column1, column2,...columnN are the names of the columns in the table
into which you want to insert data.

You may not need to specify the column(s) name in the SQL query if you
are adding values for all the columns of the table. But make sure the order of
the values is in the same order as the columns in the table. The SQL INSERT
INTO syntax would be as follows:

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)]
VALUES (value1, value2, value3,...valueN);

SQL 351

Populate one table using another table:

You can populate data into a table through select statement over another table
provided another table has a set of fields, which are required to populate first
table. Here is the syntax.

14.7.4 SELECT : Select statement is used to fetch the data from a database
table which returns data in the form of result table. These result tables are
called result-sets.

Syntax:

The basic syntax of SELECT statement is as follows:

Here, column1, column2, ... are the fields of a table whose values you want to
fetch. If you want to fetch all the fields available in the field, then you can use
the following syntax:

Example:

Consider the EMPLOYEES table having the following records:

INSERT INTO first_table_name [(column1, column2,... columnN)]
SELECT column1, column2,...columnN
FROM second_table_name
[WHERE condition];

SELECT * FROM table_name;

The SQL WHERE clause is used to specify a condition while fetching the data

SQL352

from single table or joining with multiple tables.

If the given condition is satisfied then only it returns specific value from the
table. You would use WHERE clause to filter the records and fetching only
necessary records.

The WHERE clause is not only used in SELECT statement, but it is also used in
UPDATE, DELETE statement etc., which we would examine in subsequent
chapters.

Syntax:

The basic syntax of SELECT statement with WHERE clause is as follows:

You can specify a condition using comparison or logical operators like >, <, =,
LIKE, NOT, etc. Below examples would make this concept clear.

Example:
Consider the EMPLOYEES table having the following records:
Following is an example which would fetch ID, Name and Salary fields from the
EMPLOYEES table where salary is greater than 35000:

SELECT column1, column2, columnN
FROM table_name
WHERE [condition]

SQL 353

Following is an example, which would fetch ID, Name and Salary fields
f r o m t h e E M P L O Y E E S t a b l e f o r a c u s t o m e r w i t h n a m e Naveen. Here, it is important
to note that all the strings should be given inside single quotes (‘’) whereas
numeric values should be given without any quote as in above example:
SQL> SELECT ID, NAME, SALARY
FROM EMPLOYEES
WHERE NAME ='Naveen';

This would produce the following result:

+----+-------------------+------------------+
| ID | NAME | SALARY |
+----+-------------------+------------------+
|2|Naveen | 35000.00|

The SQL AND and OR operators are used to combine multiple conditions to
narrow data in an SQL statement. These two operators are called conjunctive
operators.

These operators provide a means to make multiple comparisons with different
operators in the same SQL statement.

14.7.5 AND Operator:

The AND operator allows the existence of multiple conditions in an SQL
statement’s WHERE clause.

Syntax:

The basic syntax of AND operator with WHERE clause is as follows:

SELECT column1, column2, columnN
FROM table_name
WHERE [condition1] AND [condition2]...AND [conditionN];

You can combine N number of conditions using AND operator. For an
action to be taken by the SQL statement, whether it be a transaction or query,
all conditions separated by the AND must be TRUE.

SQL354

Example: Consider the EMPLOYEES table having the following records:

Following is an example, which would fetch ID, Name and Salary fields
from the EMPLOYEES table where salary is greater than 2000 AND age is less
tan 25 years:

14.7.6 OR Operator:

The OR operator is used to combine multiple conditions in an SQL
statement’s WHERE clause.

Syntax: The basic syntax of OR operator with WHERE clause is as follows:

SELECT column1, column2, columnN
FROM table_name
WHERE [condition1] OR [condition2]...OR [conditionN]

You can combine N number of conditions using OR operator. For an action
to be taken by the SQL statement, whether it be a transaction or query, only
any ONE of the conditions separated by the OR must be TRUE.

14.7.7 Update: The SQL UPDATE Query is used to modify the existing records

SQL 355

in a table.

You can use WHERE clause with UPDATE query to update selected rows otherwise
all the rows would be affected.
Syntax: The basic syntax of UPDATE query with WHERE clause is as follows:

You can combine N number of conditions using AND or OR operators.
Example:
Consider the EMPLOYEES table having the following records:

Following is an example, which would update ADDRESS for a customer
whose ID is 6:

UPDATE table_name
SET column1 = value1, column2 = value2...., columnN = valueN
WHERE [condition];

SQL> UPDATE EMPLOYEES SET ADDRESS ='Bengaluru' WHERE ID =6;

SQL356

14.7.8 DELETE Query is used to delete the existing records from a table.

You can use WHERE clause with DELETE query to delete selected rows, otherwise
all the records would be deleted.

Syntax: The basic syntax of DELETE query with WHERE clause is as follows:

DELETE FROM table_name
WHERE [condition];

You can combine N number of conditions using AND or OR operators.
Following is an example, which would DELETE a customer, whose ID is 3:

SQL> SELECT * FROM EMPLOYEES

WHERE ROWNUM <= 3;

This would produce the following result:

+----+-------------------+-------+-----------------------+------------------+
| ID | NAME | AGE | ADDRESS| SALARY |
+----+-------------------+------+------------------------+------------------+
1	Rajappa	42	Tumkur	40000.00
2	Naveen	39	Bidar	35000.00
3	Srinivas	45	Mangalore	32000.00

SQL 357

14.7.9 ORDER BY clause is used to sort the data in ascending or descending
order, based on one or more columns. Some database sorts query results in
ascending order by default.

Syntax: The basic syntax of ORDER BY clause is as follows:

SELECT column-list
FROM table_name
[WHERE condition]
[ORDER BY column1, column2,.. columnN][ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure
whatever column you are using to sort, that column should be in column-list.

Example: Consider the EMPLOYEES table having the following records:

14.7.10 GROUP BY clause is used in collaboration with the SELECT statement
to arrange identical data into groups.

The GROUP BY clause follows the WHERE clause in a SELECT statement
and precedes the ORDER BY clause.

Syntax: The basic syntax of GROUP BY clause is given below. The GROUP BY
clause must follow the conditions in the WHERE clause and must precede
the ORDER BY clause if one is used.

SELECT column1, column2
FROM table_name
WHERE [conditions]
GROUP BY column1, column2
ORDER BY column1, column2

SQL358

If you want to know the total amount of salary on each customer, then
GROUP BY query would be as follows:

Group functions are built-in SQL functions that operate on groups of
rows and return one value for the entire group. These functions
are: COUNT, MAX, MIN, AVG, SUM, DISTINCT
SQL COUNT (): This function returns the number of rows in the table that
satisfies the condition specified in the WHERE condition. If the WHERE
condition is not specified, then the query returns the total number of rows
in the table.
For Example: If you want the number of employees in a particular
department, the query would be:

SELECT COUNT (*) FROM employee

WHERE dept = ‘Computer Science’;

If you want the total number of employees in all the department, the query
would take the form:

SELECT COUNT (*) FROM employee;

SQL DISTINCT(): This function is used to select the distinct rows.
For Example: If you want to select all distinct department names from
employee table, the query would be:
Select Distinct dept FROM employee;
To get the count of employees with unique name, the query would be:

SELECT COUNT (DISTINCT name) FROM employee;

SQL MAX(): This function is used to get the maximum value from a
column.
To get the maximum salary drawn by an employee, the query would be:

SELECT MAX (salary) FROM employee;

SQL MIN(): This function is used to get the minimum value from a column.
To get the minimum salary drawn by an employee, he query would be:

SELECT MIN (salary) FROM employee;

SQL AVG(): This function is used to get the average value of a numeric
column.
To get the average salary, the query would be

SELECT AVG (salary) FROM employee;

SQL SUM(): This function is used to get the sum of a numeric column
To get the total salary given out to the employees,

SQL 359

Example: Consider the EMPLOYEES table is having the following records:

SELECT SUM (salary) FROM employee;

Now again, if you want to know the total amount of salary on each customer,
then GROUP BY query would be as follows:

1 4 . 7 . 1 1 DISTINCT keyword is used in conjunction with SELECT statement to
eliminate all the duplicate records and fetching only unique records.

There may be a situation when you have multiple duplicate records in a table.
While fetching such records, it makes more sense to fetch only unique records
instead of fetching duplicate records.

Syntax: The basic syntax of DISTINCT keyword to eliminate duplicate records is
as follows:

SQL> SELECT NAME, SUM(SALARY) FROM EMPLOYEES
GROUP BY NAME;

SQL360

First, let us see how the following SELECT query returns duplicate salary
records:

This would produce the following result where salary 45000 is coming
twice which is a duplicate record from the original table.

SELECT DISTINCT column1, column2, ,.....columnN
FROM table_name
WHERE [condition]

+----+-------------------+-------+-----------------------+------------------+
| ID | NAME | AGE | ADDRESS| SALARY |
+----+-------------------+------+------------------------+------------------+
1	Rajappa	42	Tumkur	40000.00
2	Naveen	39	Bidar	35000.00
3	Srinivas	45	Mangalore	32000.00
4	Nagamani	52	Myosre	38000.00
5	Sheron	41	Gulbarga	42000.00
6	Xavio	40	Bangalore	33000.00
7	Ravindra	44	Sagar	43000.00
+----+------------------+-------+------------------------+-----------------+

SQL> SELECT SALARY FROM EMPLOYEES
ORDER BY SALARY;

SQL 361

14.7.12 Joins clause is used to combine records from two or more tables in a
database. A JOIN is a means for combining fields from two tables by using values
common to each.

Consider the following two tables, (a) sports table is as follows:

 (b) Another table is ORDER_items as follows:

Now, let us join these two tables in our SELECT statement as follows:

This would produce the following result:

Here, it is noticeable that the join is performed in the WHERE clause. Several
operators can be used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN,
LIKE, and NOT; they can all be used to join tables. However, the most common
operator is the equal symbol.

SQL Join Types:

There are different types of joins available in SQL:

· INNER JOIN: returns rows when there is a match in both tables.

· LEFT JOIN: returns all rows from the left table, even if there are no
matches in the right table.

· RIGHT JOIN: returns all rows from the right table, even if there are no
matches in the left table.

· FULL JOIN: returns rows when there is a match in one of the tables.

· SELF JOIN: is used to join a table to itself as if the table were two tables,
temporarily renaming at least one table in the SQL statement.

· CARTESIAN JOIN: returns the Cartesian product of the sets of records
from the two or more joined tables.

In order to experiment the join commands, we are creating two tables one
called the sports and the oder_items for the sports items. While preparing the
join operations, we can use alias so that it become easy. This is illustrated in
the given example. p is the sports table and o is the order items table.

SQL362

SQL 363

This would produce the following result:

There are two other clauses (i.e., operators), which are very similar to UNION
clause:

 SQL INTERSECT Clause: is used to combine two SELECT statements,
but returns rows only from the first SELECT statement that are identical to a
row in the second SELECT statement.
 SQL EXCEPT Clause : combines two SELECT statements and returns
rows from the first SELECT statement that are not returned by the second
SELECT statement.

14.7.13 NULL: The SQL NULL is the term used to represent a missing value. A
NULL value in a table is a value in a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand
that a NULL value is different than a zero value or a field that contains spaces.

Syntax:

The basic syntax of NULL while creating a table:

Here, NOT NULL signifies that column should always accept an explicit value of
the given data type. There are two columns where we did not use NOT NULL,
which means these columns could be NULL.

A field with a NULL value is one that has been left blank during record creation.

SQL364

Example:

The NULL value can cause problems when selecting data, however, because
when comparing an unknown value to any other value, the result is always
unknown and not included in the final results.

You must use the IS NULL or IS NOT NULL operators in order to check for a
NULL value.

Now, following is the usage of IS NOT NULL operator:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM EMPLOYEES
WHERE SALARY IS NOT NULL;

This would produce the following result:

Now, following is the usage of IS NULL operator:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM EMPLOYEES
WHERE SALARY IS NULL;

This would produce the following result:

You can rename a table or a column temporarily by giving another name known
as alias.

The use of table aliases means to rename a table in a particular SQL statement.

SQL 365

14.8 Creating Views:
Database views are created using the CREATE VIEW statement. Views can be
created from a single table, multiple tables, or another view.
To create a view, a user must have the appropriate system privilege according to
the specific implementation.
The basic CREATE VIEW syntax is as follows:

You can include multiple tables in your SELECT statement in very similar way
as you use them in normal SQL SELECT query.
Example:
Consider the EMPLOYEES table having the following records:

14.9 The COMMIT Command:
The COMMIT command is the transactional command used to save changes
invoked by a transaction to the database.
The COMMIT command saves all transactions to the database since the last
COMMIT or ROLLBACK command.
The syntax for COMMIT command is as follows:

CREATE VIEW view_name AS
SELECT column1, column2.....
FROM table_name
WHERE [condition];

SQL > CREATE VIEW EMPLOYEES_VIEW AS
SELECT name, age
FROM EMPLOYEES;

COMMIT;

SQL > SELECT * FROM EMPLOYEES_VIEW;

14.10 DCL commands are used to enforce database security in a multiple
user database environment. Two types of DCL commands are GRANT and
REVOKE. Only Database Administrator’s or owners of the database object
can provide/remove privileges on a database object.

14.10.1 GRANT Command

SQL GRANT is a command used to provide access or privileges on the database
objects to the users.

SQL366

The Syntax for the GRANT command is:
GRANT privilege_name
ON object_name
TO {user_name |PUBLIC |role_name}
[WITH GRANT OPTION];
 privilege_name is the access right or privilege granted to the user. Some
of the access rights are ALL, EXECUTE, and SELECT.
 object_name is the name of an database object like TABLE, VIEW, stored
proc and SEQUENCE.
 user_name is the name of the user to whom an access right is being
granted.
 user_name is the name of the user to whom an access right is being
granted.
 PUBLIC is used to grant access rights to all users.
 ROLES are a set of privileges grouped together.
 WITH GRANT OPTION - allows a user to grant access rights to other users.
For Example: GRANT SELECT ON employee TO user1;This command grants a
SELECT permission on employee table to user1.You should use the WITH GRANT
option carefully because for example if you GRANT SELECT privilege on employee
table to user1 using the WITH GRANT option, then user1 can GRANT SELECT
privilege on employee table to another user, such as user2 etc. Later, if you
REVOKE the SELECT privilege on employee from user1, still user2 will have
SELECT privilege on employee table.
14.10.2 REVOKE Command:
The REVOKE command removes user access rights or privileges to the database
objects.
The Syntax for the REVOKE command is:
REVOKE privilege_name
ON object_name
FROM {user_name |PUBLIC |role_name}

For Example: REVOKE SELECT ON employee FROM user1;This command
will REVOKE a SELECT privilege on employee table from user1.When you
REVOKE SELECT privilege on a table from a user, the user will not be able to
SELECT data from that table anymore. However, if the user has received
SELECT privileges on that table from more than one users, he/she can
SELECT from that table until everyone who granted the permission revokes
it. You cannot REVOKE privileges if they were not initially granted by you.

SQL 367

Privileges and Roles:

Privileges: Privileges defines the access rights provided to a user on a database
object. There are two types of privileges.

1) System privileges - This allows the user to CREATE, ALTER, or DROP
Database objects.

2) Object privileges - This allows the user to EXECUTE, SELECT, INSERT,
UPDATE, or Delete data from database objects to which the privileges
apply.

Few CREATE system privileges are listed below:

System
Privileges Description

CREATE
object

allows users to create the
specified object in their own
schema.

CREATE ANY
object

allows users to create the
specified object in any schema.

The above rules also apply for ALTER and DROP system privileges.
Few of the object privileges are listed below:

Object
Privileges Description

INSERT allows users to insert rows into a
table.

SELECT allows users to select data from a
database object.

UPDATE allows user to update data in a
table.

EXECUTE allows user to execute a stored
procedure or a function.

SQL368

System
Role Privileges Granted to the Role

CONNECT

CREATE TABLE, CREATE VIEW,
CREATE SYNONYM, CREATE
SEQUENCE, CREATE SESSION
etc.

RESOURCE

CREATE PROCEDURE, CREATE
SEQUENCE, CREATE TABLE,
CREATE TRIGGER etc. The
primary usage of the
RESOURCE role is to restrict
access to database objects.

DBA ALL SYSTEM PRIVILEGES

14.11 SQL built-in functions

There are two types of functions in Oracle sql version.

14.11.1 Single Row Functions: Single row or Scalar functions return a value
for every row that is processed in a query.

14.11.2 Group Functions: These functions group the rows of data based on
the values returned by the query. This is discussed in SQL GROUP Functions.
The group functions are used to calculate aggregate values like total or
average, which return just one total or one average value after processing a
group of rows.

There are four types of single row functions. They are:
1) Numeric Functions: These are functions that accept numeric input and
return numeric values.
2) Character or Text Functions: These are functions that accept character
input and can return both character and number values.
3) Date Functions: These are functions that take values that are of datatype
DATE as input and return values of datatype DATE, except for the
MONTHS_BETWEEN function, which returns a number.
4) Conversion Functions: These are functions that help us to convert a value in
one form to another form. For Example: a null value into an actual value, or a
value from one datatype to another datatype like NVL, TO_CHAR,
TO_NUMBER, TO_DATE etc.
You can combine more than one function together in an expression. This is
known as nesting of functions.

SQL 369

Function
Name Return Value

ABS (x) Absolute value of the number 'x'
CEIL (x) Integer value that is Greater than or equal to the number 'x'
FLOOR (x) Integer value that is Less than or equal to the number 'x'
TRUNC (x, y) Truncates value of number 'x' up to 'y' decimal places

ROUND (x, y) Rounded off value of the number 'x' up to the number 'y'
decimal places

Function
Name Examples Return

Value

ABS (x) ABS (1)
ABS (-1)

1
-1

CEIL (x)
CEIL (2.83)
CEIL (2.49)
CEIL (-1.6)

3
3
-1

FLOOR (x)
FLOOR (2.83)
FLOOR (2.49)
FLOOR (-1.6)

2
2
-2

TRUNC (x, y)
ROUND (125.456, 1)
ROUND (125.456, 0)
ROUND (124.456, -1)

125.4
125
120

ROUND (x, y)

TRUNC (140.234, 2)
TRUNC (-54, 1)
TRUNC (5.7)
TRUNC (142, -1)

140.23
54
5
140

 DUAL Table in Oracle
This is a single row and single column dummy table provided by oracle. This is
used to perform mathematical calculations without using a table.
Select * from DUAL
Output:
DUMMY
———
X
Select 777 * 888 from Dual
Output:
777 * 888
————
689976

SQL370

These functions can be used on database columns.

For Example: Let’s consider the product table used in sql joins. We can use
ROUND to round off the unit_price to the nearest integer, if any product has
prices in fraction.

SELECT ROUND (unit_price) FROM product;

2) Character or Text Functions:

Character or text functions are used to manipulate text strings. They accept
strings or characters as input and can return both character and number
values as output.

Few of the character or text functions are as given below:

Function Name Return Value
LOWER
(string_value) All the letters in 'string_value' is converted to lowercase.

UPPER
(string_value) All the letters in 'string_value' is converted to uppercase.

INITCAP
(string_value)

All the letters in 'string_value' is converted to mixed
case.

LTRIM
(string_value,
trim_text)

All occurrences of 'trim_text' is removed from the left
of 'string_value'.

RTRIM
(string_value,
trim_text)

All occurrences of 'trim_text' is removed from the right
of'string_value' .

TRIM (trim_text
FROM string_value)

All occurrences of 'trim_text' from the left and right
of 'string_value' ,'trim_text' can also be only one
character long .

SUBSTR
(string_value, m, n)

Returns 'n' number of characters
from'string_value' starting from the 'm'position.

LENGTH
(string_value) Number of characters in 'string_value'in returned.

LPAD (string_value,
n, pad_value)

Returns 'string_value' left-padded with'pad_value' . The
length of the whole string will be of 'n' characters.

RPAD (string_value,
n, pad_value)

Returns 'string_value' right-padded with 'pad_value' .
The length of the whole string will be of 'n' characters.

For Example, we can use the above UPPER() text function with the column
value as follows.

SQL 371

SELECT UPPER (product_name) FROM product;

The following examples explains the usage of the above character or text
functions
Function Name Examples Return Value
LOWER(string_value) LOWER('Good Morning') good morning

UPPER(string_value) UPPER('Good Morning') GOOD
MORNING

INITCAP(string_value) INITCAP('GOOD MORNING') Good Morning

LTRIM(string_value, trim_text) LTRIM ('Good Morning',
'Good) Morning

RTRIM (string_value, trim_text) RTRIM ('Good Morning', '
Morning') Good

TRIM (trim_text FROM
string_value)

TRIM ('o' FROM 'Good
Morning') Gd Mrning

SUBSTR (string_value, m, n) SUBSTR ('Good Morning', 6,
7) Morning

LENGTH (string_value) LENGTH ('Good Morning') 12
LPAD (string_value, n,
pad_value) LPAD ('Good', 6, '*') **Good

RPAD (string_value, n,
pad_value) RPAD ('Good', 6, '*') Good**

3) Date Functions:

These are functions that take values that are of datatype DATE as input and
return values of datatypes DATE, except for the MONTHS_BETWEEN function,
which returns a number as output.

Few date functions are as given below.

SQL372

Function Name Return Value
ADD_MONTHS (date,
n)

Returns a date value after adding 'n'months to the
date 'x'.

MONTHS_BETWEEN
(x1, x2)

Returns the number of months between dates x1 and
x2.

ROUND (x,
date_format)

Returns the date 'x' rounded off to the nearest
century, year, month, date, hour, minute, or second
as specified by the 'date_format'.

TRUNC (x,
date_format)

Returns the date 'x' lesser than or equal to the
nearest century, year, month, date, hour, minute, or
second as specified by the 'date_format'.

NEXT_DAY (x,
week_day)

Returns the next date of the 'week_day'on or after the
date 'x' occurs.

LAST_DAY (x) It is used to determine the number of days remaining
in a month from the date 'x' specified.

SYSDATE Returns the systems current date and time.
NEW_TIME (x, zone1,
zone2)

Returns the date and time in zone2 if date 'x'
represents the time in zone1.

Function Name Examples Return
Value

ADD_MONTHS () ADD_MONTHS ('14-Feb-14', 9) 14-Nov-14
MONTHS_BETWEEN(
)

MONTHS_BETWEEN ('16-Sep-14', '16-
Dec-14') 3

NEXT_DAY() NEXT_DAY ('20-Mar-2014', 'Thursday') 21-Mar-
2014

LAST_DAY() LAST_DAY ('01-Jun-14') 30-Jun-14
NEW_TIME() NEW_TIME ('01-Jun-18', 'IST', 'EST') 31-May-14

4) Conversion Functions:

These are functions that help us to convert a value in one form to another form.
For Ex: a null value into an actual value, or a value from one datatype to another
datatype like NVL, TO_CHAR, TO_NUMBER, TO_DATE.

Few of the conversion functions available in oracle are:

Function Name Return Value

SQL 373

Function Name Return Value

TO_CHAR (x [,y])
Converts Numeric and Date values to a character string
value. It cannot be used for calculations since it is a
string value.

TO_DATE (x [,
date_format])

Converts a valid Numeric and Character values to a
Date value. Date is formatted to the format specified
by 'date_format'.

NVL (x, y) If 'x' is NULL, replace it with 'y'. 'x' and 'y'must be of the
same datatype.

DECODE (a, b, c, d,
e, default_value)

Checks the value of 'a', if a = b, then returns'c'. If a = d,
then returns 'e'. Else, returnsdefault_value.

The below table provides the examples for the above functions

Function
Name Examples Return Value

TO_CHAR ()
TO_CHAR (3000, '$9999')
TO_CHAR (SYSDATE, 'Day, Month
YYYY')

$3000
WEDNESDAY, MARCH
2014

TO_DATE () TO_DATE ('19-MAR-2014') 19-MAR-14
NVL () NVL (null, 1) 1

Summary
>Sql -Structured Query Language(SQL)
>SQL ARCHITECTURE:
>SQl languages: DDL,DML,DCL,
> Data access and retrival
>SQL built-in function.

SQL374

Review questions

One mark questions
1. Expand SQL.
2. Give the syntax for create command in SQL.
3. What is drop command in SQL.
4. Give the command to display all the details in the table.
5. What is update command?
6. What is commit command?

Two marks questions
1. Classify Numeric and Character string data types in SQL.
2. Classify various SQL operators.
3. Which are the logical operators in SQL.
4. How do you modify the column name and width for existing table?
5. Write the syntax for distinct command in SQL.
6. What is the use of NULL value?
7. What is create view command?
8. What is dual table?

Three marks questions
1. Explain the features of SQL?
2. List the components of SQL architecture.
3. Explain DDL commands with example.
4. Explain DML commands with example.
5. Explain with an example Boolean expression in SQL.
6. Explain AND operator using where in SQL.
7. List the built-in functions associated with Group functions in SQL.
8. What is the use of join command?
9. What are privileges and rules?
10.Classify various built-in functions in SQL.

Five marks questions
1. Explain SQL constraints with example.
2. Explain with example to create details of employees and give the

minimum and maximum in the salary domain.
3. Write the differences between order by and group by with example.

Networking concepts 375

CHAPTER 15

Networking concepts

OBJECTIVES

 To understand uses of networking.

 Various types of networking.

 To understand various devices used in networking.

 Applications used for networking

 How and methods of networking security.

Networking concepts376

15.1 Introduction

A Network is an inter-connection of autonomous computers. Two computers
are said to be interconnected if they are capable of exchanging the information.
Central to this definition is the fact that the computers are autonomous. This
means that no computers on the network can start, stop or control another.

15.1.1 Network Goals:

The network goals are as listed below.

(i) Resource Sharing: The aim is to make all the programs, data and
peripherals available to anyone on the network irrespective of the physical location
of the resources and the user.

(ii) Reliability: A file can have copies on two or three different machines, so if
one of them is unavailable, the other copies could be used. For military, banking
and many other applications it is great of importance.

(iii) Cost Factor: Personal computers have better price/performance ratio than
micro computers. So it is better to have PC’s, one per user with data stored on
one shared file server machine.

(iv) Communication Medium: Using a network, it is possible for managers,
working far apart, to prepare financial report of the company. The changes at
one end can be immediately noticed at another and hence it speeds up co-
operation among them.

15.1.2 Need of Networking:
1. File sharing provides sharing and grouping of data files over the network.
2.Print sharing of computer resources such as hard disk and printers etc.
3. email tools for communication with the e-mail address.
4. Remote access able to access data and information, around the globe.
5.Sharing database to multiple users at the same time by ensuring the intergrity.

15.2.1 ARPANET

The Advanced Research Projects Agency Network (ARPANET) was one of the
world’s first operational packet switching networks, the first network to implement
TCP/IP, and the progenitor of what was to become the global Internet. The network
was initially funded by the Advanced Research Projects Agency (ARPA, later
DARPA) within the U.S. Department of Defense for use by its projects at
universities and research laboratories in the US. The packet switching of the

Networking concepts 377

ARPANET, together with TCP/IP, would form the backbone of how the Internet
works.

15.2.2 OSI Reference Model
Layer Name of unit exchanged
 Host A Host B

The Physical Layer
The physical layer is concerned with transmitting raw bits over a

communication channel. It also deals with mechanical, electrical and timing
interfaces.

 The Data Link Layer
The main function of the data link layer is to transform a raw transmission

facility into a line that appears free of undetected transmission errors to the
network layer.

 The Network Layer
The network layer controls the operation of the subnet. The main function

is to determine how packets are routed from source to destination.

 The Transport Layer
The basic function of transport layer is to accept data from above layer and

split it up into smaller units if needed, and pass these to the network layer and
ensure that the pieces all arrive correctly at the other end. It also determines
type of services to provide to the session layer.

7 Application Application APDU

6 Presentation Presentation PPDU

5 Session Session SPDU

4 Transport Transport TPDU

3 Network Network Packet

2 Data Link Data Link Frame

1 Physical Physical Bit

Figure 15.1 OSI Layers

Networking concepts378

The Session Layer
The session layer allows users on different machines to establish sessions

between them. It includes dialog control, token management and
synchronization.

 The Presentation Layer
The presentation layer concerned with the syntax and semantics of the

information transmitted concerned with moving bits around the layer.

 The Application Layer
 The application layer contains a variety of protocols that are commonly

needed by the user. For example, HTTP (Hyper Text Transfer Protocol) which is
the bases for the World Wide Web (WWW) to access web pages.

15.2.3 TCP/IP (Transmission Control Protocol/Internet Protocol)
TCP/IP is a layered set of protocols. This protocol assumes that there is a

way to communicate reliably between the two computers. Mail, like other
application protocols, simply defines a set of commands and messages to be
sent. TCP is responsible for making sure that the commands get through to the
other end. It keeps track of what is sent, and retransmits anything that did not
get through.

Figure 15.2 TCP/IP Layers

Networking concepts 379

TCP/IP is the base communication protocol of the internet. The part of
TCP/IP uses numeric IP addresses to join network segments and TCP part of
TCP/IP provides reliable delivery messages between networked computers. It is
based on the “catenet model”. This model assumes that there are a large number
of independent networks connected together by gateways. The user should be
able to access computers or other resources on any of these networks. Datagram
will often pass through a dozen different networks before getting their final
destination. The routing needed to accomplish this should be completely invisible
to the user. As far as the user is concerned, all he need to know is "Internet
address", in order to access another system. This is an address that looks like
128.64.194.1. It is actually a 32 bit number. However it is normally written as 4
decimal numbers, each representing 8 bits of the address. (The term “octet” is
used by Internet documentation for such 8 bit chunks. The term “byte” is not
used, because TCP/IP is supported by some computers that have byte sizes
other than 8 bits).

Generally the structure of the address gives you some information about
how to get to the system. We normally refer to systems by name, rather than by
Internet address. When we specify a name, the network software looks it up in a
database, and comes up with the corresponding Internet address. Most of the
network software deals strictly in terms of the address. TCP/IP is built on
“connection less” technology. Information is transferred as a sequence of “data
grams”.

Each of these datagrams is sent through the network individually. There are
provisions to open connections (i.e., to start a conversation that will continue for
sometime). However at some level, information from those connections is broken
up into datagrams, and those datagrams are treated by the network a completely
separate. For example, suppose you want to transfer a 15000 octet file. Most
networks can’t handle a 15000 octet datagram. So the protocols will break this
up into something like thirty 500 octet datagrams each. Each of these datagrams
will be sent to the other end. At that point, they will be put back together into
the 15000 octet file. However while those datagrams are in transmit, the network
doesn’t know that there is any connection between them. It is perfectly possible
that datagram 14 will actually arrive before datagram 13. It is also possible that
somewhere in the network, an error will occur, and some datagram won’t get
through at all. In that case, that datagram has to be sent again. Note by the way
that the terms datagram and packet often seem to be nearly interchangeable.
Technically, data gram is the right word to use when describing TCP/IP.

Networking concepts380

A data gram is a unit of data, which is what the protocols deal with.

A packet is a physical thing, appearing on an Ethernet or some wire.

In most cases a packet simply contains a data gram, so there is very little
difference. However they can differ at times.

Figure 15.3 OSI and TCP comparetive layers
15.3.1 HTTP (Hypertext Transfer Protocol)

The Hypertext Transfer Protocol (HTTP) is an application-level protocol with
the lightness and speed necessary for distributed, collaborative, hypermedia
information systems. HTTP allows an open-ended set of methods to be used to
indicate the purpose of a request. It builds on the discipline of reference provided
by the Uniform Resource Identifier (URI), as a location URL or name (URN) for
indicating the resource on which a method is to be applied. Messages are passed
to HTTP in a format similar to that used by internet mail and Multipurpose
Internet Mail Extensions (MIME).

The HTTP has various built-in request methods which allow users to read
a web page, or to read a web page’s header, or to store a web page, or to append
to a named resource or to remove the web page or to connect two existing resources
or to break an existing connection between two resources.

OSI TCP/IP

Application Application

Presentation

TransportSession

Transport

Network Internet

Data Link Host–to-Network

Physical

Networking concepts 381

15.3.2 FTP (File Transfer Protocol)

One of the original services on the internet was designed to allow for
transferring files from one system to another. It goes by the name ftp which
stands for file transfer protocol. Files of any type can be transferred, although
you may have to specify whether the file is an ASCII or Binary file. They can be
transferred to any system on the internet provided that the permissions are set
accordingly.
Advantages of FTP

(i) It is very useful to transfer the files from one network to another.
(ii) It is an effective way to get a geographically dispersed group to co-operate

on a project.
(iii) It is popular way to share information over the internet. FTP works as a

client/server process.

15.3.3 SLIP/PPP (Serial Line Internet Protocol)

Serial line IP (SLIP) was the first protocol for relaying the IP packets over
dial-up lines. It defines an encapsulation mechanism, with little ease. There is
no support for dynamic address assignment, link testing or multiplexing different
protocols over a single link. SLIP has been largely supplanted by PPP.

PPP (Point to Point Protocols)

PPP is the internet standard for transmission of IP packets over serial
lines. The PPP is currently the best solution for dial-up internet connections,
including ISDN. PPP is a layered protocol, starting with a link control protocol
(LCP) for link establishment, configuration and testing. Once the LCP is
initialized, one or many of several network control protocols (NCPs) can be used
to transport traffic for a particular protocol suite. The IP Control Protocol (IPCT),
permits the transport of IP packets over a PPP link. PPP supports both
synchronized and unsynchronized lines.

15.4.1 THE INTERNET

The Internet is a worldwide network of computer networks that evolved
from the first network ARPAnet (Advanced Research Projects Agency network).
The internet is made up of many networks each run by a different company and
interconnected at peering points. It is an interconnection of large and small

Networking concepts382

networks around the globe. The common use of Internet standards allows users
connected to one network to communicate with users on another network.

15.4.2 THE INTERSPACE

InterSpace is a client/server software program that allows multiple users
to communicate online with real-time audio, video and text chat in dynamic 3D
environments. InterSpace provides the most advanced form of communication
available on the Internet today.

15.4.3 Elementary Terminology of Networks
Let us have a look at some typical hardware components of network.

(i) Nodes (Workstations)

The term nodes refer to the computer that are attached to a network
and are seeking to share the resources of the network. Of course, if
there were no nodes, there would be no network at all.

(ii)Server

Servers can be of two types: (1) non-dedicated servers and (2) dedicated
servers

15.4.4 Types of Servers
Non-dedicated Servers
On small networks, a workstation that can double as a server is known as

non-dedicated server since it is not completely dedicated to the cause of serving.
Such servers can facilitate the resource-sharing among the work stations on a
proportionately smaller scale. Since one computer works as a work station and
as well as server, it is slower and requires more memory. The networks using
such a server are known as PEER-TO-PEER networks.

Dedicated Servers
On bigger network installations, there is a computer reserved for server’s

job and its only job is to help workstations access data, software and hardware
resources. It does not double-up as a workstations and such a server is known
as dedicated server. The networks using such server are known as MASTER-
SLAVE networks.

On a network, there may be several servers that allow the workstations to
share specific resources. For example, there may be a server exclusively for
serving files related request like storing files, deciding about their access privileges
and regulating the amount of space allowed for each user. This server is known
as file server. Similarly there may be printer server and modem server. The

Networking concepts 383

printer server takes care of the printing requirements of a number of
workstations and the modem server helps a group of network users use a
modem to transmit long distance messages.

15.4.5 TYPES OF NETWORKS

A computer network means a group of networked components, i.e., computers
that are linked by means of a communication system. A network can mean a
small group of linked computers to a chain of a few hundred computers of different
types (e.g., PCs, minis, mainframes, etc) spread around the world. Thus, networks
vary in size, complexity and geographical spread. Mostly, computers are classified
on the basis of geographical spread and on this basis, there can be 3 types of
networks:

 Local Area Networks (LANs)
 Wide Area Networks (WANs)
 Metropolitan Area Networks (MANs)

Local Area Networks (LANs)

Small computer networks that are confined to a localized area (e.g., an
office, a building or a factory) are known as Local Area Networks (LANs). The key
purpose of a LAN is to serve its users in resource sharing. The hardware as well
as software resources are shared through LANs. For instance, LAN users can
share data, information, programs, printer, hard disks, modems, etc.

In a typical Lan configuration, one computer is designated as the file server.
It stores all of the software that controls the network, as well as the software that
can be shared by the computers attached to the network. Computers connected
to the file server are called workstations. The workstations can be less powerful
than the file server and they may have additional software on their hard drives.
On most LANs, cables are used to connect the network interface cards in each
computer.

Networking concepts384

Fig 6.1
Figure 15.4 LAN topology
Metropolitan Area Networks (MANs)

Metropolitan Area Networks (MANs) are the networks spread over a city.
For example, cable TV networks that are spread over a city can be termed as
Metropolitan Area Networks (MANs). The purpose of a MAN is also the sharing of
the hardware and the software resources among its users.

 Wide Area Networks (WANs)

The networks spread across the countries are known as WANs. A Wide
Area Networks (WANs) is a group of computers that are separated by large
distances and tied together. It can even be a group of LANs that are spread
across several locations and connected together to look like one big LAN. The

Figure 15.5 MAN topology

Networking concepts 385

WANs link computers to facilitate fast and efficient exchange of information at
lesser cost and higher speeds.

Computers connected to a Wide Area Networks (WANs) are often connected
through public networks, such as the telephone system. Sometimes they can be
connected through leased lines or satellites. The largest WAN in existence is the
internet.

Difference between a LAN and a WAN

The next task is to distinguish between LANs and WANs. LANs are different
in the following important respects.

1. The distance between the nodes is limited. There is an upper limit of
approximately 10Kms and a lower limit of 1 meter.

2. While WANs usually operate at speeds of less than 1 mbps (one mega bits
per second), LANs normally operate at between 1 and 10 mbps. Using
optical fiber technology, it is possible to achieve space of the order of
hundreds of mbps.

Figure 15.6 WAN topology

Networking concepts386

3. Because of the short distances involved, the error rates in LANs are much
lower than in WANs. LANs error rate is thousand times lower than in
WANs, so are normal.

4. The distance limitations involved in LANs normally mean that the entire
network is under the ownership and control of a single organization. This
is in sharp contrast to WANs, where the network is normally operated by
the countries post and telecommunications authorities rather than by its
users.

15.4.6 NETWORK TOPOLOGIES: The actual appearence or layout of
networking

LAN WAN
1 Diameter of not more than a few

kilometers.
Span entire countries.

2 A total data rate of at least
several mbps.

Data rate less than one mbps.

3 Complete ownership by a single
organization.

Owned by multiple organizations.

4 Very low error rates. Comparatively higher error rates.

Networking concepts 387

The Star Topology

This topology consists of a central node to which all other nodes are
connected by a single path. It is the topology used in most existing information
networks involving data processing or voice communications.

Advantages of the Star topology

1. Ease of service. The star topology has a number of concentration points
(where connections are joined). These provide easy access for service or
reconfiguration of the network.

2. One device per connection. Connection points in any network are inherently
prone to failure. In the star topology, failure of a single connection typically
involves disconnecting one node from an otherwise fully functional network.

The Bus or Linear Topology

Another popular topology for data networks is the linear. This consists of a
single length of the transmission medium (normally coaxial cable) onto which
the various nodes are attached. The topology is used in traditional data
communication network where the host at one end of the bus communicates
with several terminals attached along its length.

The transmission from any station travels the length of the bus, in both
directions, and can be received by all other stations. The bus has terminators at
either end which absorb the signal, removing it from the bus.

Figure 15.7 STAR topology with hub

Networking concepts388

Data is transmitted in small blocks, known as packets. Each packet has
some data bits, plus a header containing its destination address. A station wanting
to transmit some data sends it in packets along the bus. The destination device,
on identifying the address on the packets, copies the data on to its disk.

Advantages of the linear topology

1. Short cable length and simple wiring layout. Because there is a single
common data path connecting all nodes, the linear topology allows a very
short cable length to be used. This decreases the installation cost, and
also leads to a simple, easy to maintain wiring layout.

2. Resilient Architecture. The LINEAR architecture has an inherent simplicity
that makes it very reliable from a hardware point of view. There is a single
cable through which all the data propagates and to which all nodes are
connected.

3. Easy to extend. Additional nodes can be connected to an existing bus
network at any point along its length. More extensive additions can be
achieved by adding extra segments connected by a type of signal amplifier
known as repeater.

Disadvantages of the linear topology
1. Fault diagnosis is difficult. Although simplicity of the bus topology means

that there is very little to go wrong, fault detection is not a simple matter.
Control of the network is not centralized in any particular node. This
means that detection of a fault may have to be performed from many
points in the network.

Figure 15.8 Linear topology

Networking concepts 389

2. Fault isolation is difficult. In the star topology, a defective node can easily
be isolated from the network by removing its connection at the center. If a
node is faulty on the bus, it must be rectified at the point where the node
is connected to the network.

3. Repeater configuration. When BUS type network has its backbone
extended using repeaters, configuration may be necessary.

4. Nodes must be intelligent. Each node on the network is directly connected
to the central bus. This means that some way of deciding who can use the
network at any given time must be performed in each node.

The Ring or Circular topology

The third topology that we will consider is the ring or the circular. In this
case, each node is connected to two and only two neighboring nodes and is
transmitted onwards to another. Thus data travels in one direction only, from
node to node around the ring. After passing through each node, it returns to the
sending node, which removes it.

It is important to note that data gets through rather than travels past each
node. This means that the signal may be amplified before being repeated on the
outward channel. node to node around the ring. After passing through each
node, it returns to the sending node, which removes it.

Figure 15.9 Ring topology

Networking concepts390

Advantages of the Ring topology

1. Short cable length. The amount of cabling involved in a ring topology is
comparable to that of a bus and is small relative to that of a star. This
means that less connections will be needed, which will in turn increase
network reliability.

2. No wiring closet space required. Since there is only one cable connecting
each node to its immediate neighbors, it is not necessary to allocate space
in the building for wiring closet.

3. Suitable for optical fibers. Using optical fibers offers the possibility of very
high speed transmission. Because traffic on a ring travels in one direction,
it is easy to use optical fibers as a medium of transmission.

Figure 15.10 Ring topology

Networking concepts 391

Figure 15.11 Tree topology

Disadvantages of the Ring topology

1. Node failure causes network failure. The transmission of data on a ring
goes through every connected node on the ring before returning to the
sender. If one node fails to pass data though itself, the entire network has
failed and no traffic can flow until the defective node has been removed
from the ring.

2. Difficult to diagnose faults. The fact that failure of one node will affect all
others has serious imprecations for fault diagnosis. It may be necessary to
examine a series of adjacent nodes to determine the faulty one. This
operation may also require diagnostic facilities to be built into each node.

3. Network reconfiguration is difficult. It is not possible to shut a small section
of the ring while keeping the majority of it working normally.

The Tree Topology

A variation of bus topology is the tree topology. The shape of the network
is that of an inverted tree with the central root branching and sub branching to

the extremities of the network.

Transmission in this topology
takes place in the same way as in the
bus topology. In both cases, there is
no need to remove packets from the
medium because when a signal
reaches the end of the medium, it is
absorbed by the terminators. Tree
topology is best suited for the
applications which have a hierarchical
flow of date and control. Since the tree
topology is a modification of a pure
network topology, bus topology, it is a
hybrid topology.

Networking concepts392

Graph Topology

In this topology, nodes are connected together in an arbitrary fashion. A
link may or may not connect two or more nodes. There may be multiple links
also. It is not necessary that all the nodes are connected. But if a path can be
established in two nodes via one or more links is called a connected graph.

Mesh Topology

In this topology, each node is connected to more than one node to provide
an alternative root in the case the host is either down or too busy. It is an
extension to P-P network.

The mesh topology is excellent for long distance networking because it
provides extensive backup, rerouting and pass through capabilities.
Communication is possible between any two nodes on the network either directly
or by passing through. This function is needed in the event of a line or node
failure anywhere in the network. The mesh topology is commonly used in large
internetworking environments with stars, rings and buses attached to each node.
This is also idle for distributed networks.

 When in a network each host is connected to other directly i.e., there is
a direct link between each host, then the network is said to be fully connected.
This characteristic is termed as full connectivity.

Figure 15.12 Mesh topology

Networking concepts 393

15.4.8 TRANSMISSION MEDIUM
By transmission media or communication channels of network, it is meant

that the connecting cables or connecting media are being talked about. The
cables that connect two or more workstations are the communication channels.

TWISTED PAIR CABLE
The most common form of wiring in data communication application is the

twisted pair cable. As a Voice Grade Medium (VGM), it is the basis for most
internal office telephone wiring. It consists of two identical wires wrapped together
in a double helix.

Problems can occur due to differences in the electrical characteristics
between the pair (e.g., length, resistance, and capacitance). For this reason,
LAN applications will tend to use a higher quality cable known as Data Grade
Medium (DGM).
Different types and categories of twisted-pair cable exist, but they all have two
things in common:

a. The wires come in pairs

b. The pairs of wires are twisted around each other

ADVANTAGES:
1. It is simple and physically flexible.

2. It can be easily connected.

3. It is easy to install and maintain.

4. It has a low weight.

5. It is inexpensive.

DISADVANTAGES:
1. Its low bandwidth capabilities make it unsuitable for broadband

applications.

2. Because of high attenuation, it is incapable of carrying a signal over long
distances without the use of repeaters.

3. It supports maximum data rates 1 Mbps without conditioning and 10 Mbps
with conditioning.

Types of Twisted Pair Cables
There are two types of twisted pair cables available. These are

Networking concepts394

(i) Unshielded Twisted Pair (UTP) Cable: UTP cabling is used for variety
of electronic communications. It is available in the following five
categories:

The UTP cables can have maximum segment length of 100 meters.

 Figure 15.13 UTP cables
Figure 17.13 UTP cables

(ii) Shielded Twisted Pair (STP) Cable: This type of cables comes with
shielding of the individual pairs of wires, which further protects it
from external interference. But these also, like UTP, can have
maximum segment length of 100 meters. The advantage of STP over
UTP is that it offers greater protection from interference and crosstalk

due to shielding.
But it is definitely
heavier and
costlier than UTP
and requires
proper grounding
at both the ends.

Types of Coaxial Cables
The two most commonly used types of coaxial cables are Thicknet and

Thinnet.

Type Description
CAT1 Voice-grade communications only; No data

transmission
CAT2 Data-grade transmission up to 4 Mbps
CAT3 Data-grade transmission up to 10 Mbps
CAT4 Data-grade transmission up to 16 Mbps
CAT5 Data-grade transmission up to 1000 Mbps

Figure 15.14 STP cable

Networking concepts 395

(i) Thicknet: This form of coaxial cable is thicker than thinet. The
thicknet coaxial cable segments can be upto 500 meters long.

(ii) Thinnet: This form of coaxial cable is thinner and it can have
maximum segment length of 185 meters i.e, using this cable, nodes
having maximum distance of 185 meters can be joined.

Optical Fibers
Optical Fibers consist of thin strands of glass or glass like material which

are so constructed that they carry light from source at one end of the fiber to a
detector at the other end. The light sources used are either light emitting diodes
(LEDs) or laser diodes (LDs). The data to be transmitted is modulated onto the
light beam using frequency modulation techniques. The signals can then be
picked up at the receiving end and demodulated. The bandwidth of the medium
is potentially very high. For LEDs, this range between 20 and 150 mbps and
higher rates are possible using LDs.

Advantages:
1. It is immune to electrical and magnetic interference i.e., noise in any form

because the information is travelling on a modulated light beam.

2. It is highly suitable for harsh industrial environments.

3. It guarantees source transmission and has a very high transmission
capacity.

4. Fiber optic cables can be used for broadband transmission where several
channels (i.e., bands of frequency) are handled in parallel and where it is

Figure 15.15 OPTICAL Fibers

Networking concepts396

2. Signals from one signal antenna may split up and propagate by slightly
different paths to the receiving antenna. When these out of phase signals
recombine, they interfere, reducing the signal strength.
3. Microwave propagation is susceptible to weather effects like rains, thunder
storms, etc.
4. Bandwidth allocation is extremely limited.
5. The cost of design, implementation and maintenance of microwave links
is high.
 Radio Wave

The transmission making use of radio frequencies is termed as radio-wave
transmission.
Any radio setup has two parts:

 The transmitter
 The receiver

The transmitter takes some sort of message (it could be the sound of someone’s
voice, pictures for a TV set, data for a radio modem or whatever), encodes it onto
a sine wave and transmits it with radio waves. The receiver receives the radio
waves and decodes the message from the sine wave it receives. Both the
transmitter and receiver use antennas to radiate and capture the radio signal.

ADVANTAGES:
1. Radio-wave transmission offers mobility.

2. It proves cheaper than digging trenches for laying cables and maintaining
repeaters and cables if cables get broken by a variety of causes.

3. It offers freedom from land acquisition rights that are required for laying,
repairing the cables.

4. It offers case of communication over difficult terrain.

DISADVANTAGES:
1. Radio-wave communication is an insecure communication.

2. Radio-wave propagation is susceptible to weather effects like rains, thunder
storms, etc.

Networking concepts 397

Security of such communication links is almost nonexistent. Even so, the
equipment has many advantages and is widely used by taxi repair, courier and
delivery services.
Satellite (Satellite Microwave)

Radio wave can be classified by frequency and wave length. When the
frequency is higher than 3 GHz, it is named microwave. Satellite communication
is special case of microwave relay system. Satellite communication use the
synchronous satellite to relay the radio signal transmitted from ground station.
In recently, the use of wireless communication has gained more popularity.
Compared to the traditional fixed wire terrestrial networks, satellite and microwave
communications network features the time saving, fast implementation and broad
coverage characteristics. It provides voice, fax, data and video services as well as
email, file transfer, WWW internet applications. When fixed wire terrestrial
communication networks are crushed by a disaster, the satellite and microwave
system as a emergency backup facility will be stressed.

In satellite communication the earth station consists of a satellite dish
that functions as an antenna and communication equipment to transmit and
receive data from satellites passing overhead.

A number of communication satellites, owned by both government and
private organizations, have been placed in stationary orbits about 22,300 miles
above the earth’s surface. These satellites act as relay stations for communication
signals. The satellites accept data/ signals transmitted from an earth station,
amplify them, and retransmit them to the other side of the earth in only one
step.
Most communication satellites have multiple, independent reception and
transmission devices known as transponders. In a commercial communication
satellite, a single transponder is usually capable of handling a full-colour,
commercial television transmission, complete with audio. Transponders for data
transmission may be even larger. Some firms that market satellite communication
service own a satellite. Others lease a portion of a satellite and provide transmission
facilities in smaller units to ultimate users. The security in satellite transmission
is usually provided by the coding and decoding equipment. Satellite
communication has a number of advantages.
ADVANTAGES:
1. The area coverage through satellite transmission is quite large.
2. The laying and maintenance of intercontinental cable is difficult and
expensive and this is where the satellite proves to be the best alternative.
3. The heavy usage of intercontinental traffic makes the satellite commercial
attractive.

Networking concepts398

4. Satellites can cover large areas of the earth. This is particularly useful for
sparsely populated areas.
DISADVANTAGES:
1. Technological limitations preventing the deployment of large, high gain
antennas on the satellite platform.
2. Over-crowding of available bandwidths due to low antenna gains.
3. The high investment cost and insurance cost associated with significant
probability of failure.
4. High atmospheric losses above 30 GHz limit carries frequencies.
Other Unguided Media
Apart from microwaves, radio waves and satellites, two other unguided media
are also very popular. These are infrared and laser waves.
1. Infrared
This type of transmission uses infrared light to send the data. The infrared light
transmits data through the air and can propagate throughout a room (bouncing
off surfaces), but will not penetrate walls. The infrared transmission has become
common in PDAs (Personal Digital Assistants) e.g., hand held devices like palm
pilots etc. The infrared transmission is considered to be secure one.
2. Laser
The Laser transmission requires direct line-of-sight. It is unidirectional like
microwave, but has much higher speed than microwaves. The laser transmission
requires the use of a laser transmitter and a photo-sensitive receiver at each
end. The laser transmission is point-to-point transmission, typically between
buildings. But lasers have a certain disadvantage, which is: it can be adversely
affected by weather.
15.4.9 SWITICHING TECHNIQUES
Different types of switching techniques are employed to provide communication
between two computers. These are circuit switching, message switching and
packet switching.

 Circuit Switching
In this technique, first the complete physical
connection between two computers is established and
then data are transmitted from the source computer
to the destination computer. That is, when a computer
places a telephone call, the switching equipment
within the telephone system seeks out a physical
copper path all the way from sender telephone to the
receiver’s telephone. The important property of thisFigure 15.16 Circuit

Networking concepts 399

switching technique is to setup an end to end path (connection) between
computers before any data can be sent.
 Message Switching
In this technique, the source computer sends the
data or the message to the switching office first,
which stores the data in the buffer. It then looks
for a free link to another switching office and then
sends the data to this office. This process is
continued until the data is delivered to the
destination computers. Owing to its working
principle, it is also known as store and forward.
That is, store first (in switching office), forward later, one jump at a time.
 Packet Switching
With message switching, there is no limit on block
size, in contrast, packet switching places a tight
upper limit on block size. A fixed size of packet which
can be transmitted across the network is specified.

15.4.10 Communication Modes
The communication mode defines in which data can flow depending upon

the type media used. They are Simplex, Half Duplex and Full Duplex.

Simplex
On this panel there is only one interface that is a transmitter and all other
interfaces is a receiver. The full bandwidth is completely for signals travelling
across transmitter to receiver or receivers. On this channel transmitting interface
cannot receive and receiving interface cannot transmit. For example Radio, TV,
etc uses Simplex channels.

Half Duplex
On this channel each interface works as transmitter and receiver, but only one
interface can transmit at a time. The full bandwidth of a channel is available to
the transmitting interface which will not receive while transmitting. Generally it
is used in Walkie-Talkies, Marine/Aviation, etc use Half Duplex channel.

 Full Duplex
 This channel has two ends, each serving as transmitter and receiver. Each
interface can transmit and receive at the same time. The modern telephone
system use Full Duplex channels. It is more expensive due to hardware for
increased number of channels and bandwidth.

Figure 15.17 Message

Figure 15.18 Packet

Networking concepts400

15.4.11 NETWORK DEVICES
 In functioning of networks, many devices play important roles. Here, in
this section we are going to discuss a few of them.
Modem (Modulator and Demodulator)

Modems allow you to combine the power of your computer with the global
reach of the telephone system.
 Because ordinary telephone lines cannot carry digital information, a modem
changes the digital data from your computer into analog data, a format that can
be carried by telephone lines. In a similar manner, the modem receiving the call
then changes the analog signal back into digital data to the computer. This shift
of digital data into analog data back again, allows two computers to communicate
with one another, called modulation or demodulation.
 With a modem you can send faxes to the office or important customers
without leaving your computer. And with an online or internet connection, you
can share recipes with fellow gourmets catch up on the latest news, view a
weather map from Singapore, keep in touch with distant friends by electronic
mail, the World Wide Web and much more.
Working on Modem
 Modem converts digital signals to A/F (audio frequency) tones which are
in the frequency range that the telephone lines can transmit and also it can
convert transmitted tones back to digital information.

 After the power is turned On in DTE (Data Terminal Equipment) and
DCE (Data Communication Equipment), the terminal runs for self check, it asserts
the Data Terminal Ready (DTR) signal to tell the modem that it is ready.
 When modem is powered up and ready to transmit data, the modem will
assert the Data Set Ready (DSR) signal to the terminal. Under the manual or
terminal control the modem dials up the computer on the other end. If the
computer is available it will send back a specified tone.
 Now when the terminal has a character ready to send, it will assert the
Request-To-Send (RTS) signal to the modem. The modem assert its Carrier Detect
(CD) signal to the terminal to indicate that it has established contact with the
computer. When the modem is fully ready to transmit the data it asserts Clear-
To-Send (CTS) signal back to the terminal. The terminal then sends serial data
characters to the modem. When the terminal has sent all the characters, it
needs to make its RTS signal high. This causes the MODEM to unasserted its
CTS signal and stop transmitting. Similar handshakes occur between modem
and computers on other side also.
Modems are of two types :
1.Internal modems: The modems that are fixed within the computer.

Networking concepts 401

2.External modems: The modems that are connected externally to a computer
as other peripherals are connected.
Ethernet Card
 As mentioned earlier, Ethernet is a LAN architecture developed by Xerox
Corp in association with DEC and Intel. Ethernet uses bus or star topologies
and can support data transfer rates of up to 10 Mbps.
The computers that are part of Ethernet have to install a special card called
Ethernet card.
 An Ethernet card contains connections for either Coaxial or Twisted
pair cables (or both). If it is designed for coaxial cable, the connection will be
BNC. If it is designed for twisted pair, it will have a RJ-45 connection. Some
Ethernet cards also contain an AUI connector. This can be used to attach coaxial,
twisted pair or fiber optic cables to an Ethernet card. When this connection is
used, there is always an external transceiver attached to the workstation. These
days many computers include an option for a pre-installed Ethernet Card.

Hub
 A hub is a hardware device used to connect several computers together.
A hub that contains multiple independent but connected modules of network
and internetworked equipment. A similar term is concentrator. A concentrator
is a device that provides a central connection point for cables from workstations,
servers and peripherals. In a star topology, twisted pair wire is run from each
workstation to a central concentrator.
 Basically, hubs are multi slot concentrators into which a number multi
port cards can be plugged to provide additional access as the network grows in
size.
Hubs can be either passive or active.

1.Active Hubs: Electrically amplify the signal as it moves from one connected
device to another. Active concentrators are used like repeaters to extent
the length of a network.

2. Passive Hubs: Allow the signals to pass from one computer to another
without any change.

 Hubs usually can support 8, 12 or 24 RJ-45 ports. These are often used
in a star or star wired ring topology and requires specialized software for port
management.
 Switch
 A switch is a device that is used to segment networks into different sub
networks called subnets or LAN segments. Segmenting the network into smaller
subnets prevents traffic overloading in a network.

Networking concepts402

 A switch is responsible for filtering
i.e., transforming data in a specific way and
for forwarding packets (a piece of message
being transmitted) between LAN segments.
Switch support any packets protocol.
 LANs that are segmented through
switches are called switched LANs. In the case
of Ethernet LANs, they are called switched
Ethernet LANs.

How a switch functions
To insulate the transmission from the other ports, the switch establishes

a temporary connection between the source and destination and then terminates
the connection once the conversation is done.
Repeater

A repeater is a device that amplifies a signal being transmitted on the
network. It is used in long network lines, which exceed the maximum rated
distance for a single run.

Over distance, the cables connecting a network lose the signal transmitted.
If the signal degrades too much, it fails to reach the destination. Or if it does
arrive, the degradation of the message makes it useless. Repeaters can be installed
along the way to ensure that data packets reach their destination. Repeaters are
of two kinds: amplifier and signal repeater. The first merely amplifies all incoming
signals over the network. However, it amplifies both the signal and any concurrent
noise. The second type collects the inbound packet and then retransmits the
packet as if it were starting from the source station.
Bridge

A bridge is a device that lets you link two networks together. Bridges are
smart enough to know which computers are on which side of the bridge, so they
allow only those messages that need to get to the other side of the bridge. As a
packet arrives at the bridge, the bridge examines the physical destination address
of the packet. The bridge then decides whether or not to let the packet cross.

Router
A device that works like a bridge but can handle different protocols is

known as a router. For example, a router can link Ethernet to a mainframe.
If the destination is unknown to a router it sends the traffic (bound to

unknown destination) to another router (using logical addresses) which knows
the destination. A router differs from a bridge in a way that former uses logical
addresses and the latter uses physical addresses.

Figure 15.19 Modem with systems

Networking concepts 403

How a Router functions
Compared to the hubs and switches, routers are smarter. Routers use a

more complete packet address to determine which router or workstation should
receive each packet next. Based on a network road map called a routing table,
routers can help ensure that packets are travelling the most efficient paths to
their destinations. If a link between two routers fails, the sending router can
determine an alternate route to keep traffic moving.

15.5.1 Gateway
A Gateway is a device that connects dissimilar networks. A gateway operates

at the highest layer of network abstraction. It expands the functionality of routers
by performing data translation and protocol conversion. It is needed to convert
Ethernet traffic from the LAN, to SNA (Systems Network Architecture) traffic on
a legacy system. It then routes the SNA traffic to the mainframe. When the
mainframe answers, the reverse process occurs.

A gateway is actually a node on a network that serves as an entrance to
another network. In enterprises, the gateway is the computer that routes the
traffic from a workstation to the outside network that is serving the web pages.
In homes, the gateway is the ISP that connects the user to the internet.

In enterprises, the gateway node often acts as a proxy server (a machine
that is not actually a server but appears as a server) and a firewall (a system
designed to prevent unauthorized access to or from a private network). The gateway
is also associated with both a router, which use headers and forwarding tables
to determine where packets are sent, and a switch, which provides the actual
path for the packet in and out of the gateway.

Wireless Vs Mobile Computing

Wireless refers to the method of transferring information between a
computing device, such as Personal Data Assistant (PDA) and a data source,
such as an agency data base server, without a physical connection. Wireless
communication is simply data communication without the use of the physical
connectivity. Not all wireless communications technologies are mobile.

Mobile simply describing a computing device that is not restricted to a
desktop. A mobile device may be a PDA, a small cell phone or web phone, a
laptop computer or any other of numerous other devices that allow the user to
complete the computing task without being tethered, or connected to a network.

Networking concepts404

Mobile computing does not necessarily require wireless communication. Infact,
it may not require communication between devices at all.

Wireless communication is simply data communication without the use of
landlines. This may involve cellular telephone, two way radio, fixed wireless,
LASER or satellite communications. Here the computing device is continuously
connected to the base network.

Mobile or untethered, computing means that the computing device is not
continuously connected to the base or central network. Mobile devices include
PDAs, Laptop computers and many of today’s cell phones. These products may
communicate with a base location with or without a wireless connection.

GSM

GSM is short for Global System for Mobile communications, which is one
of the leading digital cellular systems. The GSM standard for digital cell phones
was established in Europe in the mid 1980s.

In covered areas, cell phone users can buy one phone that will work
anywhere where the standard is supported. To connect to the specific service
providers in these different countries, GSM uses simply switch Subscriber
Identification Module (SIM) cards. SIM cards are small removable disks that slip
in and out of GSM cell phones. They store all the connection data and
identification numbers you need to access a particular wireless service provider.

GSM uses narrow band (TDMA), which allows eight simultaneous calls on
the same radio frequency. TDMA is short for (Time Division Multiple Access), a
technology for delivering digital wireless service using Time Division Multiplexing.
TDMA works by dividing a radio frequency into time slots and then allocating
slots to multiple calls. In this way, a single frequency can support multiple,
simultaneous data channels. GSM operates in the 900 MHz and 1800 MHz
bands.

15.6.1 What is a SIM card?

The SIM – Subscriber Identity Module – is a chip card, the size of a postage
stamp. A SIM is a tiny computer chip that gives a cellular device its unique
phone number. It has memory, a processor and the ability to interact with the

Networking concepts 405

user. Current SIMs typically have 16 to 64 Kb of memory, which provides plenty
of room for storing hundreds of personal phone numbers, text messages and
other data.

 CDMA

CDMA is short Code Division Multiple Access, a digital cellular technology
that uses spread spectrum techniques. Unlike competing systems, such as GSM,
that use TDMA, CDMA does not assign a specific frequency to each user. Instead,
every channel uses the full available spectrum. Individual conversations are
encoded with a pseudo random digital sequence. CDMA is a form of spread
spectrum, which simply means that data is sent in small pieces over a number
of the discrete frequencies available for use at any time in the specified range.
All of the users transmit in the same wide band chunk of spectrum. Each user’s
signal is spread over the entire bandwidth by a unique spreading code. At the
receiver end, that same unique code is used to recover the signal.

WLL (Wireless in local loop)

Wireless in local loop (WLL or WILL), is meant to server subscribers at
homes or offices. Wireless in local loop is analogous with local telephone service,
but much more capable. A WLL system serves a local area by deploying multiplicity
of multi channel transmit/receive bases stations (transceivers) that are within
line of site of the intended customers. Each customer is equipped with a mini
station of low power, into which the telephone is connected. The WLL unit consists
of a radio transceiver and the WLL interface assembled in box. Two cables and a
telephone connector are the only outlets from the box; one cable connects to a
directional antenna and a phone receptable to connect to a common telephone
set. Example, a fax or modem could also be connected for fax or computer
communication.

When calls are made from the telephone, it signals the base station for a
connection, which is subsequently established through a switch center, exactly
as in conventional telephony. An incoming call is identified at the switch center
and rooted to the base station assigned to serve the telephone being called. The
wireless connection is then made, and the call is completed in a conventional
manner.

Networking concepts406

The WLL system can operate with GSM handsets/mobile units, as well as
with GSM compatible subscriber units. The system is transparent to the central
office and subscribers, and interfaces with the most standard central office
switches and subscriber telephone equipment.

Advantages of WLL

(i) WLL facilities do not significantly suffer from weather damage, vandalism
and accidents.

(ii) WLL system offers better bandwidth than traditional telephone systems.
(iii) WLL system has much better bandwidth, superior customer service

features and quality can be provided.

 15.7.1 GPRS

GPRS is the abbreviation for General Packet Radio Service. GPRS is used
for wireless communication using a mobile device. With this service you can
access the internet, send emails and large data, real time news, download games
and watch movies.
How does GPRS work?

You must be aware of how files are transferred from one location to another
on your computer. They are broken down into packets and sent across. Similarly
GPRS also uses the same function to transfer data through a network. The
information is split into the smaller units or packets and sent through the network
and is reassembled at the receiving end. GPRS provides a high speed data transfer,
typically between 56 kilo bits per second to 114 kilo bits per second. A user of
the GPRS network is charged only on the amount data is sent or received as
opposed to the duration of the connection.

1G, 2G, 3G, 4G and 5G Networks

The “G” in wireless networks refers to the “generation” of the underlying
wireless network technology. Technically generations are defined as follows.

1G Networks:

(NMT,C-Nets, AMPS, TACS) are considered to be the first analog cellular
systems, which started early 1980s. There were radio telephone systems even

Networking concepts 407

before that. 1G networks were conceived and designed purely for voice calls with
almost no consideration of data services.

2G Networks:

(GSM, CDMAOne, D-AMPS) are the first digital cellular systems launched
early 1990s, offering improved sound quality, better security and higher total
capacity. GSM supports circuit switched data (CSD), allowing users to place
dial-up data calls digitally, so that the networks switching station receives actual
ones and zeros rather than the screech of an analog modem.

2.5G Networks: (GPRS, CDMA2000 1x) are the enhanced versions of 2G networks
with theoretical data rates upto about 144k bit/s. GPRS offered the first always
on data service.

3G Networks:

(UMTS FDD and TDD, CDMA 2000 1x EVDO, CDMA 2000 3x, TD-SCDMA,
EDGE) are newer cellular networks that have data rates of 384k bit/sec and
more. The UN’s IMT – 2000 standard requires stationary speeds of 2Mbps and
mobile speeds of 384kbps for a “true” 3G.

3G is a specification for the third generation (analog cellular was the first
generation, digital PCS the second) of mobile communications technology. 3G
promises increased bandwidth, up to 384 Kbps when a device is stationary or
moving at pedestrian speed, 128 Kbps in a car and 2Mbps in fixed applications.
UMTS (Universal Mobile Telecommunication System) is a broadband, packet–
based transmission of text, digitized voice, video, and multimedia at data rates
up to and possibly higher than 2 megabits per second (Mbps).

4G Network:

Based on the requirements for seamless interaction between networks,
4G is characterized by the following key attributes:

(i) Support for Multiple Applications and Services — Efficient support for
unicast, multicast and broadcast services and the applications that rely
on them. Prompt enforcement of Service Level Agreements (SLA) along

Networking concepts408

with privacy and other security features. Minimally, service classes include
delay sensitive, loss sensitive, delay and loss sensitive and best effort.

(ii)Quality of Service — Consistent application of admission control and
scheduling algorithms regardless of underlying infrastructure and operator
diversity.

(iii) Network Detection and Network Selection — A mobile terminal
that features multiple radio technologies or possibly uses software- defined
radios if economical, allows participation in multiple networks
simultaneously, thereby connecting to the best network with the most
appropriate service parameters (cost, QoS and capacity among others) for
the application. This requires establishing a uniform process for defining
eligibility of a terminal to attach to a network and to determine the validity
of link layer configuration.

5G Network:

The cellular concept was introduced in 5G Technology stands for 5th
Generation Mobile technology. 5G technology has changed the means to use
cell phones within very high bandwidth. User never experienced ever before
such a high value technology. Nowadays mobile users have much awareness of
the cell phone (mobile) technology. The 5G technologies include all type of
advanced features which makes 5G technology most powerful and in huge
demand in near future.

 A new mobile generation has appeared every 10th year since the first 1G
system (NMT) was introduced in 1981, including the 2G (GSM) system that
started to roll out in 1992, 3G (W-CDMA/FOMA), which appeared in 2001, and
“real” 4G standards fulfilling the IMT-Advanced requirements, that were ratified
in 2011 and products expected in 2012-2013. Predecessor technologies have
occurred on the market a few years before the new mobile generation.

KEY CONCEPTS OF 5G:

• Real wireless world with no more limitation with access and zone issues.
• Wearable devices with AI capabilities.
• Internet protocol version 6 (IPv6), where a visiting care-of mobile IP address is
assigned according to location and connected network.
• One unified global standard.
• Pervasive networks providing ubiquitous computing: The user can
simultaneously be connected to several wireless access technologies and

Networking concepts 409

seamlessly move between them. These access technologies can be a 2.5G, 3G,
4G or 5G mobile networks, Wi-Fi, WPAN or any other future access technology.
In 5G, the concept may be further developed into multiple concurrent data transfer
paths.
• Cognitive radio technology, also known as smart-radio: allowing different radio
technologies to share the same spectrum efficiently by adaptively finding unused
spectrum and adapting the transmission scheme to the requirements of the
technologies currently sharing the spectrum. This dynamic radio resource
management is achieved in a distributed fashion, and relies on software defined
radio.
• High Altitude stratospheric Platform Station (HAPS) systems.

Features of 5G Technology:

• 5G technology offer high resolution for crazy cell phone user and bi-directional
large
 bandwidth shaping. The advanced billing interfaces of 5G technology makes
it more attractive
 and effective.
• 5G technology also providing subscriber supervision tools for fast action.
• The high quality services of 5G technology based on Policy to avoid error.
• 5G technology is providing large broadcasting of data in Gigabit which supporting
almost
 65,000 connections.
• 5G technology offer transporter class gateway with unparalleled consistency.
• The traffic statistics by 5G technology makes it more accurate.
• Through remote management offered by 5G technology a user can get better
and fast solution.
• The remote diagnostics also a great feature of 5G technology.
• The 5G technology is providing up to 25 Mbps connectivity speed.
• The 5G technology also support virtual private network.
• The new 5G technology will take all delivery service out of business prospect
• The uploading and downloading speed of 5G technology touching the peak.
• The 5G technology network offering enhanced and available connectivity just
about the world.

EDGE

Networking concepts410

The new EDGE air interface has been developed specifically to meet the
bandwidth needs of 3G. Enhanced Data rates for Global Evolution (EDGE) are a
ratio based mobile high speed data standard. It allows data transmission speeds
of 384 kbps to be achieved when all eight time slots are used. In fact, EDGE was
formerly called GSM384. This means a maximum bit rate of 48 kbps per time
slot. Even higher speed may be available in good ratio conditions. EDGE is
considered an intermediate step in the evolution to 3G WCDMA (Wideband CDMA),
although some carriers are expected to stop short of that final step.

15.8.1 Applications in networking
SMS

Short Message Service (SMS) is the transmission of short text messages to
and from a mobile phone, fax machine and/or IP address. Messages must be no
longer than some fixed number of alpha-numeric characters and contain no
images or graphics. Once a message is sent, it is received by a Short Message
Service Center (SMSC), which must then get it to the appropriate mobile device.

To do this, the SMSC sends a SMS request to the home location register
(HLR) to find the roaming customer. Once the HLR receives the request, it will
respond to the SMC with the subscriber’s status: (1) inactive or active (2) where
subscriber is roaming.
Chat

Chatting : Realtime communication between two users via computer. In
telephone conservations, you say something, people hear it and respond, and
one can hear their responses on the spot and can reply instantly. In the same
manner, in chatting, you type a message on your screen, which is immediately
received by the recipient; then the recipient can type a message in response to
your message, which is received by you instantly.
Video Conferencing
A video conference is a live, visual connectio between two or more perople residing
in seprate locations for the purpose of communication. People who have a
multimedia PC with camera and video compression hardware, access to internet
over an ordinary telephone line, and videophone software can see each other
while talking, which is what is called Video conferencing.
15.8.2 Wi-Fi

Wi-Fi refers to Wireless Fidelity, which lets you connect to the internet
without a direct line from your PC to the ISP. For Wi-Fi to work, you need:

Networking concepts 411

 A broadband internet connection.
 A wireless router, which relays your Internet connection from the “wall” to

the PC.
 A laptop or desktop with a wireless internet card or external wireless

adapter.
Transmitting computer data without wires makes your data especially

susceptible to hackers, computer users who can intercept your connection and
steal your data. If you decide to use Wi-Fi at home, be sure that the network you
set up is security enabled.

Wi-Fi Hotspots
A hotspot is a venue that offers Wi-Fi access. The public can use a laptop,

Wi-Fi phone or other suitable portable devices to access the internet through a
WiFi Hotspot. Hotspots are public locations (such as libraries, hotels, airports,
etc) with free or fee-based wireless internet access. There are Wi-Fi hotspots in
thousands of locations around the world.

WiMax
WiMax is a wireless digital communications system. WiMax can provide

Broadband Wireless Access (BWA) up to 30 miles (50 km) for fixed stations and
3-10 miles (5-15 km) for mobile stations. WiMax requires a tower called WiMax
Base Station, similar to a cell phone tower, which is connected to the Internet
using a standard wired high-speed connection. But as opposed to a traditional
Internet Service Provider (ISP), which divides that bandwidth among customers
via wire, it uses a microwave link to establish a connection. In other words,
WiMax does not depend on cables to connect each end-point, the internet
connectivity to an end-user is provided through microwave link between the
tower and the user-endpoint, known as WiMax Subscriber unit.

15.9.1 Network Security
The networking offers endless possibilities and opportunities to every user

of it, alone with convince. But this convinces and endless benefits are not free
from risks as there are many a risks to network security.

While ensuring network security, the concerns are to make sure that only
legal or authorized user and programs gain access to information resources like
databases. Also, certain control mechanisms are setup to ensure that properly
authenticated users get access only to those resources that they are entitled to

Networking concepts412

use. Under this type of security, mechanisms like authorization, authentication,
encrypted smart cards, biometrics and firewalls, etc are implemented.
The problems encountered under network security can be summarized as follows:

1. Physical security holes. When individuals gain unauthorized physical
access to a computer and temper with files. Hackers do it by guessing
passwords of various users and then gaining access to the network systems.

2. Software security holes. When badly written programs or ‘privileged’
software are compromised into doing things that they should not be doing.

3. Inconsistent usage holes. When a system administrator assembles a
combination of hardware and software such that the system is seriously
flawed from a security point of view.

 PROTECTION METHODS
1. Authorization: It determines whether the service provider has granted access
to the web service to the requestor. Basically, authorization confirms the service
requestors credentials. It determines if the service requestor is entitled to perform
the operation, which can range from invoking the web service to executing a
certain part of its functionality. Authorization is performed by asking the user a
legal login ID. If the user is able to provide a legal login ID, he/she is considered
an authorized user.
2. Authentication: It ensures that each entity involved in using a web service–
the requestor, the provider and the broker (if there is one) – is what it actually
claims to be. Authentication involves accepting credentials from the entity and
validating them against an authority.

Authentication also termed as password protection as the authorized user
is asked to provide a valid password and if he or she is able to do this, he or she
considered to be an authentic user.
3. Encrypted Smart Cards: Passwords in a remote login session generally pass
over the network in unencrypted form; any hacker can simply record it and can
use it later maliciously to corrupt data/files or to harm anyone etc. To counter
such threats newer approaches are suggested such as encrypted smart cards.

An encrypted smart card is a hand held smart card that can generate a token
that a computer system can recognize. Every time a new and different token is
generated, which even though cracked or hacked, cannot be used later.
4. Bio Metric Systems: They form the most secure level of authorization. The
Biometric systems involve some unique aspects of a person’s body such as finger
prints, retinal patterns, etc to establish his/her identity.
5. Firewall: A system designed to prevent unauthorized access to or from a
private network is called firewall. They can be implemented in both hardware
and software or a combination of both. Firewalls are frequently used to prevent

Networking concepts 413

unauthorized internet users from accessing private networks connected to the
internet, especially intranets. All messages entering or leaving the intranet pass
through the firewall, which examines each message and blocks those that do
not meet the specified security criteria.
 There are several types of firewall techniques.

(i) Packet Filter: Looks as each packet entering or leaving the network and
accepts or rejects it based on user defined rules. It is fairly effective and
transparent to users, but it is difficult to configure. In addition, it is
susceptible to IP spoofing.

(ii)Application gateway: It apples security mechanisms to specific applications,
such as FTP and Telnet Servers. This is very effective, but can impose
performance degradation.

(iii) Circuit Level Gateway: It applies security mechanisms when a connection
is established. Once the connection has been made, packets can flow
between the hosts without further checking.

(iv) Proxy Server: It intercepts all messages entering and leaving the network.
The proxy server effectively hides the true network addresses.

15.10.1 Cookies
Cookies are messages that a web server transmits to a web browser so that a web
server can keep track of the user’s activity on a specific web site.
Hackers and Crackers

The Crackers malicious programmers who break into secure systems where
as Hackers are more interested in gaining knowledge about computer systems
and possibly using this knowledge for play full pranks.
Cyber Law

Cyber Law is a generic term, which refers to all the legal and regulatory
aspects of internet and the WWW.
India’s IT Act

In India the cyber laws are contained in the information technology act,
2000 which was notified on 17 October 2000. It is based on the United Nations
Commission for International Trade Related Laws (UNCITRAL) model law.

The IT act aims to provide the legal infrastructure for ecommerce in India
by governing the transactions through the internet and other electronic medium.
15.11.1 Viruses

Computer Virus is a malicious program that requires a host and is designed
to make a system sick, just like a real virus. Viruses can spread from computer
to computer and they can replicate themselves. Some viruses are categorized as
harmless pranks, while others are far more malicious. Broadly three types of
viruses are:

Networking concepts414

1. File Infectors – These types of viruses either infect executable files or
attach themselves to a program file and create duplicate files.

2. Boot Sector Viruses – Install themselves on the beginning tracks of a
hard drive or the Master Boot Record or simply they change the pointer to
an active boot sector.

3. Macro Viruses – Infect data files like electronic spreadsheets or databases
of several software packages.

4. Network Viruses – These virus use protocols and commands of computer
network to spread themselves on the network. Generally they use email
or any data transfer files to spread themselves on the network.

 Most viruses are spread by email attachment and warn them to be suspicious
of any files attached to unsolicited messages.

The following are characteristics of a computer virus.
1. It is able to replicate
2. It requires a host program as a carrier
3. It is activated by external action
4. Its replication ability is limited to the system.

Virus Prevention
Virus Prevention is not a difficult task. All you need to be is extra careful and
ensure to follow the following guidelines to lead virus free computing life.
1.Never use a “Foreign” disk or CD without scanning it for viruses.
2.Always scan files downloaded from the internet or other sources.
3.Never boot your PC from a floppy unless you are certain that it is virus free.
4.Write protect your disks.
5.Use licensed software.
6.Password protect your PC to prevent unattended modification.
7.Install and use antivirus software.
8.Keep antivirus software up to date.
Some of the antivirus are Kaspersky , Quick heal, K7, Norton 360, Micro trend
titanium, AVG, Panda, ESET Nod32, Avast.McAFee etc.,
Cloud tecnology: Cloud technology or cloud computing as it is more commonly
known today is a computing platform widely used by Information Technology
(IT) Service Companies.

Review questions

One mark questions:

Networking concepts 415

1. What is networking.
2. What is server?
3. What is client ?
4. What is topology?
5. Expand 2G.
6. What is a virus?
7. What is chatting?
8. What is cyber law?
9. What are cookies?
10.What are Hackers?

Two marks questions:
1. List the Goals for networking.
2. What do you mean by transmission modes?
3. Which are the switching technology used ?
4. What is SIM card ?
5. What is network security?

Three marks questions:
1. Explain the HTTP ?
2. Classify and explain servers.
3. Explain the types of networking.
4. Explain the cables and different types of cables used in

transmission?
5. List the differences between simplex, half duplex and full duplex.
6. Explain the applications of networking?

Five marks questions:
1. Explain the working of OSI and TCP/IP?
2. Explain various networking devices used?
3. What is topology explain in detail.
4. What is gateway? Explain.
5. Explain the network security in detail?
6. Give the measures for preventing virus?

Internet and Open source416

CHAPTER 16

Internet and Open source concepts

OBJECTIVES

 Definitions and terms used in internet and web sites

 Various web browsers.

 To understand the free ware software.

 how and methods of Computer viruses attacks

following

Internet and Open source 417

16.1 INTRODUCTION
 Broadly the term “Open source” software is used to refer to those categories

of software/programs whose licenses do not impose much condition. Such
software, generally, give users freedom to run/use the software for any purpose
to study and modify the program, and to redistribute copies of either the original
or modified program.
 There are many categories of software that may be referred to as open
source software. Following sub section is going to talk about the same.
16.1.2 Free software

 Free software means the software is freely accessible and can be freely
used, changed, improved, copied and distributed by all who wish to do so. And
no payments are needed to be made for free software.
 Free software is a matter of liberty, not price. To understand the concept,
you should think of “free” as in “free speech”, not as in “free beer”. Free software
is a matter of the users freedom to run, copy, distribute, study, change and
improve the software. More precisely, it refers to four kinds of freedom, for the
user of the software.

1. The freedom to run the program, for any purpose.
2. The freedom to study how the program works and adapt it to your
needs. Access to the source code is a precondition for this.
3. The freedom to redistribute copies so you can help your neighbor.
4. The freedom to improve the program and release your improvements to the
public, so that the whole community benefits. Access to the source code is a
precondition for this.

16.1.3 Open Source Software
 Open Source Software, on the other hand, can be freely used but it does not

have to be free of charge. Here the company constructing the business models
around open source software may receive the payments concerning support,
further development. What is important to know here is that in open source
software, the source code is freely available to the customer.
 Open source doesn’t just mean access to the source code. The distribution
terms of open source software must comply with the following criteria.

1. Free redistribution: The license shall not restrict any party from selling
or giving away the software as a component of an aggregate software
distribution containing programs from several different sources. The license
shall not require a royalty or other fee for such sale.

2. Source Code: The program must include source code and must allow distribution
in source code as well as complied form. Where some form of a product is not
distributed with source code, there must be a well publicized means of obtaining
the source code for no more than a reasonable reproduction cost preferably,

Internet and Open source418

downloading via the internet without charge. The source code must be the
preferred form in which a programmer would modify the program. Deliberately
obfuscated source code is not allowed. Intermediate forms such as the output of a
pre processor or translator are not allowed.

3. Derived works: The license must allow modifications and derived works, and
must allow them to be distributed under the same terms as the license of the
original software.

4. No discrimination against persons or groups: The license must not
discriminate against any person or group of persons.

5. No discrimination against fields of Endeavor: The license must not restrict
anyone from making use of the program in a specific field of endeavor. For
example it may not restrict the program from being used in a business or
being used for genetic research.

6. Distribution of license: The rights attached to the program must apply to
all to whom the program is redistributed without the need for execution of
an additional license by those parties.

7. License must not be specific to a product: The rights attached to the
program must not depend on the programs being part of a particular
software distribution. If the program is extracted from that distribution
and used or distributed within the terms of the programs license, all parties
to whom the program is redistributed should have the same rights as
those that are guaranteed in conjunction with the original software
distribution.

8. The license must not restrict other software: The license must not place
restrictions on other software that is, distributed alone with the licensed
software.

9. License must be technology neutral: No provision of the license may be
predicated on any individual technology or style of interface.

Software which is free as well as open belongs to category FOSS (Free and
Open Source Software). The terms free and open represent a differing emphasis
on importance of freedom (free software) or technical progress (Open Source
Software).
16.1.4 OSS and FLOSS

OSS refers to Open Source Software, which refers to software whose source
code is available to customers and it can be modified and redistributed without
any limitations. An OSS may come free of cost or with a payment of nominal
charges that its developers may charge in the name of development, support of
software.

Internet and Open source 419

FLOSS refers to Free Libre and Open Source Software or to Free Livre and
Open Source Software. The term FLOSS is used to refer to software which is
both free software as well as open source software. Here the words Libre (a
Spanish word) and Livre (a Portuguese word) mean freedom.
16.1.5 GNU

GNU refers to GNU’s not Unix. GNU project emphasizes on freedom and
thus its logo type shows a gnu, an animal living in freedom.
16.1.6 FSF

FSF is Free Software Foundation. FSF is a non-profit organization created
for the purpose of supporting free software movement. Richard Stallman founded
FSF in 1985 to support GNU project and GNU licenses. FSF has founded many
software developers to write free software. Now a day, it also works on legal and
structural issues for the free software community.
16.2.1 OSI

OSI is Open Source Initiative. It is an organization dedicated to cause of
promoting open source software. Bruce Perens and Erics Raymond were the
founders of OSI that was founded in February 1998. OSI specifies the criteria for
Open Source Software and properly defines the terms and specifications of Open
Source Software.
 Open Source does not just mean access to the Source code. The distribution
terms of Open source software must comply with the open source definition by
OSI.
16.2.2 W3C

W3C is acronym for World Wide Web Consortium. W3C is responsible for
producing the software standards for World Wide Web. The W3C was created in
October 1994, to lead the WWW to its full potential by developing common
protocols that promote its evolution and ensure its interoperability.
16.2.3 Proprietary Software

Proprietary Software is the software that is neither open nor freely
available. Its use is regulated and further distribution and modification is either
forbidden or requires special permission by the supplier or vendor. Source code
of Proprietary Software is normally not available.
Freeware

The term Freeware has no clear definition, but is generally used for
software, which is available free of cost and which allows copying and further
distribution, but not modification and whose source code is not available. Freeware
should not be mistaken for open software or for free software.

Internet and Open source420

Shareware
Shareware is software, which is made available with the right to redistribute

copies, but it is stipulated that if one intends to use the software, often after a
certain period of time, then a license fee should be paid.

(i). in shareware the source code is not available

(ii). Modifications to the software are not allowed.

16.2.4 WWW (World Wide Web)

The WWW (World Wide Web) is a set protocols that allows you to access
any document on the net through a naming system based on URLs. WWW also
specifies a way– the Hypertext Transfer Protocol (HTTP) to request and send a
document over the internet. Before WWW, Internet was mainly used for obtaining
textual information. But post-WWW, the Internet popularity grew tremendously
because of graphic intensive nature of WWW. Therefore, we may attribute the
explosion in use and popularity of Internet to WWW only.

16.2.5 Telnet

Telnet is an older Internet Utility that lets you log on to remote computer
systems. Basically, a Telnet program gives you a character-based terminal window
on another system. You get a login prompt on that system. If you’ve permitted
access, you can work on that system, just as you would if you were sitting next
to it. Telnet has been used by people who have logins on remote systems and
want to do serious work there. Most notably, you can use Telnet to connect to
thousands of catalogs at libraries around the world.

16.2.6 Web Browser

A Web Browser is a WWW client that navigates through the World Wide
Web and displays web pages. Internet Explorer and Netscape Navigator are two
most popular web browsers.

16.2.7 Web Server
Web Server is a WWW server that responds to the requests made by web browsers.
Each website has a unique address called URL (Uniform Resource Locator).

Internet and Open source 421

16.2.8 Web Page
The documents residing on web sites are called Web Pages. The web pages

use HTTP.
1. Home Page: It is the top-level web page of a web site. When a web-site is
opened, its home page is displayed.
2. Web Portal: It is a web site, which hosts other web sites. In other words, a web
portal has hyperlink to many other web sites. By clicking upon these links, the
corresponding websites can be opened.
16.3 URL and Domain Names

The Internet structure of the World Wide Web is built on a set of rules
called Hypertext Transfer Protocol (HTTP) and a page description language called
Hypertext Markup Language (HTML). HTTP uses internet addresses in a special
format called a Uniform Resource Locator or URL, URLs look like this:
type://address/path
 Where type: specifies the type of the server in which the file is located, address
is the address of server, and path tells the location of file on the server. For
example, in the following URL
http://encycle.msn.com/getinfo/styles.asp
http: specifies the type of server, encycle.msn.com is the address of server and
getinfo/styles.asp is the path of the file style.asp.

Syntax Elements of URLs
 URL is an address of a file on Internet. The components or syntax elements
of URLs and a file’s Internet address, or URL, is determined by the following:

1. The type of server or protocol
2. The name or address of the server on the Internet
3. The location of the file on the server

The intelligent browsers like Netscape Navigator or Microsoft Internet
Explorer can display files in just about any format available on any of the common
types of servers.

In any typical URL, the “http” identifies both the protocol and server.
According to standard URL syntax, a colon (:) and two forward slashes (//) follow
the protocol/server.

The next component of the address is the name of the server; in this case,
server names have multiple components. Commonly a Web server’s name will
begin “www” for World Wide Web.

Internet and Open source422

Internet Servers and What They Provide

 Server Protocol Information It Provides : ftp gopher, httpmail news,
File Transfer ProtocolTransfer Control Protocol/Internet Protocol (TCP/
IP)Hypertext Transfer ProtocolPost Office Protocol (POP) Version 3 and Simple
Mail Transfer Protocol (SMTP)Network News Transfer Protocol (NNTP)
Text and binary files that are organized in a hierarchical structure, much like a
family tree.Text and binary files that are organized in a menu structure.Hypertext/
hypermedia files Messages sent via electronic mail.Newsgroups that are organized
in a hierarchical structure.

Domain Name : Domain name are used to identify one or more ip addressess.
Domain names are used in URLs to identify particular web page/web pages.

Some Most Common Domains
In addition to it, a two letter abbreviation indicating the country name

may be used e.g.,http://www.pue.kar.nic.in. Here the last in suggests that it is
based in India (.in) and pue.kar.nic.in is the domain name. Similarly, the URL
http://www.clearnet.nz suggests that it is based in New Zealand (.nz).

Some country abbreviations are listed below:

16.4 Electronic Commerce
Electronic commerce is sophisticated combination of tecnologies and

consumer-based services integrated to form a new paradigm in business
transaction processing..

Sl.No. Domain ID Affiliation Remarks
1 com Commercial For commercial firms
2 edu Education For educational firms

3 gov Government
For Government Organizations/bodies

4 mil Military For Military
5 net Network resources For ISPs/networks

6 org
Usually
non-profit organizations

For NGOs and other no-profit

7 co Company For listed companies
8 biz Business For business

9 tv Television
For television companies and channels

au Australia
dk Denmark
in India
nz New Zealand
uk United Kingdom

Internet and Open source 423

Business activities such as marketing,sales, sales promotion; sub
contracts,supply; financing and insurance, commerical contracts,supply;
financing and insurance commecial transactions:Ording,delivery,payment;
product service and maintence;use of private and public services business-to-
administrations(permissions,tax,customers, etc); banking,trannsport and logistics;
public procurement(results can be seen of internet); automatic trading of digital
goods and accounting.

Definition : E-commerce is the trade of goods and services with the help of
telecommunication and computers.

E-commerce involves the automation of a variety of business to
consumer(B2B,B2C,C2B,C2C) transaction through reliable and secure
connections.

Some of the technologies and services used in e-commerce are

1. Electronic Data interchange(EDI) is the electronic interchange of business
information using a standardized format. In other words, EDI is a process
which allows one company to send information to another company
electronically rather than with paper. Business entities which conduct
business electronically are called trading partners.
2. e-mail
3. Electronic Funds transfer(EFT)
4. Electronic Benefits transfer(EBT),
5. Electronic forms(online admissions forms for college and other registrations)
6. Digital cash(DC)
7. Interoperable database access
8. Bulletin Boards(BBs)
9. Electronic Banking(EB)
10.Bar-coding-2D,Imaging,voice recognition,
11 security services such as firewalls, encryption, gateways etc.

How does eCommerce work?

Step 1: The merchant submits a credit card transaction to the NMAPAY Payment
gateway on behalf of a customer via secure Web site connection, retail store,
MOTO center or wireless device.
Step 2: NMAPAY receives the secure transaction information and passes it via a
secure connection to the Merchant Bank’s Processor.
Step 3: National Merchants Association submits the transaction to the Credit
Card Network (a system of financial entities that communicate to manage the
processing, clearing, and settlement of credit card transactions).

Internet and Open source424

Step 4: The Credit Card Network routes the transaction to the Customer’s Credit
Card Issuing Bank.
Step 5: The Customer’s Credit Card Issuing Bank approves or declines the
transaction based on the customer’s available funds and passes the transaction
results back to the Credit Card Network.
Step 6: The Credit Card Network relays the transaction results to National
Merchants Association
Step 7: National Merchants Association relays the transaction results through
NMAPAY(website)
Step 8: NMAPAY stores the transaction results and sends them to the customer
and/or the merchant. This step
completes the authorization process - all
in about three seconds or less!
Step 9: National Merchants Association
sends the appropriate funds for the
transaction to the Credit Card Network,
which passes the funds to the Merchant’s
Bank. The bank then deposits the funds
into the merchant’s bank account. This
step is known as the settlement process
and typically the transaction funds are
deposited into your primary bank
account within 24 to 48 hours.

16.4.1 Types of e-commerce applications:
1. Business-to-Business(B2B)
2.Business-to Consumer(B2C)
3. Consumer-to-Business(C2B)
4.Consumer-to-Consumer(C2C)
1. Business-to-Business(B2B): The exchange of services, information and/or
products from one business to another Business partners.Ex Ebay.com
2. Business-to-Consumer(B2C): The exchange of services, information and/or
product from a business to a consumer.
3. Consumer-toBusiness(C2B): Customer directly contact with business vendors
by posting their project work with set budge online so that the needy companies
review it and contact the customer directly with bid. The consumer reviews all
the bids and selects the company for further processing. Ex. guru.com,
freelancer.com.
4. Consumer-to-consumer: Electronic commerce is an internet facilitated form
of business(commerce).

Internet and Open source 425

16.4.2 Advantages of electronic commerce application and implementation:
1.Easier entry into new markets, especially geographically remote markets, for
companies of all sizes and locations.
2. Creates a new markets through the ability to easily and economical rate
potential for customers.
3. Global participation
4. Optimization of resource.
5. Reduce time to complete business transaction, particularly from delivery to
payment.
6. Buyer makes a buying decision, creates the purchase order but does not
print it.
7.Improved market intelligence and strategic planning.
8. EDI software creates an electronic version of the purchase order and
transmits it automatically to the supplier.
9. Supplier’s order entry system receives the purchase order and updates the
system immediately on receipt.
10.Supplier’s order entry system creates an acknowledgment an transmits it
back to confirm receipt.

16.5 IPR –issues Intellectual Property Rights(IPR) in India
Does the nature of the technology require us to change the legal

understanding or status of copyright as it stands now? What rights should be
associated with Web content? How should the rights be expressed, and should
the expression of the rights be used for notification, enforcement, or payment
negotiation? We expect the answer to these questions does not lie solely in
technology nor policy, but the rational combination of both.

Copyright has been the focus of protecting intellectual property on the
Internet. As such, there have been both technological (IPR/encryption wrappers)
and legislative efforts to continue incentives for authors to create useful works.
Recent initiatives have been at the international level include at the OECD, and
a conference (Dec. 96) hosted by the World Intellectual Property
Organization (WIPO).

IPR-related issues in India like patents, trademarks, copyrights, designs
and geographical indications are governed by the Patents Act 1970 and Patent
Rules 2003, Trademarks Act 1999 and the Trademarks Rules 2002, Indian
Copyrights Act, 1957, Design Act 2000 and Rules 2001, and The Geographical

Internet and Open source426

Indications of Goods (Registration & Protection) Act, 1999 and The Geographical
Indications of Goods (Registration & Protection) Rules 2002, respectively.

IPR plays a key role in almost every sector and has become a crucial factor
for investment decisions by many companies. All the above Acts and regulations
are at par with international standards. India is now TRIPS-compliant. This is an
international agreement administered by the World Trade Organization (WTO),
which sets down minimum standards for many forms of intellectual property (IP)
regulations as applied to the nationals of other WTO Members. The very well-
balanced IPR regime in India acts as an incentive for foreign players to protect
their Intellectual Property in India.

This can be established by the very fact that approximately 80% of patent
filings in India are from the MNCs.

While the IPR regime in India consists of robust IP laws, it lacks effective
enforcement, for which “least priority given to adjudication of IP matters” is often
quoted as a reason. The key challenge is to sensitize the enforcement officials
and the Judiciary to take up IP matters, at par with other economic offences, by
bringing them under their policy radar. Further, it is imperative that there be
established a ‘Think Tank’ or a group, which can bring the varied sets of
stakeholders on to a common platform, leading to extensive/exhaustive and an
all inclusive debate/discussion, facilitating well-informed policy decisions in
accordance with India’s socio-economic-political needs. The challenges also lie
in having an IP fund, which can be utilized for further developing the IP culture
in the country. There is also the need to have a National IP Policy for India,
which will help in working towards realizing the vision of India in the realm of IP.
This will facilitate the creation of a strong socio-economic foundation and deep
international trust.

FICCIs efforts emphasize the enhancing of the working of the Indian Patent
Office, thereby, bringing greater transparency in its working, and facilitating
the Government in developing a policy for India.
The IPR division tries to provide proactive business solutions through research,
interactions at the highest political level while facilitating global networking.
Further, since the IPR provides exclusive rights over assets, it is a major challenge
for the country to balance the interests of the innovators and the interests of the
society at large.

In today’s highly competitive global economy, IPRs are giving companies
the cutting edge and increasing their competitiveness. With recent changes in
IP laws, various IP related issues have sprung up, which are highly complex in
nature. FICCI envisions itself as the ‘thought’ leader in the field of IPR. FICCI

Internet and Open source 427

also views itself as being capable enough to assist the government and the industry
captains in all IP related matters.

Showcasing its unparalleled capabilities in this sphere, FICCI’s IPR division
organizes the World IP Day on April 26th every year. In fact, on World IP Day
2010, FICCI prepared and submitted a discussion paper on the National IP Policy
to the Government of India. In 2011 as well, FICCI submitted a brief report to
the Government of India, with a view to safeguarding India’s interests in the
fields of traditional knowledge and traditional cultural expressions, at the
International Governmental Committee meeting at WIPO.

Review questions
One mark questions:

1. What is open source software?
2. What are free software?
3. What is OSS and FLOSS
4. What is Proprietary software?
5. What is Freeware?
6. What are Browsers
7. What are URL?
8. What are Telnet?
9. What is domain name?
10. Define e-commerce?
11. Expand IPR.

Two marks questions:
1. List the OSS and Floss.
2. What is FSF.
3. What are OSI and W3C?
4. What is URL and HTTP?
5. Name the different protocols used?
6. List the services of e-commerce?
7. Write a note on WIPO.

Three marks questions:
1. What is Open source?
2. Write the advantages of www?
3. What is Telnet?
4. Write the web servers?
5. Write a note on open source?
6. Explain free software?
7. Explain URLs?
8. How ecommerce works?
9. Explain types of e-commerce?
10. Explain the IPR in india.

Advanced HTML428

CHAPTER 17

Web designing

OBJECTIVES

 Knowing a web page and web site

 Html structures.

 How html programs are used in creating web sites

 To understand the concept of hosting and maintaing websites

Advanced HTML 429

17.1 Introduction

HTML is the “mother tongue” of your browser.

To make a long story short, HTML was invented in 1990 by a scientist called Tim
Berners-Lee. The purpose was to make it easier for scientists at different
universities to gain access to each other’s research documents. The project became
a bigger success than Tim Berners-Lee had ever imagined. By inventing HTML
he laid the foundation for the web as we know it today.

HTML is a language, which makes it possible to present information (e.g. scientific
research) on the Internet. What you see when you view a page on the Internet is
your browser’s interpretation of HTML. To see the HTML code of a page on the
Internet, simply click “View” in the top menu of your browser and choose “Source”.

For the untrained eye, HTML code looks complicated but this tutorial will help
you make sense of it all.

What can I use HTML for?

If you want to make websites, there is no way around HTML. Even if you’re using
a program to create websites, such as Dreamweaver, a basic knowledge of HTML
can make life a lot simpler and your website a lot better. The good news is that
HTML is easy to learn and use. In just two lessons from now you will have
learned how to make your first website.

HTML is used to make websites. It is as simple as that!

Okay, but what does H-T-M-L stand for?

HTML is an abbreviation of “HyperText Mark-up Language” - which is already
more than you need to know at this stage. However, for the sake of good order,
let us explain in greater detail.

· Hyper is the opposite of linear. In the good old days - when a mouse was
something the cat chased - computer programs ran linearly: when the program
had executed one action it went to the next line and after that, the next line and
so on. But HTML is different - you can go wherever you want and whenever you
want. For example, it is not necessary to visit MSN.com before you visit HTML.net.

· Text is self-explanatory.

· Mark-up is what you do with the text. You are marking up the text the
same way you do in a text editing program with headings, bullets and bold text
and so on.

Advanced HTML430

· Language is what HTML is. It uses many English words.

17.1.1 HTML Structure : An HTML document has a definite structure
that must be specified to the browser. The HTML’s beginning and
end must be defined, as well as the document’s HEAD (which contains
information for the browser that does not appear in the browser’s
main window) and its BODY (which contains the text that will appear
in the browser’s main window). The use and order of tags that define
the HTML structure are described below.

The body of the document contains all that can be seen when the
user loads the page.

The html can be created using any text editor like notepad.
The file msut be saved using the extension.html
In order to execute the html program use any web browser.

Advanced HTML 431

W eb page layout Basic requirem ents o f web
page

figure 17.1 www.pue.kar.nic.in

The official website of the pue consists of the basic layout of web page like image, web
page links, web pages with headings, Bulletin Board, URL, with forms and tables. This is
one of the example for web page designing.

WEb page with basic features

Most of web pages contain the basic layouts such as address box to enter the
domain name with forward and back navigating pages. Header of the web
page, with or without sub heading, footer with the licence value, images etc.
This chapter will highlight the commands used in advanced HTML with
examples and samples are given.

figure 17.2 Layout of HTML

Advanced HTML432

17.2.2 TEXT Formatting

This text is bold

This text is italic

This is computer output

This is subscript and superscript

HTML uses tags like and <i> for
formatting output,
like bold or italic text.

These HTML tags are called formatting
tags there is a difference in the
meaning of these tags:

 or <i> defines bold or italic text
only.

 or means that you want the text to be rendered in a way that
the user understands as "important". Today, all major browsers render strong
as bold and em as italics. However, if a browser one day wants to make a text
highlighted with the strong feature, it might be cursive for example and not
bold!

1 7 . 2 . 3 R e s i z i n g T E X T

T h e s e a r e t h e t a g s f o r c h a n g i n g t h e f o n t s iz e .

< b ig > t e x t < / b ig > in c r e a s e t h e s i z e b y o n e

< s m a l l > t e x t < / s m a l l > d e c r e a s e t h e s iz e b y o n e

< h 1 > t e x t < / h 1 > w r it e s t e x t in b i g g e s t h e a d i n g

< h 6 > t e x t < / h 6 > w r it e s t e x t in s m a l l e s t h e a d in g

< f o n t s iz e = "1 " > t e x t < / f o n t > w r it e s t e x t in s m a l l e s t f o n t s iz e . (8 p t)

< f o n t s iz e = "7 " >
t e x t < / fo n t >

w r it e s t e x t in b i g g e s t f o n t s i z e (3 6 p t)

T h e < s m a l l> a n d < b i g > t a g s a r e s p e c ia l i n t h a t t h e y c a n b e r e p e a t e d . I f y o u w a n t
t o i n c r e a s e t h e f o n t s iz e w i t h a f a c t o r t w o , t h e n y o u c o u ld d o i t l ik e th i s :

< b i g > < b i g > w h a t e v e r < / b ig > < / b i g >

Text Links Images Backgrounds Others
Formatting
Resizing
Layout
Listing

To local pages
To pages at other
sites
To bookmarks

Inserting images (GIF
and jpg)
Adding a link to an
image

Colors
Images
Fixed Image

Tables
Frames
Forms

17.2.1 Advanced HTML tags/commands

Advanced HTML 433

17.2.4 Example for resizing text
<HTML>

<HEAD>
<TITLE> MY BEST FILE </TITLE>

</HEAD>
<BODY BGCOLOR="RED" TEXT="YELLOW"

<H1> <CENTER> Watch the size of the text </CENTER> </h1>
<H2> <CENTER> Watch the size of the text </CENTER> </h2>
<H3> <CENTER> Watch the size of the text </CENTER> </h3>
<H4> <CENTER> Watch the size of the text </CENTER> </h4>
<H5> <CENTER> Watch the size of the text </CENTER> </h5>
<H6> <CENTER> Watch the size of the text </CENTER> </h6>

 <P>

<CENTER> Bangalore is the garden city of India !! </CENTER>

 </P>

 <P> <FONTFACE="SIMSUN" SIZE="12">
<CENTER> Bangalore is known as bengaluru

<//CENTER>

 </P>

 Moderate climate
 Well connected to various city

 </BODY>
</HTML>

Advanced HTML434

17.2.5 TEXT layout

These tags will let you control the layout.

HTML EXPLANATION

<p>text</p>

Adds a
paragraph break
after the text.
(2 linebreaks).

<p
align="left">text</p
>

Left justify text
in paragraph.

<p
align="center">text<
/p>

Center text in
paragraph.

<p
align="right">text</
p>

Right justify text
in paragraph.

text

Adds a single
linebreak where
the tag is.

<nobr>text</nobr>

Turns off
automatic
linebreaks
- even if text is
wider than the
window.

text<wbr>

Allows the
browser to insert
a linebreak
at exactly this
point
- even if the text
is within <nobr>
tags.

RESULT HTML

Hello world- a
linebreak does
not insert a
linebreak in
HTML

you will need

to insert

special tags

that will insert
linebreaks
where
you want it!

Another
method is to
write a
sentence, that
is long enough
to force a
linebreak.

This option
can however
be turned
offwith the
nobr-
tag.unless a
wbr is used to
force it!

Hello world -
a linebreak does not
insert a linebreak in
HTML

<p>you will need</p>

<p align="right">to
insert</p>

<p align="left">special
tags</p>

that will insert

linebreaks

where

you want it!

Another method is of
course to write a
sentence, that is long
enough to force a
linebreak.

<nobr>This option can
however be turned
off<wbr>with the nobr
tag,<wbr>unless a wbr
is used to force
it!</nobr>

Advanced HTML 435

HTML EXPLANATION

<center>text</cente
r>

Center text.

<div
align="center">text<
/div>

Center text.

<div
align="left">text</di
v>

Left justify text.

<div
align="right">text</
div>

Right justify text.

RESULT HTML

force it!

You can also
center

And turn the
center off

And on!

Go left!

Go right!

<center>You can
center</center>
And turn the center off
<div
align="center">And
on!</div>
<div align="left">Go
left!</div>
<div align="right">Go
Right!</div>

Note in particular the difference between the <p> and the <div> tags.
The <div>tag allows you to justify content without being forced to add a double
linebreak.

Also, note that these alignment tags are not limited to text. They work on text,
images, applets or whatever it is that you insert on the page.

17.2.6 Number Listing
This page shows how to make different kinds of numbered lists.
You have the following number options:

 Plain numbers
 Capital Letters
 Small Letters
 Capital Roman Numbers
 Small Roman Numbers

Advanced HTML436

HTML-CODE EXPLANATION / EXAMPLE

text
text
text

Makes a numbered list using the default number type:

1. text
2. text
3. text

<ol start="5">

Starts a numbered list, first # being 5.

5. This is one line
6. This is another line
7. And this is the final line

<ol type="A">

Starts a numbered list, using capital letters.

A. This is one line
B. This is another line
C. And this is the final line

<ol type="a">

Starts a numbered list, using small letters.

a. This is one line
b. This is another line
c. And this is the final line

<ol type="I">

Starts a numbered list, using capital roman numbers.

I. This is one line
II. This is another line

III. And this is the final line

<ol type="i">

Starts a numbered list, using small roman numbers.

i. This is one line
ii. This is another line
iii. And this is the final line

<ol type="1">
<ol type="I" start="7">

Starts a numbered list, using normal numbers.

1. This is one line
2. This is another line
3. And this is the final line

<ol type="I" start="7">

An example of how type and start can be combined.

VII. This is one line
VIII. This is another line

IX. And this is the final line

Advanced HTML 437

17.2.7 Links
Links
The tags used to produce links
are the <a> and .

The <a> tells where the link
should start and
the indicates where the link
ends.

Everything between these two
will work as a link.

The target of the link is added to
the <a> tag using
the href="http://www.whatever
page.com" setting.

The example below shows how to
make the word here work as a
link to yahoo.

Click
<a
href="http://www.yahoo.co
m">here
to go to yahoo.

You simply:

 Specify the target in the .

 Then add the text that should
work as a link.

 Finally add an tag to
indicate where the link ends.

You can name bookmarks
anything you like. Bookmarks
are very useful on pages which
are very long as they can be used
to quickly go to another part of
the page.

Page link using html tags
Linking to anchors is very
similar to normal links.
Normal links always point to
the top of a page. Anchors
point to a place within a page.

A # in front of a link location
specifies that the link is
pointing to an anchor on a
page. (Anchor meaning a
specific place in the middle of
your page).

To link to an anchor you need
to:
Create a link pointing to
the anchor
Create the anchor itself.
An anchor is created using
the <a> tag.
If you want to create an
anchor called chapter4, you
simply add this line where
you want the anchor to be:

After doing this, you can make a link pointing to the
anchor using the normal <a href> tag, like this:
Click here
to read chapter 4.

Note:
When linking to an anchor on a page you need to put
a # in front of the anchor.
When you link to an anchor on the same page, simply
enter
blabla

When you link to anchors on external pages use this
syntax:
blabla</
a>

BOOKMAR
KS
Bookmarks

Bookmarks
on a page
are very
easy to
make as
they also
use the <a>
tag. Instead
of changing
the href
variable
you use the
name
variable.
For
example:

<a
name="top"
>The First
Text In The
Page

Will create
a bookmark
called top
in the text
which the
tag
surrounds.
An image
can also be
contained
in this tag.
You can
then link to
this using a
standard
hyperlink:
<a
href="#top"
>Back To
Top

Advanced HTML438

Inserting
Images

Resizing the images Adding border to the
images

Linking Images in html

The tag used
to insert an
image is
called img.

Below you see
an image
called
"rainbow.gif".

Here is the
HTML code
used to insert
the image on
this webpage:

<img src=
"http://www.
echoecho.c
om
/rainbow.gif"
>

If the image is
stored in the
same folder as
the HTML
page, you can
leave out the
domain
reference
(http://www.ec
hoecho.com/)
and simply
insert the
image with this
code:

<img
src="rainbo
w.gif">

On the
following
pages we will
discuss
different ways
to control.

You can change the size of
an image using
the width and height attributes
.
In general, it is not advisable
to reduce image size using
these settings, since the
image will be transferred over
the internet in its or iginal size
no matter what reduction is
set for it. This will slow the
loading of your webpage.
This means, that if you have
an image that is bigger in size
than you want it to be on your
page, you should reduce the
size in a graphics program,
rather than reducing the size
on the webpage using the
width and height attributes.
On the contrary, sometimes, it
can be wise to enlarge
images using this technique.

Below are two presentations
of the exact same image -
with different settings for
width and height.

<img
src="http://www.echoecho.
com/rainbow.gif" width="60
" height="60">

<img
src="http://www.echoecho.
com/rainbow.gif" width="12
0" height="120">

You can add a border to the
image using
the border setting shown in
the example below:

Note:
Netscape browsers will
only show the border if the
image is a link.

<img
src="http://www.echoecho
.com/rainbow.gif" border=
"5">

Adding a border to your
image might help the visitor
recognize that the image is a
link. However, the net is
filled with images that work
as links and have no borders
indicating it - so the average
visitor is used to letting the
mouse run over images to
see if they are links.

Still - if you have an image
that is often mistaken you
might consider adding a
border to it - although you
should probably consider
changing the image entirely -
since if it does not indicate
by itself that it is a link then it
isn't serving it's purpose.

If you want to make an image work as a link,
the method is exactly the same as with
texts.

You simply place the <a href> and
the tags on each side of the image.

Below is the HTML code used to make the
image work as a link to a page
calledmyfile.htm :

If you haven't entered a border setting you
will see a small border around the image
after turning it into a link. To turn off this
border, simply add border="0" to
the tag:

Images that work as links can show a popup
text when you place the mouse over it.
This is done with the alt property in
the tag.

For example:

17.2.8 Inserting Images

Advanced HTML 439

17.2.9 Background
If you want to add a background image instead of a plain color there are some
considerations you should make before doing so:

· Is the background image discrete enough to not take away the focus
from what’s written on it?

· Will the background image work with the text colors and link colors I set
up for the page?

· Will the background image work with the other images I want to put on
the page?

· How long will the page take to load my background image? Is it simply
too big?

· Will the background image work when it is copied to fill the entire page?
In all screen resolutions?

After answering these questions, if you still want to add the background image
you will need to specify in the <body> tag which image should be used for the
background.

Note:
If the image you’re using is smaller than the screen, the image will be
replicated until it fills the entire screen.

If, say you wanted a striped background for your page, you wouldn’t have to
make a huge image for it. Basically you could just make an image that is two
pixels high and one pixel wide. When inserted on the page the two dots will be
copied to fill the page - thus making what looks like a full screen striped
image.
When you choose to use a background image for the page it is always a good
idea to specify a background color as well.

<body background=”drkrainbow.gif”bgcolour=”#333333">

The reason is that until the background image is loaded, the background color
will be shown.
If there is too much difference between the background color and the
background image, it will look disturbing once the browser shifts from the
background color to the image.

Advanced HTML440

Therefore it is a good idea to specify a background color that matches the
colors of the image as close as possible.

You may have noticed that background images scroll with the page when you
use the scroll bar.

17.2.10 Background color and fixed images

The background image will scroll when the user scrolls down the page, unless
you have set it to be fixed:

By adding the bgproperties=”fixed” you force the browser to let the
background be fixed even if the user is scrolling down the page.

Note: Fixed backgrounds are only supported by MSIE and do not work in
Netscape browsers - instead they simply act as normal backgrounds.

As mentioned earlier in this section a limited use of colors can add more power
to the few colors that are used.

The most important tool for adding colors to certain areas of the page rather
than the entire background is tables.

17.2.11 Tables
 The following properties can be added to the <table> tag:

Advanced HTML 441

The following properties can be
added to the <table> tag:

Rows/cell
hese settings can be added to
both <tr> and <td> tags.

Property Description
align=
left
center
right

left align table
center table
right align table

background=file
name

image inserted
behind the table

bgcolor=#rrggbb background color
border=n border thickness
bordercolor=#rrg
gbb border color

bordercolordark=
#rrggbb border shadow

cellpadding=n distance between
cell and content

cellspacing=n space between
cells

nowrap

protects agains
linebreaks, even
though the
content might be
wider than the
browser window.

frame=
void,
above,
below,
lhs,
rhs,
hsides,
vsides,
box

removes all outer
borders
shows border on
top of table
shows border on
bottom of table
shows border on
left side of table
shows border on
right side of table
shows border on
both horizontal
sides
shows border on
both vertical
sides
shows border on
all sides of table

valign=
top aligns content to

PROPERTY DESCRIPTIO
N

align=
left
right
center

aligns
content to
the left of
cells
aligns
content to
the right o f
cells
aligns
content to
the center o f
the cells

background=filename

sets a
background
image for the
cells

bgcolor=#rrggbb

sets a
background
color for the
cells

bordercolor=#rrggbb
sets color for
the border of
cells

bordercolordark=#rrggb
b

sets color for
the border
shadow of
cells

valign=
top
middle
bottom

aligns to the
top of cells
aligns to the
middle of the
cells
aligns to the
bottom of
cells

width=
n
n%

specify a
minimum
width for the
cells in pixels
specify a

Advanced HTML442

These settings are only valid for <td> tags.Note: Table properties are set for the
entire table. If certain properties are set for single cells, they will have higher
priority than the settings for the table as a whole. Note:Settings for columns(<td>
tag) have higher priority than settings for rows(<tr> tag).Settings for cells (<tr>
or <td> tags) have higher priority than settings for the table as a whole(<table>
tag).

17.2.12 Frames

Frames On this page you can see examples of different
framesets.

top
bottom

<frameset rows="16%,84%">
<frame src="top.htm" name="top">
<frame src="bottom.htm" name="bottom">
</frameset>

tl tr

bottom

<frameset rows="16%,84%">
<frameset cols="50%,50%">
<frame src="tl.htm" name="tl">
<frame src="tr.htm" name="tr">
</frameset>
<frame src="bottom.htm" name="bottom">
</frameset>

top

left right

<frameset rows="16%,84%">
<frame src="top.htm" name="top">
<frameset cols="50%,50%">
<frame src="left.htm" name="left">
<frame src="right.htm" name="right">
</frameset>
</frameset>

Advanced HTML 443

topleft topright

botleft botright

<frameset rows="50%,50%" cols="50%,50%">
<frame src="topleft.htm" name="topleft">
<frame src="topright.htm" name="topright">
<frame src="botleft.htm" name="botleft">
<frame src="botright.htm" name="botright">
</frameset>

topleft topright

botleft
brtl brtr
botrbot

<frameset rows="50%,50%" cols="50%,50%">
<frame src="topleft.htm" name="topleft">
<frame src="topright.htm" name="topright">
<frame src="botleft.htm" name="botleft">
<frameset rows="50%,50%">
<frameset cols="50%,50%">
<frame src="brtl.htm" name="brtl">
<frame src="brtr.htm" name="brtr">
</frameset>
<frame src="botrbot.htm" name="botrbot">
</frameset>
</frameset>

topleft topright

botleft botright

<frameset rows="50%,*" cols="320,*">
<frame src="topleft.htm" name="topleft">
<frame src="topright.htm" name="topright">
<frame src="botleft.htm" name="botleft">
<frame src="botright.htm" name="botright">
</frameset>

17.2.13 Forms
These fields can be added to your forms:

Ø Text field
Ø Password field
Ø Hidden field
Ø Text area
Ø Check box
Ø Radio button
Ø Drop-down menu
Ø Submit button
Ø Reset button
Ø Image button

You can click on the field type to get a detailed explanation.
Finally, if you want to learn how to validate inputs to form fields (valid email
address etc.)

Text fields are one line areas that allow the user to input text.

Advanced HTML444

17.2.14 SETTINGS:

Below is a listing of valid settings for text fields:

HTML EXPLANATION EXAMPLE
text
size=
maxlength=
name=
value=
align=
tabindex=

One line text field
Characters shown.
Max characters allowed.
Name of the field.
Initial value in the field.
Alignment of the field.
Tab order of the field.

The size option defines the width of the field. That is how many visible
characters it can contain.

The maxlength option defines the maximum length of the field. That is how
many characters can be entered in the field.

If you do not specify a maxlength, the visitor can easily enter more characters
than are visible in the field at one time.

The name setting adds an internal name to the field so the program that
handles the form can identify the fields.

The value setting defines what will appear in the box as the default value.

The align setting defines how the field is aligned.

Valid entries are: TOP, MIDDLE, BOTTOM, RIGHT, LEFT, TEXTTOP, BASELINE,
ABSMIDDLE, ABSBOTTOM. The alignments are explained in the image
section. You can learn about the different alignments .

The tabindex setting defines in which order the different fields should be
activated when the visitor clicks the tab key.

Advanced HTML 445

AN EXAMPLE:

<html>
<head>
<title>My Page</title>
</head>
<body>
<form name="myform"
action="http://www.mydom
ain.com/myformhandler.cgi
" method="POST">
<div align="center">

<input type="text" size="25"
value="Enter your name
here!">

</div>
</form>
</body>
</html>

HTML EXPLANATION EXAMPLE
textarea

rows=
cols=
name=

wrap=
off
virtual

physical

Text area - several lines
Rows in the field.
Columns in the field.
Name of the field.

Control linebreaks.
Turns off linebreaks.
Shows linebreaks, but
sends text as entered.
Inserts linebreaks when
needed and even sends it.

text
size=
maxlength=
name=
value=

One line text field
Characters shown.
Max characters allowed.
Name of the field.
Initial value in the field.

password
size=
maxlength=
name=
value=

Password field.
Characters shown.
Characters allowed to enter.
Name of the field.
Initial value in the field.

checkbox
name=
value=

Choose one or more options
Name of the field.
Initial value in the field.

radio
name=
value=

Choose only one option
Name of the field.
Initial value in the field.

select
name=
size=
multiple=

option
selected
value=

Drop-down menu
Name of the field.
Number of items in list.
Allow multiple choice if yes.

Individual items in the menu.
Make an item default.
Value to send if selected.

hidden
name=
value=

Does not show on the form.
Name of the field.
Value to send.

reset
name=
value=

Button to reset all fields
Name of the button.
Text shown on the button.

Reset

submit
name=
value=

Button to submit the form
Name of the button.
Text shown on the button.

Submit

image
name=

Image behaving as button
Name of the image.

output
Enter your name here!

Advanced HTML446

<!DOCTYPE html>
<html>

<head>
<style>

td, th, table
{
border:1px solid black;
}

</style>
</head>
<body>

<table style=”width:300px”>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Marks in HTML </th>
</tr>
<tr>
<td>Santhosh</td>
<td>Rajendran</td>
<td>50</td>
 </tr>
<tr>
<td>Dheeraj</td>
<td>Naik</td>
<td>94</td>
</tr>
<tr>
<td>John</td>
<td>Matthew</td>
<td>80</td>
</tr>
</table>

</body>
</html>

create an Html program using table

Advanced HTML 447

17.3.1 Web Hosting

Web Hosting is a means of hosting web-server application on a computer
system through which electronic content on the Internet is readily available to
any web-browser client.
Various types of web hosting services are available.
1. Free Hosting
2. Virtual or Shared Hosting
3. Dedicated Hosting
4. Collocation Hosting

1. Free Hosting: This type of hosting is available with many prominent sites that
offer to host some web pages for no cost. Free is for fun. If you want to experiment
with a site or put up a small, personal site for fun of it, a free package will suffice.

2. Virtual or Shared Hosting: This type of hosting is provided under one’s
own domain name, www.yuorname.com . With a hosting plan with a web hosting
company, one can present oneself as a fully independent identity to his/her
web audience.

Virtual Hosting is where one’s web site domain is hosted on the web
server of hosting company along with other web sites. One can access and
update to the site and its files are carefully secured. Through a log on ID and
password, one has 24 hour access to maintain one’s site.

3. Dedicated Hosting: In this type of hosting, the company wishing to go
online, rents an entire web server from the hosting company. This is suitable
for companies hosting larger websites, maintaining others’ sites or managing a
big online mall etc. Dedicated is for large, high-traffic sites, or for those with
special needs such as e-commerce or security. They are also good for those
folks for whom money is no object.
4. Co-location Hosting: For those who do not fit the dedicated– server mold,
hosting companies offer a similar, but less restrictive hosting, known as co-
location hosting. In this type of hosting, the company actually owns the server
on which its site is hosted. That is, the company owning the site rather than
the web hosting company is responsible for all server administration. The web
hosting company is only responsible for providing rack-space and the physical
needs. This generally includes a high speed connection to the internet, a
regulated power supply and a limited amount of hands on technical support,
such as data backup or hardware upgrades.

Advanced HTML448

Web 2.0
The arrival of Web 2.0 has added many new features to the web applications;

it has revolutionized the information sharing, user-oriented design,
interoperability on the internet. This has provided information sharing in a way
that was never dreamed about few years ago.

The Internet based tools like RSS, social book marking, press release.
Online marketing, blog’s, forums etc made an everlasting impression on people’s
lives as it has crossed the hurdle of socio-economic barriers.
17.3.2 Domain Registration

 Domain hosting services ensure optimal performance of your website irrespective
of what platform it is built on. We support various programming languages such
as PHP v5, Perl, Python and CGI, and we offer affordable web hosting services for
personal websites, small business websites, as well as large enterprise portals.

Web hosting allows for users to have another company store and maintain
your web site for you or your company. A web hosting company may or may
not be needed depending upon what is available through your Internet Service
Provider. Check with your Internet Service provider to see if they offer a
comparable solution to other Web Hosting companies.

When setting up with a web hosting company, we recommend that you verify
the below information
with them before setting
the page up.

·Domain Registration
·E-Mail forwarding
·Site Statistics
·Business Account
·Bandwidth Limitations
·Front Page Extensions
·CGI, Perl, and PHP
Scripts

Setting up a domain
Users who want their
own unique domain or URL are required to know these details
1. Determining name
2. Think about the name
3. Getting an ISP and Web host
4. Domain Name Server (DNS)
5. Register
6. Why should I setup a domain name
7. What is a domain name alias or domain alias?

Figure 17.3 Domain
 rates in rupees

Advanced HTML 449

1. Open the FileZilla application and from the top menu, select File and
click on Site Manager (ctrl + S).
2. In the Site Manager window, click on the New Site button. Enter the
name of your site, like Signature Solutions.
3. Click in the text field for Host and your Host IP, like ftp.signature.co.in
4. Select Normal from the drop down for Logontype. (You can leave the field
for Port empty and Servertype as it is)
5. In the User text field, enter the FTP Username.
6. In the Password text field, enter your FTP Password.

17.4.1 Uploading html files: Some of the steps to be followed while uploading
a HTML web page using uploading software

f igure 17.4 showing the loacl and server files.

Advanced HTML450

7. Now click on Connect button to establish a connection with your hosting
server. If the connection is successful, you should see the status message in the
status window as Directory listing successful.
If the connection is not successful, the status window will show an error message
as Could not connect to server. Check if you have entered the details correctly. If
you are still unable to connect, contact your web hosting service provider for
assistance.
8. After successfully connecting to the server, FileZilla will list all the files
on your computer in the left window and the files on your server in the right
window.
9. To upload files, browse to the destination directory on the server in the
right window. Then, browse to the source directory in your computer in left
window and select the directories and files that you want to upload to the
server. Now right click in the selected area and select Upload.
10. You should be able to see the upload progress in the bottom window.
11. To download files, select the destination directory from the left window
and the source directories & files from the right window, right-click on the the
selection and select Download.
12. Files related to your website is kept under public_html, www or
documents directory.
13. Always remember to Disconnect after you finish the upload or download.
To disconnect, select Server from the top menu and click on Disconnect (ctrl +
D).
14. To connect again, go to Site Manager (ctrl + S), select the account and
click on the Connect button.
17.5.1 XML

XML is a eXtended Markup Language for documents containing structured
information. Structured information contains both content (words, pictures, etc)
and some indication of what role that content plays. Almost all documents have
some structure.

XML is a text-based markup language that is fast becoming the standard for
data interchange on the web. As with HTML, you identify data
using tags (identifiers enclosed in angle brackets: <...>). Collectively, the tags
are known as markup.But unlike HTML, XML tags identify the data rather than
specify how to display it. Whereas an HTML tag says something like, “Display
this data in bold font” (...), an XML tag acts like a field name in your
program. It puts a label on a piece of data that identifies it (for
example, <message>...</message>).

One big difference between XML and HTML is that an XML document is always
constrained to be well formed. There are several rules that determine when a
document is well formed, but one of the most important is that every tag has a

Advanced HTML 451

closing tag. So, in XML, the </to> tag is not optional. The <to> element is never
terminated by any tag other than </to>
Note: Another important aspect of a well-formed document is that all tags are
completely nested. So you can have <message>..<to>..</to>..</message>
17.5.1 DHTML (Dynamic HTML)

DHTML refers to web content that changes each time it is viewed. For
example, the same URL could result in a different page depending on any number
of parameters, such as:

1. Geographic location of the reader
2. Time of day
3. Previous pages viewed by the reader
4. Profile of the reader

DHTML refers to new HTML extensions that will enable a Web page to
react to user input without sending requests to the web server.

17.6.1 Dynamic HTML

Dynamic HTML is a collective term for a combination of Hypertext Markup
Language (HTML) tags and options that can make Web pages more animated
and interactive than previous versions of HTML. Much of dynamic HTML is
specified in HTML 4.0. Simple examples of dynamic HTML capabilities include
having the color of a text heading change when a user passes a mouse over it
and allowing a user to “drag and drop” an image to another place on a Web
page. Dynamic HTML can allow Web documents to look and act like desktop
applications or multimedia productions.

The Concepts and Features in Dynamic HTML

· An object-oriented view of a Web page and its elements
· Cascading style sheets and the layering of content
· Programming that can address all or most page elements
· Dynamic fonts

An Object-Oriented View of Page Elements

Each page element (division or section, heading, paragraph, image, list, and so
forth) is viewed as an “object.” (Microsoft calls this the “Dynamic HTML Object
Model.” Netscape calls it the “HTML Object Model.” W3C calls it the “Document
Object Model.”) For example, each heading on a page can be named, given
attributes of text style and color, and addressed by name in a small program or
“script” included on the page. This heading or any other element on the page
can be changed as the result of a specified event such a mouse passing over or

Advanced HTML452

being clicked or a time elapsing. Or an image can be moved from one place to
another by “dragging and dropping” the image object with the mouse. (These
event possibilities can be viewed as the reaction capabilities of the element or
object.) Any change takes place immediately (since all variations of all
elements or objects have been sent as part of the same page from the Web
server that sent the page). Thus, variations can be thought of as different
properties of the object.

Not only can element variations change text wording or color, but everything
contained within a heading object can be replaced with new content that
includes different or additional HTML as well as different text. Microsoft calls
this the “Text Range technology.”

Although JavaScript, Java applet, and ActiveX Web pages, dynamic HTML
implies an increased amount of programming in Web pages since more
elements of a page can be addressed by a program.

A feature called dynamic fonts Web page designers include font files
containing specific font styles, sizes, and colors as part of a Web page and to
have the fonts downloaded with the page. That is, the font choice no longer is
dependent on what the user’s browser provides.

17.7.1 Web Scripting

The process of creating and embedding scripts in a web page is known as Web-
Scripting. A script or a computer-script is a list of commands that are embedded
in a web-page normally and are interpreted and executed by a certain program
or scripting engine. Scripts may be written for a variety of purposes such as for
automating processes on a local-computer or to generate web-pages on the web.

The programming languages in which scripts are written are called scripting
languages. There are many scripting languages available today. Most common
ones are VBScript, JavaScript, ASP, PHP, PERL, JSP etc.

Types of Scripts

Scripts are broadly of following two types:

1. Client-Side Scripts

Client-Side scripting enables interaction within a web page. The client-side scripts
are downloaded at the client-end and then interpreted and executed by the
browser. The client side scripting is browser dependent. That is, the client side
browser must be scripting enabled in order to run scripts.

Client-side scripting is used when the client-side interaction is used. Some sample
uses of client-side scripting may be

Advanced HTML 453

1. To get data from users screen or browser

2. Online games

3. Customizing the display of page in browser without reloading the page.
Example rollover a hyperlink highlights that link without reloading the page.

Server-side scripts

Server-side scripting enables the completion or carrying out a task at the server
end and then sending the result to the client end. In server side script, the
server does all the work, so it doesn’t matter which browser is being used at
client end.

Server side scripting is used when the information is sent to a server to be
processed at the server end. Some sample uses of server side scripting may be

1. Password protection

2. Browser customization

3. Form processing

4. Building and displaying pages created from a database.

5. Dynamically editing changing or adding content to a web page.

Some popular server side scripting languages are PHP (Hypertext Pre Processor),

Summary

>HTML structure

> HTML text,background, layout, numbering

> links

> Web hosting

> Domain reistration

> XML

>domain

>Web scripts

Advanced HTML454

Review questions

One mark questions:
1. What is HTML?
2. What will be the extension of hypertext markup language file?
3. What is the use of web page?
4. What do you mean by domain?
5. What do you mean by hosting?
6. What is XML?
7. What is web scripting?
8. What is DHTML?

Two marks questions:
1. What are text files?
2. With the help of syntax include images in web page.
3. Write the steps for creating web page?
4. Write the opening and closing tags?
5. What is the use of netscape?

Three marks questions:
1. Explain the program to include tables in Web page.
2. What are steps used in creating Web Hosting?
3. How do you register an domain?
4. What is web scripting?
5. What is use of PHP files?
6. Give the features of XML?
7. Give the features of DHTML?
8. Write the differences of Client-side scripts?
9. Write the server-side scripting?
10.Create an web page for creating your college time table?
11.Create an Web page using forms?
12.What are advantages of web designing?
13.What are the advantages and disadvantages of www?
14. Write a note on URL?

455

Model Question Paper –I
PART – A

NOTE: Answer all the questions.
 Each question carries one mark. 10 x 1 = 10

1. What is a microprocessor?
2. Write the standard symbol for AND gate.
3. What are data structures?
4. Is it possible to access data outside a class?
5. How do we initialize a pointer?
6. What is normalization?
7. Expand ARPANET.
8. What are cookies?
9. What is URL?
10. Define a domain.

PART – B
NOTE: Answer any five questions.

 Each question carries two marks. 5 x 2 = 10
11. What are the fundamental products for each of the input words
 ABCD = 0010, ABCD = 0110, ABCD = 1110.

 Write SOP expression.
12. Draw a general K-map for 4-variables A, B, C and D.
13. Explain data encapsulation.
14. Why are constructors needed in a program? Justify.
15. Differentiate between stream class and ofstream class.
16. What is relational algebra?
17. What are the logical operators in SQL?
18. What is a SIM card?

PART – C
NOTE: Answer any five questions.

 Each question carries three marks. 5 x 3 = 15
19. Explain the characteristics of motherboard.
20. Draw the logic gate diagram to implement NOT gate using NAND and
 NOR gate.
21. Explain the memory representation of queue using arrays.
22. What is new operator in C++? Give example.
23. Mention the types of file. Explain any one.
24. Give the different notations for E-R diagram.
25. Write the advantages of WWW.
26. What are the steps involved in hosting a webpage.

456

PART – D
NOTE: Answer any seven questions.

 Each question carries five marks. 7 x 5 = 35
27. State and prove De Morgan’s theorem algebraically.
28. What are the operations performed on linear data structures.
29. Write an algorithm to insert an element into the array.
30. Explain the advantages of OOP.
31. Illustrate with an example how an array of objects can be defined.
32. Explain the features of copy constructor.
33. Write a C++ program to find the volume of cone, cube and cylinder using

 overloaded function.
34. What are the types of inheritance? Explain any two.
35. Explain Codd’s rules for database management.
36. Write the differences between orderby and groupby commands with

example.
37. Give the measures for preventing virus.

457

Cmputer Science (41) March 2015 Total Marks :70 Time :3:15 Minutes
PART – A

NOTE: Answer all the questions.
 Each question carries one mark. 10 x 1 = 10

1. What is data bus? ch1

2. Which basic gate is also called as inverter?ch3

3. What is meant by primitive data structure?ch4

4. What is a member function?ch7

5. Write the declaration syntax for a pointer.ch11

6. Define primary key.ch13

7. Expand FTP.ch15

8. What is network topology?ch15

9. What is freeware?ch16

10.Mention the use of HTML.ch17
PART – B

NOTE: Answer any five questions.

 Each question carries two marks. 5 x 2 = 10

11. Prove that X+ XY=X. ch2

12.Define minterm and maxterm.ch2

13.Briefly discuss the classes in OOP.ch6

14.What is a destructor? Write its syntax.ch9

15.Defferentiate between ifstream and ofstream.ch12

16.What is data independence? Mention the types of data independence.ch13

17.Give the syntax and example for DELETE command in SQL.ch14

18.Explain half duplex communication mode.ch15
PART – C

NOTE: Answer any five questions.

 Each question carries three marks. 5 x 3 = 15

19.What are ports? Explain serial port.ch1

20.Write the logic diagram and truth table for NOR gate.ch3

458

21.Write an algorithm for PUSH operation in stack.ch4

22.What are the operations performed on pointers? ch11
23.Give the function of put(), get() and getline() with respect to text files.ch12

24.Briefly explain one-tier database architecture.ch13

25.What is web browser? Mention any two web browsers.ch16

26.Explain any three text formatting tags in HTML.ch17
PART – D

NOTE: Answer any seven questions.

 Each question carries five marks. 7 x 5 = 35

27.Given the Boolean function F(A,B,C,D)=(0,4,8,9,10,11,12,13,15). Reduce it

by using Karnaugh map.ch2

28.Explain any five basic operations performed on arrays.ch4

29.Write an algorithm to delete a data element from the queue.ch4

30.Explain the advantages of Object Oriented Programming.ch6

31.What is a class definition? Write its general syntax and example.ch7

32.What is an inline function? Write a simple program for it.ch8

33.What is a constructor? Give the rules for writing a constructor function.ch9

34.What is inheritance? Explain any two types of inheritance.ch10

35. What is a data warehouse? Briefly explain its components.ch13

36. Explain various group functions in SQL.ch14

37. Explain any five networking devices.ch15

459

Cmputer Science (41) July 2015 Total Marks :70 Time :3:15 Minutes
PART – A

NOTE: Answer all the questions.
 Each question carries one mark. 10 x 1 = 10

1. what is motherboard? ch1

2. what is a logic gate ?ch3

3. Give an example for linear data structure ?ch4

4. What is a class ?ch7

5. Mention any one advantage of pointer.ch11

6. What is a database? ch13

7. Expand URL.ch15

8. Define bus topology?ch15

9. What is freeware?ch16

10.Mention any one HTML tag.ch17
PART – B

NOTE: Answer any five questions.

 Each question carries two marks. 5 x 2 = 10

11. State and Prove involution law. ch2

12.What is principle of duality ? Give an example.ch2

13.Differentiate between base class and derived class.ch6

14.Mention different types of constructors.ch9

15.What is a stream? Mention any one stream used in C++.ch12

16.Write any two advantages of database system.ch13

17.Mention any two datatypes used in SQL. ch14

18.Explain circuit switching technique.ch15
PART – C

NOTE: Answer any five questions.

 Each question carries three marks. 5 x 3 = 15

19.What is the function of UPS? Mentin different types of UPS.ch1

20.Write the logic diagram and truth table for a NAND gate.ch3

460

21.Explain the various operations performed on queue data structure.ch4

22.What is array of pointers? Give an example. ch11
23.List the different mdes of opening a file with their meaning in C++.ch12

24.Write the symbols used in E-R diagram, with their significance.ch13

25.What is E-commerce? Explain any two types.ch16

26.Explain is web-hosting? Mention different types of web-hosting.ch17
PART – D

NOTE: Answer any seven questions.

 Each question carries five marks. 7 x 5 = 35

27.Reduce F(A,B,C,D)=(1,2,3,4,5,7,9,11,12,13,15) using Karnaugh map.ch2

28.Explain the memory representation of stack data structure using arrays.ch4

29.Write an algorithum for Binary search. ch4

30.Mention any five applications of OOP. ch6

31.What are access specifiers? Explain any two with examples. ch7

32.What is function overloading? Explain the need for overloading. ch8

33.Explain destructor with syntax and example. ch9

34.What is inheritance? Mention its advantages.ch10

 35. Define the following database terms :

a) Data Model

b) Tuple

c) Domain

d) Primary key

e) Foreign Key ch13

 36. What is data definition language ? Explain SELECT and UPDATE commands

ch14

 37. EGive the measures for preventing virus. ch15

	01-chapter_1_pages_1_23
	02-chapter_2_pages_24_85
	03-chapter_3_pages_86_102
	04-chapter_4_pages_103_157
	05-chapter_5_pages_158_180
	06-chapter_6_pages_181_188
	07-chapter_7_pages_189_2068
	08-chapter_8_pages_207_215
	09-chapter_9_pages_216_231
	10-chapter_10_pages_232_246
	11-chapter_11_pages_247_265
	12-chapter_12_pages_266_281
	13-chapter_13_pages_282_332
	14-chapter_14_pages_333_374
	15-chapter_15_pages_375_415
	16-chapter_16_pages_416_427
	17-chapter_17_pages_428_454
	18-qp_455_460

