SAMPLE PAPER-1 Mathematics Class - X

Time 3 Hours
Maximum Marks: 80 General Instructions:

1. All Questions are compulsory.
2. The question paper consists of 25 questions divided into three sections; A, B, and C. Section A contains 7questions of 2 marks each, section B is of 12 questions of 3 marks each and section C is of 6 questions of 5 marks each.
3. Internal choices have been provided in some questions. You have to attempt only one of the choices in such questions.
4. Write the serial number of the question before attempting it.
5. In question on construction the drawing should be neat and exactly as per the given measurements.
6. Use of calculator is not permitted. However you may ask for mathematical table.

SECTION-A

1. Solve the equations
$\frac{4}{x+y}+\frac{2}{x-y}=2$
$\frac{8}{x+y}-\frac{2}{x-y}=1$
2. The sum to 20 terms of an AP is 1430 and the first term is 100 . Find the last term.

OR Find the sum of all numbers between 400 and 600 , which are divisible by 9 .
3. Using quadratic formula, solve the following equation for x :

$$
4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0
$$

OR A two-digit number such that the product of the digits is 14 . When 45 is added to the number, the
digits are reversed. Find the numbers.
4. If one root of the equation $x^{2}-5 x+K=0$ is equal to 4 , find the value of K and the other root.
5. A typewriter is available for Rs.7,200 or for Rs.3,040 cash down payment and five equal monthly
installments of Rs. 860 each. Find the rate of interest under the installment scheme.
6. A loan has to be returned in two equal annual installments. If the rate of interest is 16% per annum
compounded annually and each installment is Rs1,682, find the sum borrowed and the total interest
charged.
7. Derive the formula for the sum of first n terms of an A.P whose first term is a and the common difference
is d
OR If m times the m th term of an A.P is equal to n times its nth term, show that the $(m+n)$ th term of the
A.P is 0

SECTION-B

8. Prove that the line-segment joining the points of contact of two parallel tangents to a circle is a diameter of
the circle.
9. If the bisector of an angle of a triangle bisects the opposite side, prove that triangle is isosceles.
10. Reduce the following rational expression to its lowest terms

$$
\frac{4\left(a^{2}+a-2\right)}{6\left(a^{3}+2 a^{2}-a-2\right)}
$$

11. Solve the system of equations graphically:

$$
3 x+y-5=0,2 x-y-5=0 \text {. Also, find the points where these lines meet the } y-\text { axis. }
$$

12. Show that the midpoint of the line-segment joining the points $(5,7)$ and $(3,9)$ is also the mid-point of the
line segment joining the points $(8,6)$ and $(0,10)$.
13. Prove that the points $(3,1),(8,1),(4,4)$ and $(-1,4)$ are the vertices of a rhombus.
14. Find the mean marks from the following data:

Marks
Below 10
Below 20
Below 30
Below40
Below50
Below60
Below 70
Below 80
Below 90
Below 100

No. of Students
5
9
17
29
45
60

70

78
83
85
15. In the month of July 2004, a household spent his monthly salary amounting to

Rs.7,200 on different
items as given below

Clothing Rs 600
Food Rs 4000
House rent Rs 1200
Miscellaneous Rs 1000
Represent the information in the form of a pie chart.
16. 50 circular plates, each of radius 7 cm and thickness $1 / 2 \mathrm{~cm}$, are placed one above another to form a solid
right circular cylinder. Find the total surface area and the volume of the cylinder so formed.
17. Construct a triangle ABC whose sides are $7.5 \mathrm{~cm}, 7 \mathrm{~cm}$ and 6.5 cm . Construct another triangle similar to
triangle ABC with sides $2 / 3 \mathrm{rd}$ of the corresponding sides of the triangle ABC .
18. Prove that: $\sin ^{8} \mathrm{~A}-\cos ^{8} \mathrm{~A}=\left(\sin ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}\right)\left(1-2 \sin ^{2} \mathrm{~A} \cos ^{2} \mathrm{~A}\right)$
OR

Evaluate: $\operatorname{cosec}(65+\mathrm{A}) \sec \left(25^{0}-\mathrm{A}\right)-\tan \left(55^{\circ}-\mathrm{A}\right)+\cot \left(35^{\circ}+\mathrm{A}\right)+\cos \left(40^{\circ}+\mathrm{A}\right)-$ $\sin \left(50^{\circ}-\mathrm{A}\right)$

$$
\frac{\cos 55^{\circ} \operatorname{cosec} 35^{\circ}}{\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ}} \tan 65^{\circ} \tan 85^{\circ}
$$

19.A bag contains 12 balls out of which x are white.

If one ball is drawn at random, what is the probability of drawing a whit ball?
i) If 6 more white balls are put in the bag, the probability of drawing a white ball will be double than that in (i). Find x.

SECTION-C

20. The annual income of Ali is Rs. $1,15,000$. He wants complete exemption from payment of income tax. How much (minimum) should he contribute towards his PF per month so that he is not liable to pay any tax? Assume the following for calculating income tax:
a) Standard deduction: $1 / 3$ rd of total annual income subject to a maximum of Rs 30,000 , if
case the annual

b) Rate of Income tax

Slab

Income Tax

i) Upto Rs. 5,000
ii) From Rs50, 001 to Rs. 60,000 50,000
iii) Rs. 60001 to $1,50,000$ exceeding Rs. 60,000.
iv) Above Rs. 1,50,000 exceeding Rs. 1,50,000.

No Tax
10% of the amount exceeding Rs.
Rs. $1000+20 \%$ of the amount
Rs. $19000+30 \%$ of the amount
c) Rebate in income tax
a maximum of to Rs. $1,50,000$
subject to a maximum of
above Rs. 1,50,000.
i) 20% of the total savings subject to Rs 14,000 , if taxable income is up
ii) 15% of the amount of saving

Rs. 10,500 if taxable income is
d) Surcharge rebate)
21. If a chord is drawn through the point of contact of a tangent to a circle, then the angles which this chord
makes with the given tangent are equal respectively to the angles formed in the corresponding alternate
segments. Prove it.
Using the above theorem, prove that following:
If ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$, Prove that the tangent at A to the circumcircle of Δ
$A B C$ is parallel to $B C$.
OR If two chords of a circle intersect internally or externally, then the product of the lengths of their segments are equal.
b) Two chords AB and CD of a circle intersect each other at P outside the circle.

If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BP}=3 \mathrm{~cm}$ and $\mathrm{PD}=2 \mathrm{~cm}$, find CD .
22. Prove the ratio of the areas of similar triangles is equal to the ratio of the squares of their corresponding sides.
Using it prove: ABCD is a trapezium with $\mathrm{AB} \| \mathrm{DC}$. If $\triangle \mathrm{AED} \sim \Delta \mathrm{BEC}$, prove that $\mathrm{AD}=\mathrm{BC}$.
23. A right triangle with sides 3 cm and 4 cm is resolved around its hypotenuse. Find the volume of
the double cone thus generated
ORA cylinderical bucket, 32 cm high and 18 cm of radius of the base, is filled with sand. The bucket is
emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm ,
find the radius and slant height of the heap
24. The angle of elevation of a cloud from a point 60 m above a lake is 30° and the angle of depression of the reflection of cloud in the lake is 60°. Find the height of the cloud.
OR From the top of a tower 50 m high the angles of depression of the top and bottom of a pole are
observed to be 45° and 60° respectively. Find the height of the pole; the pole and the tower stand in the
same plane.
25. The mean of the following table is 50 , but the frequencies f_{1} and f_{2} in classes 2040 and 60-80
respectively are not known. Find their frequencies
Class: $\quad 0-20 \quad 20-40 \quad 40-60 \quad 60-80 \quad 80-100 \quad$ total
$\begin{array}{lllllll}\text { Frequency: } & 17 & f_{1} & 32 & f_{2} & 19 & 120\end{array}$

