

Std. 12

18-01-2018

ST. XAVIER'S SENIOR SECONDARY SCHOOL, DELHI - 110054 Pre-Board Examination 2018 in **MATHEMATICS**

Set 1

Max. Marks : 100 Time : 3 hrs.

GENERAL INSTRUCTIONS:

- i) Attempt all the questions.
- ii) Section A consists of 4 questions of 1 mark each.
- iii) Section B consists of 8 questions of 2 marks each.
- iv) Section C consists of 11 questions of 4 marks each.
- v) Section D consists of 6 questions of 6 mark each.

SECTION - A

- 1. State the reason why the Relation R = $\{(a, b): a \le b^2\}$ on the set R of real numbers is not reflexive.
- 2. For what value of 'a' the vectors $2\hat{i} 3\hat{j} + 4\hat{k}$ and $a\hat{i} + 6\hat{j} 8\hat{k}$ are collinear?

3. If
$$2\begin{pmatrix} 3 & 4 \\ 5 & x \end{pmatrix} + \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 10 & 5 \end{pmatrix}$$
, find x - y.

4. If '*' is defined on the set R of real numbers by $a * b = \frac{4ab}{9}$, find the identity element in R for the binary operation '*'.

SECTION - B

5. If
$$\tan^{-1} x + \tan^{-1} y = \frac{\pi}{4}$$
, $xy < 1$, then find the value of $x + y + xy$.

- 6. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, show that $c^2 = ab$.
- 7. If A is a square matrix of order 3 such that |adjA| = 225, find |A'|.
- 8. Using differentials, find the approximate value of $(0.007)^{\overline{3}}$.
- 9. Find the differential equation of all circles touching y-axis at the origin.
- 10. Simplify : $\sin^{-1}\left(\frac{x}{\sqrt{a^2 + x^2}}\right)$.
- 11. Evaluate : $\int x \tan^{-1} x \, dx$.
- 12. Two dice are rolled once. Find the probability that the total number on the two dice is atleast 4.

SECTION - C

13. Discuss the differentiability of the function $f(x) = \begin{cases} 2x - 1, & x < \frac{1}{2} \\ 3 - 6x, & x \ge \frac{1}{2} \end{cases}$ at $x = \frac{1}{2}$.

(OR)

For what value of k is the following function continuous at
$$x = \frac{\pi}{6}$$
?

$$f(x) = \begin{cases} \frac{\sqrt{3} \sin x + \cos x}{x + \frac{\pi}{6}}, & x \neq -\frac{\pi}{6} \\ k, & x = -\frac{\pi}{6} \end{cases}$$

14. If
$$y = x^x$$
, show that $\frac{d^2y}{dx^2} - \frac{1}{y} \left(\frac{dy}{dx}\right)^2 - \frac{y}{x} = 0$.

15. Solve the following differential equation : $\frac{dy}{dx} = \frac{y}{x} + \frac{\sqrt{x^2 + y^2}}{x}$, x > 0.

Solve the following differential equation : $(1 + y^2)dx = (\tan^{-1} y - x)dy$.

16. Find the points on the curve $y = x^3$ at which the slope of the tangent is equal to the y-coordinate of the point.

(OR)

Find the intervals in which $f(x) = \sin 3x - \cos 3x$, $0 < x < \pi$ is strictly increasing or strictly decreasing.

- 17. Evaluate : $\int \frac{3x+1}{\sqrt{5-2x-x^2}} dx$
- 18. Show that the four points A(4, 5, 1), B(0, -1, -1), C(3, 9, 4) and D(-4, 4, 4) are coplanar.
- 19. A random variable X has the following probability distribution:

Х	0	1	2	3	4	5	6
P (x)	С	2C	2C	3C	C ²	$2C^2$	7C ² +C

Find the value of C and also calculate mean of the distribution.

20. Bag I contains 5 red and 4 white balls and Bag II contains 3 red and 3 white balls. Two balls are transferred from the Bag I to the Bag II and then one ball is drawn from the Bag II. If the ball drawn from the Bag II is red , then find the probability that one red and one white ball are transferred from Bag I to Bag II.

21. If
$$A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} a & 1 \\ b & -1 \end{pmatrix}$ and $(A + B)^2 = A^2 + B^2$ then find the values of a and b.

Std. 12

- 22. Find the distance of the point P(3, 4, 4) from the point, where the line joining the points A(3, -4, -5) and B(2, -3, 1) intersects the plane 2x + y + z = 7.
- 23. If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that the area of triangle is maximum when the angle between them is $\frac{\pi}{2}$.

SECTION - D

24. Let $A = \{1, 2, 3, \dots, 9\}$ and R be the relation in A x A defined by (a, b) R (c, d) if a + d = b + c for a, b, c, $d \in A$. Prove that R is an equivalence relation. Also obtain the equivalence class [(2,5)].

Let $f : N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f : N \to S$ is invertible, where S is the range of f. Hence find the inverse of f.

25. Using the properties of determinants, prove that

$$\frac{(a+b)^2}{c} \qquad c \qquad c$$

$$a \qquad \frac{(b+c)^2}{a} \qquad a$$

$$b \qquad b \qquad \frac{(c+a)^2}{b}$$

 $\label{eq:relation} If \ p \neq 0, \, q \neq 0 \ \ \text{and} \ \ \left| \begin{array}{cc} p & q & p \alpha + q \\ q & r & q \alpha + r \\ p \alpha + q & q \alpha + r & 0 \end{array} \right| = 0 \, , \, \text{then using the properties of determinants,}$

prove that atleast one of the following statements is true: a) p, q, r are in G.P. b) α is a root of the equation $px^2 + 2qx + r = 0$.

26. Using integration, find the area of the region : $\{(x, y): x^2 + y^2 \le 2ax, y^2 \ge ax, x, y \ge 0\}$

(OR

27. Evaluate :
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx$$
 (OR)
$$\int_{2}^{4} (|x-2| + |x-3| + |x-4|) dx$$

28. Find the equation of the plane containing two parallel lines $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3} \text{ and } \frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}.$ Also, find if the plane thus obtained contains the line $\frac{x-2}{5} = \frac{y-1}{1} = \frac{z-2}{5}.$

29. A manufacturer produces two products A and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at profit of Rs. 7 and that of B at a profit of Rs.4. Find the production level per day for the maximum profit using LPP.