Jain College, Jayanagar II PUC Mock Paper II Jan 2019 Subject: II PUC Mathematics (35)

PART-A

Max. Marks: 100

I. Answer all the TEN questions:

- 1. A relation R on A = $\{1,2,3\}$ defined by R = $\{(1,1), (1,2), (3,3)\}$ is not symmetric why?
- 2. Find the value of $\cot(\tan^{-1}\alpha + \cot^{-1}\alpha)$
- 3. Define a scalar matrix.

4. If
$$\begin{bmatrix} x & 8 \\ 8 & x \end{bmatrix} = \begin{bmatrix} x & 8 \\ 8 & x \end{bmatrix}$$
 find value of x

- 5. Find $\frac{dy}{dx}$, if y = cos $\left(\sqrt{x}\right)$
- 6. Evaluate $\int \frac{1-x}{\sqrt{x}} dx$.
- 7. For what value of λ , the vectors $\vec{a} = 2\hat{i} 3\lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} 2\hat{k}$ are perpendicular to each other?
- 8. Find the intercepts cut off by the plane 2x + y z = 5.
- 9. Define feasible region
- 10. If P(A) = 0.6 P(B) = 0.3 and $(A \cap B) = 0.2$ find P(A/B).

PART-B

II. Answer any TEN questions: 10X2=20

11. Prove that the greatest integer function, defined by f(x) = [x] indicates the gretest integer not greater than x, is neither one-one nor outo.

12. Evaluate
$$\sin\left(\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right)$$

13. Write $\tan^{-1}\left(\frac{a\cos x - b\sin x}{b\cos + a\sin x}\right)$, if $\frac{a}{b}\tan x > -1$ in the simplest form.

- 14. Find the equation of the line joining (3,1) and (9,3) using determinants.
- 15. If y = x^a + a^x+a^a for some fixed a > 0 and x > 0 find $\frac{dy}{dx}$
- 16. Differentiate $x^{\sin x}$, x > 0 w.r.t x
- 17. Show that the function of given by $f(x) = x^3 3x^3 + 4x$, x IR is strictly increasing on IR.

18. Evaluate :
$$\int \frac{10x^9 + 10^x \log_e 10}{x^{10} + 10^x} dx$$

19. Evaluate :
$$\int \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}$$

20. Determine order and degree of the $\left(\frac{d^2 y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$

21. Find the unit vector perpendicular to both \vec{a} and \vec{b} when $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$ $\vec{b} = 2\hat{i} + 3\hat{j} - \hat{k}$. 22. Prove that $[\vec{a} \ \vec{b} \ \vec{c} + \vec{d}] = [\vec{a} \ \vec{b} \ \vec{c}] + [\vec{a} \ \vec{b} \ \vec{c}]$.

10X1=10

JGI Duration: 3 hours 15 minutes 23. Show that the lines $\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$ and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$ are coplanar.

24. Find the probability distribution of number of tails in three tosses of a coin.

PART-C

III. Answer any TEN questions: 10X3=30

25. A relation R on the set A = {1, 2, 3..... 13,14} is defined as R = {(x,y) : 3x-y=0}. Determine whether R is reflexive, symmetric and transitive.

26. Prove that
$$\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) = \frac{x}{2}, x \in \left(0, \frac{\pi}{4}\right)$$

27. Find $\frac{1}{2}(A+A')$ and $\frac{1}{2}(A-A^{*})$ when $A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & o \end{bmatrix}$.

28. Find $\frac{dy}{dx}$, if $x = a (\cos t + \log \tan \frac{t}{2})$, $y = a \sin t$.

- 29. Verify mean value theorem if $f(x) = x^2 4x 3$ in the interval [a,b] where a = 1 and b=4.
- 30. Find the points on the curve $y = x^3$ at which the slope of the tangent is equal to the y coordinate of the points.

31. Evaluate
$$\int \frac{x}{(x-1)(x-2)} dx$$
.
32. Evaluate $\int \left[\log(\log x) + \frac{1}{(\log x)^2} \right] dx$

33. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

- 34. Show that $y^1 = \frac{(x+y)}{x}$ is a homogeneous differential equation and solve it.
- 35. Derive the formula for position vector of a point which divides the join of two points A and B internally in ratio m : n.
- 36. If a unit vector \vec{a} makes angle $\frac{\pi}{3}$ with $\hat{i} \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} then find θ and hence

the components of \vec{a} .

- 37. Find the distance between the point P(6,5,9) and the plane determined by the points A(3,-1,2) B (5,2,5) and C (-1, -1,6).
- Two dice are thrown simultaneously, If X denotes the number of sixes, find the expectation (mean) of X.

PART-D

IV. Answer any SIX of the following:

39. Consider f : $IR_+ \rightarrow [-5, \infty)$ given by f(x) = 9x² + 6x - 5. Show that f is invertible with

f⁻¹ (y) = $\frac{\sqrt{y+6}-1}{3}$. 40. If A = $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ Prove that A³ -6A² + 7A + 2I = 0 41. Solve by matrix method: x-y+2z=7 3x+4y-5z = -5

$$2x-v+3z=12$$

42. If $y = 500 e^{7x} + 600e^{7x}$. Show that $y_2 = 49y$.

6X5=30

43. A bubble, which always remains spherical, has a variable diameter $\frac{3}{2}(2x+1)$. Find the rate of

change of its volume with respect to x.

- 44. Find the integral of $\sqrt{a^2 x^2}$ with respect to x and evaluate $\int \sqrt{1 + 3x x^2} dx$.
- 45. Using integration find the area enclosed by the parabola $y^2 = 4ax$ and the chord y = mx.
- 46. Solve the differential equation $(\tan^{-1}y-x) dy = (1+y^2) dx$
- 47. Derive the equation of plane passing through the intersection of two planes both in vector form and Cartesian form.
- 48. If 90% of people are right handed. What is the probability that atmost 6 of a random sample of 10 people are right handed.

PART-E

V. Answer any one of the following:

49. a) Solve the following linear programming problem graphically. Maximum z=4x+y subject to constraints $x + y \le 50$, $3x+y \le 90$. $X \ge 0$, $y \ge 0$.

b) Discuss the continuity of the function f (x) $\begin{cases} -2 & if \quad x \le -1 \\ 2x & if \quad -1 < x \le 1 \\ 2 & if \quad x > 1 \end{cases}$

50) a) Prove that
$$\int_{b}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
 hence evaluate $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} dx$
b) Prove that $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$

1X10=10