ICSE Paper 2014

MATHEMATICS

(Two hours and a half)

Answers to this Paper must be written on the paper provided separately. You will **not** be allowed to write during the first **15** minutes.

This time is to be spent in reading the question paper.

The time given at the head of this Paper is the time allowed for writing the answers.

Attempt all questions from Section A and any four questions from Section B. All working, including rough work, must be clearly shown and must be done on the same sheet as the rest of the answer. Omission of essential working will result in the loss of marks.

The intended marks for questions or parts of questions are given in brackets []. Mathematical tables are provided.

SECTION A [40 Marks]

(Answer all questions from this Section.)

Question 1.

1.1

- (a) Ranbir borrows ₹ 20,000 at 12% per annum compound interest. If he repays ₹ 8400 at the end of the first year and ₹ 9680 at the end of the second year, find the amount of loan outstanding at the beginning of the third year. [3]
- (b) Find the value of x, which satisfy the inequation $-2\frac{5}{6} < \frac{1}{2} \frac{2x}{3} \le 2$, $x \in W$. Graph the solution set on the number line. [3]
- (c) A die has 6 faces marked by the given numbers as shown below :

1 2 3 -1 -2 -3

The die is thrown once. What is the probability of getting

- (i) a positive integer.
- (ii) an integer greater than -3.
- (iii) the smallest integer.

Solution :

(a) Given : Principal for the first year (P) = ₹ 20,000, r = 12%.

We know that

Amount after the first year =
$$20,000 \left(1 + \frac{12}{100}\right)^1$$

= $20,000 \left(\frac{112}{100}\right)$
= $₹ 22,400$

 $A = P\left(1 + \frac{r}{r}\right)$

Money repays at the end of first year = ₹8,400

(given)

[4]

WWW.10YEARSOUESTIONPAPER.COM Mathematics, 2014 | 457 Principal for the second year = ₹22,400 - ₹8,400 = ₹14.000 Amount after second year = $14,000 \left(1 + \frac{12}{100} \right)^2$ = ₹15,680 8 Money repays at the end of the second year = ₹9,680(given) ... The loan outstanding at the beginning of the third year = ₹15,680 - ₹9,680 = ₹6,000. Ans. $-2\frac{5}{6} < \frac{1}{2} - \frac{2x}{3} \le 2$ (b) Given : $-\frac{17}{6} < \frac{3-4x}{6} \le 2$ ⇒ Multiplying throughout by 6 $-17.<3-4x \le 12$ ⇒ $3-4x \leq 12$ and -17 < 3 - 4x $3-12 \leq 4x$ 4x < 3 + 17⇒ ⇒ $-9 \leq 4x$ = 4x < 20= $-\frac{9}{4} < x$ ⇒ x < 5 \Rightarrow $\left\{5 > x \ge \frac{-9}{4}\right\}$ Hence, the solution set is $\{x : x \in W, -\frac{9}{4} \le x < 5\}$ $\therefore \{0, 1, 2, 3, 4\}$ 5 6 7 The graph of the solution set is shown by dots on the number line. No. of sample space n(S) = 6(c) a positive integer = $\{1, 2, 3\}$ (i) No. of favourables n(E) = 3Probability = $\frac{n(E)}{n(S)} = \frac{3}{6} = \frac{1}{2}$ Ans. Δ. an integer greater than $-3 = \{1, 2, 3, -1, -2\}$ (ii) No. of favourables n(E) = 5Probability = $\frac{n(E)}{n(S)} = \frac{5}{6}$ Ans. (iii) Smallest integer = -3Probability of smallest integer $\frac{n(E)}{n(S)} = \frac{1}{6}$. Ans. Question 2. (a) Find x, y if $\begin{bmatrix} -2 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2\pi \end{bmatrix} + 3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} y \\ 3 \end{bmatrix}$. [3]

C. Selec		
1. x		2
v. e		ount in a bank and deposited 🕇 800
		84 at the time of maturity, find the
· .		[3]
		A (-4, 2) and B(3, 6) is divided by
ii -		[4]
19 51	WWW.10YEARSQUESTIONPAPER.COM	[-]
ų a	1.01	· Г .
8		У
	2°	La
e ~ 0		3y
i La		5
		2y
		.6
5.		2y
1		
		.6]
		2y
		<u>_6</u>
		dx = 6
		x = 3 Ans.
		:₹800
		deposited = $1\frac{1}{2}$ years = 18 months.
li i		ner
	26 3122 512	$\times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100}$
	· · · · ·	
		$1 \times \frac{18 \times 19}{2 \times 12} \times \frac{r}{100}$
		4 <i>r</i>
		800 = 🖣 14,400
		irity value
	şi.	·4
	-	^{:4} – 14,400
HR.		
		0
		= 6
		Ans.
		• points A (-4, 2) and B (3, 6) in
		en Theorem and an and a second s
	\$	B(3,6) (×2,y2)
		(x ₂ ,y ₂)
拍		

91 1

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2014 | 459 :. Coordinates of P is $\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right) = \left(\frac{3k - 4}{k + 1}, \frac{6k + 2}{k + 1}\right)$. But coordinate of P is (x, 3) $\frac{6k+2}{k+1} = 3$ \Rightarrow 6k + 2 = 3k + 3 $3k = 1 \Rightarrow k = \frac{1}{3}$ Ans. \therefore The required ratio is $\frac{1}{3}$: 1 *i.e.*, 1 : 3 (internally) $x = \frac{3k-4}{b+1}$ (i) 4 Putting $k = \frac{1}{3}$, we get $x = \frac{3 \times \frac{1}{3} - 4}{\frac{1}{2} + 1} = \frac{1 - 4}{\frac{1 + 3}{2}} = \frac{-3}{\frac{4}{3}} = \frac{-9}{4}$ Ans. \therefore Coordinate of P is $\left(\frac{-9}{4}, 3\right)$ (ii) Length of AP = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{\left(-\frac{9}{4}+4\right)^2} + (3-2)^2$ $=\sqrt{\left(\frac{-9+16}{4}\right)^2+(1)^2}=\sqrt{\frac{49}{16}+1}$ $=\sqrt{\frac{49+16}{16}}=\sqrt{\frac{65}{16}}=\frac{\sqrt{65}}{4}$ Ans.

Question 3.

- (a) Without using trigonometric tables, evaluate sin² 34° + sin² 56° + 2 tan 18° tan 72° - cot² 30° [8] (b) Using the Remainder and Factor Theorem, factorise the following polynomial :
- [3] $x^3 + 10x^2 - 37x + 26$
- (c) In the figure given below, ABCD is a rectangle. AB = 14 cm, BC = 7 cm. From the rectangle, a quarter circle BFEC and a semicircle DGE are removed. Calculate the area of the remaining piece of the rectangle. (Take π = 22/7) [4]

460 | ICSE Last 10 Years Solved Papers Solution: WWW.10YEARSQUESTIONPAPER.COM (a) Given : sin² 34° + sin² 56° + 2 tan 18° tan 72° - cot² 30° $= \sin^2 34^\circ + \sin^2 (90^\circ - 34^\circ) + 2 \tan 18^\circ \tan (90^\circ - 18^\circ) - \cot^2 30^\circ$ $= \sin^2 34^\circ + \cos^2 34^\circ + 2 \tan 18^\circ \cot 18^\circ - (\sqrt{3})$ $1 + 2 \tan 18^\circ \times \frac{1}{\tan 18^\circ} - 3$ = 1 + 2 - 3= 0 $f(x) = x^3 + 10x^2 - 37x + 26$ (b) Let Putting x = 1, we get f(1) = 1 + 10 - 37 + 26 = 0:. By factor theorem, x - 1 is factor of f(x). $x^2 + 11x - 26$ x-1) $x^3 + 10x^2 - 37x + 26$ $x^3 - x^2$ $11x^2 - 37x$ $11x^2 - 11x$ + ` -26x + 26-26x + 26+ x On dividing $x^3 + 10x^2 - 37x + 26$ by x - 1, we get $x^2 + 11x - 26$ as the quotient and remainder = 0. \therefore The other factor of f(x) are the factor of $x^2 + 11x - 26$ $x^2 + 11x - 26$ Now, 1 $= x^2 + 13x - 2x - 26$ = x(x + 13) - 2(x + 13)= (x + 13)(x - 2)Hence, $x^3 + 10x^2 - 37x + 26 = (x - 1)(x - 2)(x + 13)$ Area of rectangle ABCD = $14 \times 7 = 98 \text{ cm}^2$ (c) Area of quarter circle BFEC = $\frac{1}{4}\pi (7)^2 = \frac{49}{4}\pi$ Area of semi-circle DGE = $\frac{1}{2}\pi \left(\frac{7}{2}\right)^2 = \frac{1}{2} \times \frac{49}{4}\pi$ Area of remaining piece of rectangle = $98 - \left| \frac{49}{4} \pi + \frac{1}{2} \times \frac{49}{4} \pi \right|$ $= 98 - \frac{49}{4}\pi \left[1 + \frac{1}{2}\right]$

Ans.

1

Hereasternething a subject of the su

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2014 | 461

$$\approx 98 - \frac{49}{4} \times \frac{22}{7} \times \frac{3}{2} = 98 - \frac{231}{4}$$

$$= 98 - 57.75$$

$$= 40.25 \text{ cm}^2.$$
Ans.

[3]

[4]

Question 4.

(i)

à.

- (a) The numbers 6, 8, 10, 12, 13 and x are arranged in an ascending order. If the mean of the observations is equal to the median, find the value of x. [3]
- (b) In the figure, $\angle DBC = 58^\circ$. BD is a diameter of the circle. Calculate :

- (c) Using graph paper to answer the following questions. (Take 2 cm = 1 unit on both axis)
 - Plot the points A (-4, 2) and B (2, 4) (i)
 - A' is the image of A when reflected in the y-axis. Plot it on the graph paper (ii) and write the coordinates of A'.
 - (iii) B' is the image of B when reflected in the line AA'. Write the coordinates of B'.
 - Write the geometric name of the figure ABAB'. (iv)
 - Name a line of symmetry of the figure formed. (v)

Solution :

(a) Numbers in ascending order are 6, 8, 10, 12, 13, x.

Mean =
$$\frac{6+8+10+12+13+x}{6} = \frac{49+x}{6}$$

No. of terms $(n) = 6$ (even)
Median = $\frac{\left(\frac{n}{2}\right)^{h} \text{ term } + \left(\frac{n}{2}+1\right)^{h} \text{ term}}{2}$
Median = $\frac{\left(\frac{6}{2}\right)^{h} \text{ term } + \left(\frac{6}{2}+1\right)^{h} \text{ term}}{2} = \frac{3^{rd}+4^{th}}{2}$
 $= \frac{10+12}{2} = \frac{22}{2} = 11$

According to given condition

$$\frac{49+x}{6} = 11$$

WWW.10YEARSQUESTIONPAPER.COM 462 | ICSE Last 10 Years Solved Papers 49 + x = 66x = 17Ans. (b) $\ln \triangle BCD;$ $\angle DBC = 58^{\circ}$ (given) \angle BCD = 90° (Angle in the semicircle as BD is diameter) (i) $\therefore \angle DBC + \angle BCD + \angle BDC = 180^{\circ}$ $58^{\circ} + 90^{\circ} + \angle BDC = 180^{\circ}$ \angle BDC = 180° - (90° + 58°) = $= 180^{\circ} - 148^{\circ}$ = 32° Ans. (ii) $\angle BEC + \angle BDC = 180^{\circ}$ (: BECD is a cyclic quadrilateral) $\angle BEC = 180^\circ - \angle BDC$ $= 180^{\circ} - 32^{\circ}$ $\angle BEC = 148^{\circ}$ Ans. (iii) $\angle BAC = \angle BDC$ (Angle of same segment are equal) $\angle BAC = 32^{\circ}$ Ans. (c) (i) See Graph. B (2, 4) (2 0 Coordinate of A' = (4, 2)(ii) (iii) Coordinate of B' = (2, 0)(iv) Geometric name = Kite. AA' is the symmetric line. (v) SECTION B [40 Marks] Answer any four Questions in this Section.

Question 5.

- (a) A shopkeeper bought a washing machine at a discount of 20% from a wholesaler, the printed price of the washing machine being ₹ 18,000. The shopkeeper sells it to a consumer at a discount of 10% on the printed price. If the rate of sales tax is 8% find :
 - the VAT paid by the shopkeeper. (i)
 - the total amount that the consumer pays for the washing machine. (ii) [3]

(b) If $\frac{x^2 + y^2}{x^2 - y^2} = \frac{17}{8}$, then find the valu (i) x : y. (ii) $\frac{x^3 + y^3}{x^3 - y^3}$

(c) In $\triangle ABC$, $\angle ABC = \angle DAC$. AB = 8 cm.

- (i) Prove that $\triangle ACD$ is similar to \triangle .
- (ii) Find BC and CD
- (iii) Find area of $\triangle ACD$: area of $\triangle ABC$

Solution :

(a) Given : Printed price of washing machine

(i) Amount of discount to shopkeeper =

Shopkeeper's price =

Sales Tax paid by shopkeeper = $\frac{1}{100}$

Discount for consumer =
$$\frac{1}{10}$$
.

Price for consumer $= \mathbf{\xi} \mathbf{1}_{\mathbf{\xi}}$

Tax charged by the shopkeeper $=\frac{8}{100}$

= ₹1,.

Since, Tax paid by the shopkeeper = $\mathbf{\xi}$ 1,1

 \therefore VAT paid by the shopkeeper = Tax α

= ₹1,2:

. = ₹144

(ii) Total amount paid by the consumer for wash

= ₹16,20

= ₹17,496.

(b) Given : $\frac{x^2 + y^2}{x^2 - y^2} = \frac{17}{8}$

(i) Applying componendo and dividendo

 $\frac{(x^2+y^2)+(x^2-y^2)}{(x^2-y^2)-(x^2-y^2)} = \frac{17+8}{17-8}$

		WWW.10YEARSQUESTIONPAPER.COM
464	IC	SE Last 10 Years Solved Papers
		$\Rightarrow \qquad \qquad \frac{2x^2}{2y^2} = \frac{25}{9} \Rightarrow \frac{x^2}{y^2} = \frac{25}{9}$
		$\Rightarrow \qquad \frac{x}{y} = \frac{5}{3}$
		$\Rightarrow \qquad x: y = 5: 3. \qquad \text{Ans.}$
	(ii)	As $\frac{x}{y} = \frac{5}{3}$
.:		Cubing both sides, we get $\frac{x^3}{y^3} = \frac{(5)^3}{(3)^3} = \frac{125}{27}$
		Applying componendo and Dividendo
		$\frac{x^3+y^3}{x^3-y^3}=\frac{125+27}{125-27}$
53	2	$\Rightarrow \qquad \qquad \frac{x^3+y^3}{x^3-y^3}=\frac{152}{98}$
		$\Rightarrow \qquad \frac{x^3 + y^3}{x^3 - x^3} = \frac{76}{49}$ Ans.
(c)	(i)	In \triangle ACD and \triangle BCA
86 JA	1919	$\angle C = \angle C$ (common)
		$\angle ABC = \angle CAD$ (given)
		$\therefore \qquad \Delta ACD - \Delta BCA \qquad (AA postulates)$
	(ii)	$\therefore \qquad \Delta ACD - \Delta BCA \\ \frac{AC}{BC} = \frac{CD}{CA} = \frac{AD}{BA}$
		$\Rightarrow \qquad \frac{4}{BC} = \frac{CD}{4} = \frac{5}{8} \qquad \qquad$
		$\therefore \qquad \frac{4}{BC} = \frac{5}{8} \text{and} \frac{CD}{4} = \frac{5}{8} B \checkmark \qquad \frac{1}{D} \sim C$
		\Rightarrow BC = $\frac{4 \times 8}{5} = \frac{32}{5} = 6.4$ cm. and CD = $\frac{5}{8} \times 4 = \frac{5}{2} = 2.5$ cm. Ans.
	(iii)	$\Delta ACD \sim \Delta ABC$
		$\therefore \qquad \frac{\text{area} (\Delta \text{ ACD})}{\text{area} (\Delta \text{ ABC})} = \frac{\text{AC}^2}{\text{AB}^2}$
		$=\frac{(4)^2}{(8)^2}=\frac{16}{64}=\frac{1}{4}$
		area (\triangle ACD) : area (\triangle ABC) = 1 : 4. Ans.
	estio	
(a)	are o	l the value of 'a' for which the following points A (a, 3), B (2, 1) and C (5, a) collinear. Hence find the equation of the line. [3]
(Ь)	Saln	nan invests a sum of money in < 50 shares, paying 15% dividend quoted at

20% premium. If his annual dividend is \mathbf{E} 600, calculate :

- (i) the number of shares he bought.
- (ii) his total investment.

1

(iii) the rate of return on his investment.

[3]

(c) The surface area of a solid metallic sphere is 2464 cm^2 . It is melted and recast into solid right circular cones of radius 3.5 cm and height 7 cm. Calculate :

- the radius of the sphere. (i)
- [4] the number of cones recast. (Take $\pi = 22/7$) (ii)

Solution :

(a) Given : A (a, 3), B(2, 1) and C(5, a) are collinear.

a) Give	n: A(a, b), D(a)	, 1) and etc., ()			
:.		Slope of $AB = Slope of BC$			
024		$\frac{1-3}{2-a} = \frac{a-1}{5-2}$			
⇒.		2-4 5 -			
⇒		$\frac{-2}{2-a} = \frac{a-1}{3}$			
		-6 = (2-a)(a-1)			
⇒	595	$-6 = 2a - 2 - a^2 + a$			
n ⇒		$a^2 - 3a - 4 = 0$			
		$a^2-4a+a-4=0$			
⇒		(a-4)(a+1) = 0			
1		a = 4 - 1	-11-00		
De	onting	a = -1 : does not satisfy the	equation		
212	jecting,	a = 4			
		Slope of BC = $\frac{a-1}{5-2} = \frac{4-1}{3} = \frac{3}{3} = 1 = m$	7		
n	then of BC	(y-1) = 1(x-2)			
- Ed	uation of BC;	y - 1 = x - 2			
		x-y = 1	Ans.		
љ ъ	Nor	inal value of 1 share $= ₹50$			
(b)		Dividend on 1 share = $\frac{15}{100} \times 50 = ₹7.50$			
	Tota	Dividend of Salman = ₹ 600	Ans.		
(i) No. of s	hares Salman bought = $\frac{600}{7.50} = 80$	TXII 34		
(i	i)	Premium on 1 share $=\frac{20}{100} \times 50 = ₹10$			
	М	arket value of 1 share $= 50 + 10 = ₹60$	Ans.		
	Total inv	$a_{a} = 80 \times 60 = 4,000$.			
(iii)	Rate of return = $\frac{600}{4800} \times 100 = 12.5\%$.	Ans.		
(c) (i) L	et the radius of sphere = $r \mathrm{cm}$	(given)		
		Surface area of sphere = $4\pi r^2 = 2464$ cm	(Br)		
		$r^2 = \frac{2464}{4\pi}$			
		$r^2 = \frac{2464 \times 7}{4 \times 22}$			
		= 196	2		
		$r = 14 \mathrm{cm}.$	Ans.		

466 | ICSE Last 10 Years Solved Papers

į.

11

1 •

Volume of sphere
$$= \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (14)^3$$

Volume of cone $= \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (3\cdot5)^2 \times 7$
No. of cones recast $= \frac{\text{Volume of sphere}}{\text{Volume of cone}}$
 $= \frac{\frac{4\pi}{3}(14)^3}{\frac{1}{3}\pi (3\cdot5)^2 \times 7} = \frac{4 \times 14 \times 14 \times 14}{3\cdot5 \times 3\cdot5 \times 7} = \frac{3200}{25}$
 $= 128.$

Question 7.

(a) Calculate the mean of the distribution given below using the short cut method.

Marks	11-20	21-30	31-40	41-50	51-60	61-70	71-80
No. of students	2	6	10	19	01-00	01-70	71-00
				14		1	4

(b) In the figure given below, diameter AB and CD of a circle meet at P. PT is a [3] tangent to the circle at T. CD = 7.8 cm, PD = 5 cm, PD = 4 cm. Find :

(i) AB.

the length of tangent PT. (ii)

(c) Let
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 1 \\ -3 & -2 \end{bmatrix}$ and $C = \begin{bmatrix} -3 & 2 \\ -1 & 4 \end{bmatrix}$.
Find $A^2 + AC - 5B$

Solution :

Marks (C.I.)	f	Mean Value	A = 45.5 $d = x - A$	f×d
11-20	2	15.5		
21-30	6	25.5	- 30	- 60
31-40	10	35.5	- 20	- 120
41-50	12	45.5	- 10	- 100
51-60	9	55.5	0	0
61-70	7	65.5	10	90
71-80	4	75.5	20	140
	$\Sigma f = 50$	+		120
	<u> </u>			$\Sigma fd = 70$

[4]

I

[3]

Ans.

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2014 | 467

468 | ICSE Last 10 Years Solved Papers

Question 8.

į,

11

1

Ē

- (a) The compound interest, calculated yearly, on a certain sum of money for the second year is ₹ 1320 and for the third year is ₹ 1452. Calculate the rate of interest and the original sum of money.
- (b) Construct a $\triangle ABC$ with BC = 6.5 cm, AB = 5.5 cm, AC = 5 cm. Construct the incircle of the triangle. Measure and record the radius of the incircle. [3]
- (c) (Use a graph paper for this question.) The daily pocket expenses of 200 students in a school are given below :

Pocket expenses (in ₹)	0–5	5–10	10-15	15-20	20-25	25-30	3035	35-40
Number of students (frequency)	10	14	28	42	50	30	14	12

Draw a histogram representing the above distribution and estimate the mode from the graph. [4]

Solution :

۸.

⇒ ∴

and

(a)

C.I. for the third year = ₹ 1,452.

S.I. for the second year =
$$₹1,320$$

.1. of
$$< 1,320$$
 for one year = $< 1,452 - < 1,320 = < 132$.

Rate of interest =
$$\frac{132 \times 100}{1.320} = 10\%$$
. Ans.

Let the original money be **₹** P.

Amount after 2 year – amount after one year = C.I. for second year.

$$P\left(1 + \frac{10}{100}\right)^{2} - P\left(1 + \frac{10}{100}\right) = 1,320$$

$$P\left[\left(\frac{110}{100}\right)^{2} - \frac{110}{100}\right] = 1,320$$

$$P\left[\left(\frac{11}{10}\right)^{2} - \frac{11}{10}\right] = 1,320 \implies P\left(\frac{121}{100} - \frac{11}{10}\right) = ₹ 1,320$$

$$P \times \frac{11}{100} = ₹ 1,320 \implies P = \frac{1,320 \times 100}{11} = ₹ 12,000$$
Rate of interest = 10%

Ans.

(b) Steps of construction :

- (1) Construct a \triangle ABC with the given data.
- (2) Draw the internal bisectors of ∠ B and ∠ C. Let these bisectors cut at O.
- (3) Taking O as centre. Draw a incircle which touches all the sides of the Δ ABC.
- (4) From O draw a perpendicular to side BC which cut at N.
- Measure ON which is required radius B⁴
 of the incircle.
 ON = 1.5 cm.

Mathematics, 2014 | 469

Question 9.

- (a) If (x 9): (3x + 6) is the duplicate ratio of 4:9, find the value of x. [3]
- (b) Solve for x using the quadratic formula. Write your answer correct to two significant figures. $(x 1)^2 3x + 4 = 0.$ [3]

Date	Particulars	Amount withdrawn (र)	Amount deposited (र)	Balance (₹)
03/04/2006	B/F			4,000.00
05/04/2006	By cash		2,000.00	6,000.00
18/04/2006	By cheque	- 	6,000.00	12,000.00
25/05/2006	To cheque	5,000.00		7,000.00
30/05/2006	By cash		3,000.00	10,000.00
20/07/2006	By self	4,000.00	—	6,000.00
10/09/2006	By cash	<u>a -</u> a - 8	2,000.00	8,000.00
19/09/2006	To cheque	1,000.00		7,000.00

(c) A page from the saving bank account of Priyanka is given below :

If the interest earned by Priyanka for the period of ending September, 2006 is 7 175, find the rate of interest. [4]

Solution :

(a) Given : (x-9) : (3x+6) is the duplicate ratio of 4 : 9

⇒	$\frac{x-9}{3x+6}$		× /	
⇒	$\frac{x-9}{3x+6}$	=	$\frac{16}{81}$	
⇒ ⇒	81x - 729	=	48x + 96	
⇒	81 x - 48 x	=	96 + 729	
⇒	33x			15-
⇒	x	2	$\frac{825}{33} = 25$	Ans.

470 | ICSE Last 10 Years Solved Papers (b) Given : $(x-1)^2 - 3x + 4 = 0$ ⇒ $x^2 + 1 - 2x - 3x + 4 = 0$ => $x^2-5x+5=0$ Comparing $x^2 - 5x + 5 = 0$ with $ax^2 + bx + c = 0$, we get a = 1, b = -5, c = 5. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ÷., $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(5)}}{2 \times 1}$ $= \frac{5 \pm \sqrt{25 - 20}}{2} = \frac{5 \pm \sqrt{5}}{2}$ $= \frac{5 \pm 2 \cdot 236}{2} = \frac{5 + 2 \cdot 236}{2} \text{ and } \frac{5 - 2 \cdot 236}{2}$ $=\frac{7\cdot236}{2}$ and $\frac{2\cdot764}{2}$ = 3.618 and 1.382 (c) Principal for the month of April = **T** Ans. Principal for the month of May = \mathbf{R} 6,000 Principal for the month of June = **₹** 7,000 10,000 Principal for the month of July = \mathbf{x} Principal for the month of Aug. = **\mathbf{\xi}** 6,000 6,000 Principal for the month of Sep. = \mathbf{R} 7,000 Total principal for 1 month = 🔻 42,000 Now, P = ₹ 42,000, I = ₹ 175, $T = \frac{1}{12}$ years, R = ?Interest = $\frac{P \times R \times T}{100}$ 1 $175 = \frac{42,000 \times R \times 1}{100 \times 12}$ $R = \frac{175 \times 100 \times 12}{42,000 \times 1}$ $=\frac{2,100}{420}=5\%$ Question 10, Ans. (a) A two digit positive number is such that the product of its digits is 6. If 9 is added to the number, the digits interchange their places. Find the number. [4]

Marks	a Mathematics test are giv
0-10	No. of Students
10-20	3
20-30	7
30-40	12
40-50	17
40-50 50-60	23
	14

(b) The marks obtained by 100 students in

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2014 | 471

60-70	9	Ì
70-80	6	ł
80-90	5	ļ
90100	4	

Draw an ogive for the given distribution on a graph sheet.

(Use a scale of 2 cm = 10 units on both axis).

Use the ogive to estimate the :

- (i) median.
- (ii) lower quartile.
- (iii) number of students who obtained more than 85% marks in the test.
- (iv) number of students who did not pass in the test if the pass percentage was 35. [6]

Solution :

(a) Let the required two digit number be 10x + y

Given : xy = 6 and 10x + y + 9 = 10y + x

	10x - x + y - 10y + 9 = 0
⇒	9x - 9y + 9 = 0
⇒	x-y+1 = 0
⇒	y = x + 1
	xy = 6 (given)
⇒	x(x+1) = 6
⇒	$x^2 + x - 6 = 0$
⇒	$x^2 + 3x - 2x - 6 = 0$
⇒	(x+3)(x-2) = 0
⇒	x = -3, 2
Rejecting	x = -3
When $x = 2$,	y = x + 1 = 2 + 1 = 3

$$\therefore$$
 The required two digit number = $10x + y$

 $= 10 \times 2 + 3$

Ans. = 23. Cumulative frequency (c.f.) No. of Students Marks (b) 3 3 0 - 1010 7 10-20 22 12 20-30 39 17 30-40 62 23 40-50 76 14 50-60 85 09 60-70 91 06 70-80 96 05 80-90 100 04 90-100

(b) Prove the identity : $(\sin \theta + \cos \theta) (\tan \theta + \cot \theta) = \sec \theta + \csc \theta.$ [3] (c) An aeroplane at an altitude of 250 m observes the angle of depression of two boats on the opposite banks of a river to be 45° and 60° respectively. Find the width of the river. Write the answer correct to the nearest whole number. [4] Solution : (a) Given : AB = 24 cm; OM = 5 cm, ON = 12 cm. OM 1 AB M is mid point of AB. AM = 12 cm..... (i) Let radius of circle = r $AO^2 = AM^2 + OM^2$ From \triangle AMO; (By Pythagoras theorem) $r^2 = (12)^2 + (5)^2$ = 144 + 25 $r^2 = 169$ $r = 13 \, \mathrm{cm}$. Ans. $CO^2 = ON^2 + CN^2$ Now from \triangle CNO; (ii) $r^2 = (12)^2 + CN^2$ (: AO = CO = r) $(13)^2 - (12)^2 = CN^2$ $169 - 144 = CN^2$ $CN^2 = 25$ ⇒ CN = 5⇒ As $ON \perp CD$, N is mid point of CD. \therefore CD = 2 CN = 2 \times 5 = 10 cm. Ans. L.H.S. = $(\sin \theta + \cos \theta) (\tan \theta + \cot \theta)$ **(b)** $= (\sin \theta + \cos \theta) \left(\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \right)$ $= (\sin \theta + \cos \theta) \left(\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta} \right)$ = $(\sin \theta + \cos \theta) \times \frac{1}{\cos \theta \sin \theta}$ $= \frac{\sin \theta}{\cos \theta \sin \theta} + \frac{\cos \theta}{\cos \theta \sin \theta}$ $=\frac{1}{\cos\theta}+\frac{1}{\sin\theta}$ $= \sec \theta + \csc \theta$ Hence Proved. = R.H.S.

Mathematics, 2014 | 473

474 | ICSE Last 10 Years Solved Papers (c) Let AD = 250 m height of aeroplane Two boats are at B and C. Let BD = x and DC = y45 60 $\frac{x}{250} = \cot 45^\circ$ From \triangle ADB; $\frac{x}{250} = 1$ $x = 250 \,\mathrm{m}$ 250m = $\frac{y}{250} = \cot 60^\circ$ From \triangle ADC; 45 60 $\frac{y}{250} = \frac{1}{\sqrt{3}}$ $y = 250 \times \frac{1}{\sqrt{3}}$ -Width of river BC = BD + DC = x + y $= 250 + \frac{250}{\sqrt{3}}$ $= 250 \left(1 + \frac{1}{\sqrt{3}} \right) = 250 \left(\frac{\sqrt{3} + 1}{\sqrt{3}} \right)$ Ans. $= 250 \left(\frac{1.732 + 1}{1.732} \right) = 250 \left(\frac{2.732}{1.732} \right)$ $= 250 \times 1.577$ = 394.25 m = 394 m.Ans.