PART-A

I. Answer all the TEN questions:

1. A relation R on $A=\{1,2,3\}$ defined by $R=\{(1,1)(1,2)(3,3)\}$ is not symmetric why?
2. Find the value of $\cot \left(\tan ^{-1} \alpha+\cot ^{-1} \alpha\right)$
3. Define a scalar matrix.
4. If $\left[\begin{array}{ll}x & 8 \\ 8 & x\end{array}\right]=\left[\begin{array}{ll}x & 8 \\ 8 & x\end{array}\right]$ find value of x
5. Find $\frac{d y}{d x}$, if $\mathrm{y}=\cos (\sqrt{x})$
6. Evaluate $\int \frac{1-x}{\sqrt{x}} d x$.
7. For what value of λ, the vectors $\vec{a}=2 \hat{i}-3 \lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-2 \hat{k}$ are perpendicular to each other?
8. Find the intercepts cut off by the plane $2 x+y-z=5$.
9. Define feasible region
10. If $P(A)=0.6 P(B)=0.3$ and $(A \cap B)=0.2$ find $P(A / B)$.

PART-B

II. Answer any TEN questions: 10X2=20
11. Prove that the greatest integer function, defined by $f(x)=[x]$ indicates the gretest integer not greater than x , is neither one-one nor outo.
12. Evaluate $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right)$
13. Write $\tan ^{-1}\left(\frac{a \cos x-b \operatorname{Sin} x}{b \cos +a \sin x}\right)$, if $\frac{a}{b} \tan \mathrm{x}>-1$ in the simplest form.
14. Find the equation of the line joining $(3,1)$ and $(9,3)$ using determinants.
15. If $\mathrm{y}=\mathrm{x}^{\mathrm{a}}+\mathrm{a}^{\mathrm{x}}+\mathrm{a}^{\mathrm{a}}$ for some fixed $\mathrm{a}>0$ and $\mathrm{x}>0$ find $\frac{d y}{d x}$
16. Differentiate $x^{\sin x}, x>0$ w.r.t x
17. Show that the function of given by $f(x)=x^{3}-3 x^{3}+4 x, x \varepsilon$ IR is strictly increasing on IR.
18. Evaluate : $\int \frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}} d x$.
19. Evaluate : $\int \frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}$
20. Determine order and degree of the $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$
21. Find the unit vector perpendicular to both \vec{a} and \vec{b} when $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k} \quad \vec{b}=2 \hat{i}+3 \hat{j}-\hat{k}$.
22. Prove that $\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}+\vec{d}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]+\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}\end{array}\right]$.
23. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.
24. Find the probability distribution of number of tails in three tosses of a coin.

PART-C

III. Answer any TEN questions:
 \section*{$10 \times 3=30$}

25. A relation R on the set $A=\{1,2,3 \ldots \ldots 13,14\}$ is defined as $R=\{(x, y): 3 x-y=0\}$. Determine whether R is reflexive, symmetric and transitive.
26. Prove that $\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right)$
27. Find $\frac{1}{2}\left(A+A^{\prime}\right)$ and $\frac{1}{2}\left(A-A^{\prime}\right)$ when $A=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & o\end{array}\right]$.
28. Find $\frac{d y}{d x}$, if $x=a\left(\cos t+\log \tan \frac{t}{2}\right), y=a \sin t$.
29. Verify mean value theorem if $f(x)=x^{2}-4 x-3$ in the interval $[a, b]$ where $a=1$ and $b=4$.
30. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the y-coordinate of the points.
31. Evaluate $\int \frac{x}{(x-1)(x-2)} d x$.
32. Evaluate $\int\left[\log (\log x)+\frac{1}{(\log x)^{2}}\right] d x$
33. Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
34. Show that $\mathrm{y}^{1}=\frac{(x+y)}{x}$ is a homogeneous differential equation and solve it.
35. Derive the formula for position vector of a point which divides the join of two points A and B internally in ratio $\mathrm{m}: \mathrm{n}$.
36. If a unit vector \vec{a} makes angle $\frac{\pi}{3}$ with $\hat{i} \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence the components of \vec{a}.
37. Find the distance between the point $P(6,5,9)$ and the plane determined by the points $A(3,-1,2) B$ $(5,2,5)$ and $C(-1,-1,6)$.
38. Two dice are thrown simultaneously, If X denotes the number of sixes, find the expectation (mean) of X.

PART-D

IV. Answer any SIX of the following:
$6 \times 5=30$
39. Consider $\mathrm{f}: \mathrm{IR}_{+} \rightarrow[-5, \infty)$ given by $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Show that f is invertible with $f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$.
40. If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$ Prove that $A^{3}-6 A^{2}+7 A+2 I=0$
41. Solve by matrix method: $\quad x-y+2 z=7$

$$
3 x+4 y-5 z=-5
$$

$$
2 x-y+3 z=12
$$

42. If $y=500 e^{7 x}+600 e^{7 x}$. Show that $y_{2}=49 y$.
43. A bubble, which always remains spherical, has a variable diameter $\frac{3}{2}(2 x+1)$. Find the rate of change of its volume with respect to x .
44. Find the integral of $\sqrt{a^{2}-x^{2}}$ with respect to x and evaluate $\int \sqrt{1+3 x-x^{2}} d x$.
45. Using integration find the area enclosed by the parabola $y^{2}=4 a x$ and the chord $y=m x$.
46. Solve the differential equation $\left(\tan ^{-1} y-x\right) d y=\left(1+y^{2}\right) d x$
47. Derive the equation of plane passing through the intersection of two planes both in vector form and Cartesian form.
48. If 90% of people are right handed. What is the probability that atmost 6 of a random sample of 10 people are right handed.

PART-E

V. Answer any one of the following:
49. a) Solve the following linear programming problem graphically. Maximum $z=4 x+y$ subject to constraints $x+y \leq 50,3 x+y \leq 90 . X \geq 0, y \geq 0$.
b) Discuss the continuity of the function $\mathrm{f}(\mathrm{x})\left\{\begin{array}{clc}-2 & \text { if } & x \leq-1 \\ 2 x & \text { if } & -1<x \leq 1 \\ 2 & \text { if } & x>1\end{array}\right.$
50) a) Prove that $\int_{b}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ hence evaluate $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$
b) Prove that $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$.

