ST. XAVIER'S SENIOR SECONDARY SCHOOL, DELHI - 110054

Pre-Board Examination 2018 in MATHEMATICS

Set 1

Std. 12
Max. Marks : 100
18-01-2018
Time : 3 hrs.

GENERAL INSTRUCTIONS:

i) Attempt all the questions.
ii) Section - A consists of 4 questions of 1 mark each.
iii) Section - B consists of 8 questions of 2 marks each.
iv) Section - C consists of 11 questions of 4 marks each.
v) Section - D consists of 6 questions of 6 mark each.

SECTION - A

1. State the reason why the Relation $R=\left\{(a, b): a \leq b^{2}\right\}$ on the set R of real numbers is not reflexive.
2. For what value of ' a ' the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $a \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear?
3. If $2\left(\begin{array}{ll}3 & 4 \\ 5 & x\end{array}\right)+\left(\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}7 & 0 \\ 10 & 5\end{array}\right)$, find $x-y$.
4. If '*' is defined on the set R of real numbers by $a * b=\frac{4 a b}{9}$, find the identity element in R for the binary operation ${ }^{*}$ '.

SECTION - B

5. If $\tan ^{-1} x+\tan ^{-1} y=\frac{\pi}{4}, x y<1$, then find the value of $x+y+x y$.
6. If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+b \hat{k}$ are coplanar, show that $c^{2}=a b$.
7. If A is a square matrix of order 3 such that $|\operatorname{adj} A|=225$, find $\left|A^{\prime}\right|$.
8. Using differentials, find the approximate value of $(0.007)^{\frac{1}{3}}$.
9. Find the differential equation of all circles touching y-axis at the origin.
10. Simplify : $\sin ^{-1}\left(\frac{\mathrm{x}}{\sqrt{\mathrm{a}^{2}+\mathrm{x}^{2}}}\right)$.
11. Evaluate : $\int x \tan ^{-1} x d x$.
12. Two dice are rolled once. Find the probability that the total number on the two dice is atleast 4.

SECTION - C

13. Discuss the differentiability of the function $f(x)=\left\{\begin{array}{ll}2 x-1, & x<\frac{1}{2} \\ 3-6 x, & x \geq \frac{1}{2}\end{array}\right.$ at $x=\frac{1}{2}$. (OR)
For what value of k is the following function continuous at $x=\frac{\pi}{6}$?
$f(x)= \begin{cases}\frac{\sqrt{3} \sin x+\cos x}{x+\frac{\pi}{6},} & x \neq-\frac{\pi}{6} \\ k r & x=-\frac{\pi}{6}\end{cases}$
14. If $y=x^{x}$, show that $\frac{d^{2} y}{d x^{2}}-\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}-\frac{y}{x}=0$.
15. Solve the following differential equation: $\frac{d y}{d x}=\frac{y}{x}+\frac{\sqrt{x^{2}+y^{2}}}{x}, x>0$.
(OR)
Solve the following differential equation : $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$.
16. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the y-coordinate of the point.

Find the intervals in which $\mathrm{f}(\mathrm{x})=\sin 3 \mathrm{x}-\cos 3 \mathrm{x}, 0<\mathrm{x}<\pi$ is strictly increasing or strictly decreasing.
17. Evaluate : $\int \frac{3 x+1}{\sqrt{5-2 x-x^{2}}} d x$
18. Show that the four points $A(4,5,1), B(0,-1,-1), C(3,9,4)$ and $D(-4,4,4)$ are coplanar.
19. A random variable X has the following probability distribution:

X	0	1	2	3	4	5	6
$\mathrm{P}(\mathrm{x})$	C	2 C	2 C	3 C	C^{2}	$2 \mathrm{C}^{2}$	$7 \mathrm{C}^{2}+\mathrm{C}$

Find the value of C and also calculate mean of the distribution.
20. Bag I contains 5 red and 4 white balls and Bag II contains 3 red and 3 white balls. Two balls are transferred from the Bag I to the Bag II and then one ball is drawn from the Bag II . If the ball drawn from the Bag II is red, then find the probability that one red and one white ball are transferred from Bag I to Bag II.
21. If $A=\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right)$ and $B=\left(\begin{array}{ll}a & 1 \\ b & -1\end{array}\right)$ and $(A+B)^{2}=A^{2}+B^{2}$ then find the values of a and b.
22. Find the distance of the point $\mathrm{P}(3,4,4)$ from the point, where the line joining the points $A(3,-4,-5)$ and $B(2,-3,1)$ intersects the plane $2 x+y+z=7$.
23. If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that the area of triangle is maximum when the angle between them is $\frac{\pi}{3}$.

SECTION - D

24. Let $A=\{1,2,3 \ldots9)$ and R be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for $a, b, c, d \in A$. Prove that R is an equivalence relation.
Also obtain the equivalence class $[(2,5)]$.
(OR)
Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$ is invertible, where S is the range of f. Hence find the inverse of f.
25. Using the properties of determinants, prove that

$$
\left|\begin{array}{ccc}
\frac{(a+b)^{2}}{c} & c & c \\
a & \frac{(b+c)^{2}}{a} & a \\
b & b & \frac{(c+a)^{2}}{b}
\end{array}\right|=2(a+b+c)^{3}
$$

(OR
If $\mathrm{p} \neq 0, \mathrm{q} \neq 0$ and $\left|\begin{array}{ccc}\mathrm{p} & \mathrm{q} & \mathrm{p} \alpha+\mathrm{q} \\ \mathrm{q} & \mathrm{r} & \mathrm{q} \alpha+\mathrm{r} \\ \mathrm{p} \alpha+\mathrm{q} & \mathrm{q} \alpha+\mathrm{r} & 0\end{array}\right|=0$, then using the properties of determinants, prove that atleast one of the following statements is true:
a) p, q, r are in G.P.
b) $\quad \alpha$ is a root of the equation $p x^{2}+2 q x+r=0$.
26. Using integration, find the area of the region: $\left\{(x, y): x^{2}+y^{2} \leq 2 a x, y^{2} \geq a x, x, y \geq 0\right\}$
27. Evaluate : $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\sin x+\cos x} d x \quad$ (OR) $\quad \int_{2}^{4}(|x-2|+|x-3|+|x-4|) d x$
28. Find the equation of the plane containing two parallel lines
$\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{3}$ and $\quad \frac{x}{4}=\frac{y-2}{-2}=\frac{z+1}{6}$. Also, find if the plane thus obtained contains the line $\frac{x-2}{5}=\frac{y-1}{1}=\frac{z-2}{5}$.
29. A manufacturer produces two products A and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at profit of Rs. 7 and that of B at a profit of Rs. 4 .
Find the production level per day for the maximum profit using LPP.

