BOARD QUESTION PAPER : JULY 2015
 GEOMETRY

Time: 2 Hours

Note:

i. Solve All questions. Draw diagrams wherever necessary.
ii. Use of calculator is not allowed.
iii. Figures to the right indicate full marks.
Q.P. SET CODE

A
iv. Marks of constructions should be distinct. They should not be rubbed off.
v. Diagram is essential for writing the proof of the theorem.

1. Solve any five sub-questions:
i. In the figure drawn alongside,
$\operatorname{seg} \mathrm{BE} \perp \operatorname{seg} \mathrm{AB}$ and $\operatorname{seg} \mathrm{BA} \perp \operatorname{seg} \mathrm{AD}$.
If $\mathrm{BE}=6$ and $\mathrm{AD}=9$, find $\frac{\mathrm{A}(\triangle \mathrm{ABE})}{\mathrm{A}(\triangle \mathrm{BAD})}$.

ii. Find the diagonal of a square whose side is 16 cm .
iii. If two circles with radii 8 and 3 respectively touch internally, then find the distance between their centres.
iv. If $\cos \theta=\frac{\sqrt{3}}{2}$, then find the value of acute angle θ.
v. If the slope of a line is 2 and y intercept is 5 , then write the equation of that line.
vi. Find the total surface area of a cube with side 9 cm .
2. Solve any four sub-questions:
i. In the given figure, line $l \|$ side $\mathrm{BC}, \mathrm{AP}=4, \mathrm{~PB}=8, \mathrm{AY}=5$ and $\mathrm{YC}=x$. Find x.

ii. In the figure alongside, Q is the centre of a circle and PM, PN are tangent segments to the circle. If $\angle \mathrm{MPN}=40^{\circ}$, find $\angle \mathrm{MQN}$.

iii. Draw a tangent at any point R on a circle of radius 3.5 cm and centre P .
iv. Draw the figure for an angle in standard position. If the intial arm rotates 220° in the clockwise direction, then state the quadrant in which the terminal arm lies.
v. The radius of the base of a right circular cylinder is 3 cm and its height is 7 cm , find the curved surface area.
vi. A sector of a circle with radius 10 cm has central angle 72°. Find the area of the sector.
($\pi=3.14$)
3. Solve any three sub-questions:
i. In the given figure,
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=122, \mathrm{BC}=10$. Find the length of the median on side BC .

ii. In the figure, two circles intersect each other in points A and B. Seg AB is the chord of both circles. The point C is the exterior point of both the circles on the line AB . From the point C , tangents have been drawn to the circles touching at M and N. Prove that $C M=C N$.

iii. Draw the circumcircle of $\triangle \mathrm{PMT}$ in which $\mathrm{PM}=5.4 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ}, \angle \mathrm{M}=70^{\circ}$.
iv. Show that: $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta \cdot \operatorname{cosec}^{2} \theta$.
v. Find the value of k if $(-3,11),(6,2)$ and $(k, 4)$ are collinear points.
4. Solve any two sub-questions:
i. Prove that "the opposite angles of a cyclic quadrilateral are supplementary".
ii. A ship of height 24 m is sighted from a lighthouse. From the top of the lighthouse, the angles of depression to the top of the mast and base of the ship are 30° and 45° respectively. How far is the ship from the lighthouse? $(\sqrt{3}=1.73)$
iii. In triangle ABC , the coordinates of vertices A, B and C are $(4,7),(-2,3)$ and $(0,1)$ respectively. Find the equations of the medians passing through the vertices A, B and C .
5. Solve any two sub-questions:
i. In the figure drawn algonside, $\triangle \mathrm{XYZ}$ is a right triangle, right angled at Y such that $\mathrm{YZ}=\mathrm{b}$ and $A(\triangle X Y Z)=a$.
If YP $\perp \mathrm{XZ}$, then show that
$Y P=\frac{2 a b}{\sqrt{b^{4}+4 a^{2}}}$

ii. $\quad \triangle \mathrm{ABC} \sim \Delta \mathrm{LMN}$. In $\triangle \mathrm{ABC}, \mathrm{AB}=5.1 \mathrm{~cm}, \angle \mathrm{~B}=55^{\circ}, \angle \mathrm{C}=65^{\circ}$ and $\frac{\mathrm{AC}}{\mathrm{LN}}=\frac{3}{5}$, then construct $\Delta \mathrm{LMN}$.
iii. An ink container of cylindrical shape is filled with ink upto 71%. Ball pen refills of length 12 cm and inner diameter 2 mm are filled upto 84%. If the height and radius of the ink container are 14 cm and 6 cm respectively, find the number of refills that can be filled with this ink.
