BOARD QUESTION PAPER : OCTOBER 2014 GEOMETRY

Time: 2 Hours

Note:

i. Solve all questions. Draw diagrams wherever necessary.
ii. Use of calculator is not allowed.
iii. Figures to the right indicate full marks.
iv. Marks of constructions should be distinct. They should not be rubbed off.
v. Diagram is essential for the proof of the theorem.
Q.1. Solve any five sub-questions:
i. In the figure given below, seg $\mathrm{BE} \perp$ seg AB and seg $\mathrm{BA} \perp$ seg AD . If $\mathrm{BE}=6$ and $\mathrm{AD}=9$, find $\frac{A(\triangle A B E)}{A(\triangle B A D)}$.

ii. If two circles having centre P and Q touches externally each other with their radii 3 cm and 5 cm , find the distance PQ .
iii. The terminal arm is in II (second) quadrant, what is the possible measure of an angle.
iv. Find the slope of line having inclination 60°.
v . Find the area of sector of circle having radius 6 cm and length of the arc 15 cm .
vi. Sides of the triangle are $7 \mathrm{~cm}, 24 \mathrm{~cm}$ and 25 cm . Determine whether the triangle is right angled triangle or not.

Q.2. Solve any four sub-questions:

i. In the figure given below, Ray LS is the bisector of $\angle \mathrm{MLN}$, where seg $\mathrm{ML} \cong \operatorname{seg} \mathrm{LN}$, find the relation between MS and SN.

ii. As shown in the figure below two concentric circles are given and line LM is the tangent to the smaller circle at N . Prove that N is the mid-point of seg LM.

iii. Find the slope of line passing through the point $\mathrm{P}(3,2), \mathrm{Q}(4,1)$.
iv. If $\tan \theta=4$, where θ is an acute angle, find the value of $\cos \theta$.
v. Draw the tangent at any point M on the circle of radius 3.5 cm with centre O .
vi. Find the slope and Y-intercept of line $y-5 x=4$.

Q.3. Solve any three sub-questions:

i. In the figure given below, $\triangle \mathrm{ABC}$, seg AP is the median. If $\mathrm{AP}=7, \mathrm{AB}^{2}+\mathrm{AC}^{2}=260$, find BC .

ii. In the figure given below two chords EF and GH are parallel to each other. O is the centre of the circle. Show that $\angle \mathrm{EOG} \cong \angle \mathrm{FOH}$.

iii. Draw the circumcircle of $\triangle \mathrm{PMT}$ in which $\mathrm{PM}=5.6 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ}, \angle \mathrm{M}=70^{\circ}$.
iv. Prove that:
$\sqrt{\frac{1+\cos \mathrm{A}}{1-\cos \mathrm{A}}}=\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}$.
v. Find the equation of line passing through $(3,4)$ and making intercepts equal in the magnitude but opposite in sign on both the axes.

Q.4. Solve any two sub-questions:

i. Prove that : The length of two tangent segments drawn to the circle from an external point are equal.
ii. A tree is broken by wind. The top struck the ground at an angle of 30° and at a distance 30 m from the root. Find the whole height of tree. $(\sqrt{3}=1.73)$
iii. The dimensions of metallic cuboid are $44 \mathrm{~cm} \times 42 \mathrm{~cm} \times 21 \mathrm{~cm}$. It is molten and recast into a sphere. Find the surface area of the sphere.

Q.5. Solve any two sub-questions:

i. If the angles of a triangle are $30^{\circ}, 60^{\circ}$ and 90°, then show that the side opposite to 30° is half of the hypotenuse and side opposite to 60° is $\frac{\sqrt{3}}{2}$ times of hypotenuse.
ii. $\quad \Delta \mathrm{AMT} \sim \Delta$ AHE. In $\triangle \mathrm{AMT}, \mathrm{MA}=6.3 \mathrm{~cm}, \angle \mathrm{MAT}=120^{\circ}, \mathrm{AT}=4.9 \mathrm{~cm}, \frac{\mathrm{MA}}{\mathrm{HA}}=\frac{7}{5}$. Construct \triangle AHE.
iii. Water flows at the rate of 10 metres per minute through a cylindrical pipe having its diameter 20 mm . How much time will it take to fill a conical vessel of base diameter 40 cm and depth 24 cm ?

