GENERAL INSTRUCTIONS:

i) Attempt all the questions.
ii) Section - A consists of 4 questions of 1 mark each.
iii) Section - B consists of 4 questions of 2 marks each.
iv) Section - C consists of 4 questions of 4 marks each.
v) Section - D consists of 2 questions of 6 marks each.

$$
\text { SECTION - A (1 x } 4=4 \text { marks })
$$

1. A line through $(-2,6)$ and $(4,8)$ is perpendicular to the line through the points $(8,120)$ and ($x, 24$). Find the value of x.
2. Write the equation of hyperbola whose foci is $(\pm 5,0)$ and length of transverse axis is 8 units.
3. Name the octant in which point $(-4,2,-5)$ lies.
4. Find the centre and radius of the circle $x^{2}+y^{2}+z^{2}+8 x+10 y-8=0$.

$$
\text { SECTION - B } \quad(2 \times 4=8 \text { marks })
$$

5. Find the coordinates of focus, axis, the equation of directrix, length of latus rectum of the parabola $x^{2}=-9 y$.
6. Reduce the equation $\sqrt{3} x-y+12=0$ into normal form.
7. Find the equation of the line passing through the point $(2,2)$ and cutting off intercepts on coordinate axes whose sum is 9 .
8. Find the ratio in which the line segment joining the points $(4,8,10)$ and $(6,10,-8)$ is divided by YZ plane.

$$
\text { SECTION - C (} 4 \times 4=16 \text { marks })
$$

9. Find the equation of ellipse whose major axis is x-axis and passes through the points $(4,3)$ and ($-1,4$).
10. Find the coordinates of foot of perpendicular from the point $(-1,3)$ to the line $3 x-4 y-16=0$.
11. Find the equation of the line passing through the point of intersection of $2 x+3 y+1=0$ and $3 x-5 y-5=0$ and cuts off equal intercepts on coordinate axes.
12. Find the equation of the set of points P, the sum of whose distance from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10 .

$$
\text { SECTION - D (} 6 \times 2=12 \text { marks })
$$

13. Prove that the points $(3,-2),(1,0),(-1,-2)$ and ($1,-4$) are concyclic.
14. If p and q are the lengths of perpendiculars from $(\pm 4,0)$ to the line $\frac{x}{5} \sin \theta+\frac{y}{3} \cos \theta=1$, then prove that $\mathrm{pq}=9$.
$-x-x-x-x-x-x-x-$
