SRI BHAGAWAN MAHAVEER JAIN COLLEGE

Vishweshwarapuram, Bangalore 560004
Mock Examination Question Paper-2 (January 2019)

Course:	II PUC

Subject:	Mathematics

Max. Marks:	100	Duration:	$3: 15 \mathrm{hrs}$.

Instructions:

The question paper has five parts, Answer ALL
Use graph sheet for the question on LPP in PART-E
I. Answer ALL the questions.

1. A relation R on $\mathrm{A}=\{1,2,3\}$ defend by $\mathrm{R}=\{(1,1),(1,2)(3,3)\}$ is not symmetric, why?
2. Find the value of $\cos \left(\sin ^{-1} x+\cos ^{-1} x\right)|x| \geq 1$
3. Write the condition for the matrix $A=\left[a_{i j}\right]_{m \times n}$ to be a square matrix.
4. Find the number of all possible matrices of order 3×3 with each entry 0 or 1
5. If $y=\mathrm{e}^{3 \log x}$ show that $\frac{d y}{d x}=3 x^{2}$
6. Evaluate $\int \sec x(\sec x+\tan x) d x$.
7. If a line makes angle $90^{\circ}, 60^{\circ}$ and 30° with positive direction of x, y and z axis respectively. Find its direction cosines.
8. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{Z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.
9. Define Skew lines.
10. If $P(\mathrm{~A})=\frac{7}{13} \quad \mathrm{P}(\mathrm{B})=\frac{9}{13}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{4}{13}$. Find $\mathrm{P}(A / B)$

PART-B

II. Answer any TEN questions.
11. Verity whether the operation * defined on Q , by $a * b=\frac{a b}{4}$ is associative or not.
12. Prove that $2 \sin ^{-1} x=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$
13. Find the value of $\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)$
14. Prove that the value of a determinant remains unchanged of its rows or columns are interchanged by considering a third order determinant.
15. If $y=\sin \left(\log _{e} x\right)$, prove that $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{x}$
16. If $y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right), \frac{-1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}$ find $\frac{d y}{d x}$.
17. If the radius of a sphere is measured as 9 cms with an error of 0.03 cms , then find the approximate error in calculating its volume.
18. Evaluate $\int \frac{\sin x}{\sin (x-a)} d x$
19. Evaluate $\int e^{x}\left(\frac{x-1}{x^{2}}\right) d x$
20. Find the order and degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$.
21. Let $|\vec{a}|=3,|\vec{b}|=\frac{\sqrt{2}}{3}$ and $|\vec{a} \times \vec{b}|=1$. Find the angle between \vec{a} and \vec{b}
22. Find the value of $i \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{\mathrm{k}} .(\hat{i} \times \hat{j})$
23. Find the equation of the plane through the intersection of planes
$3 x-y+2 Z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$
24. If $P(A)=0.8, P(B)=0.5$ and $P\left(\frac{B}{A}\right)=0.4$ find $P(A \cap B)$

PART-C

$10 \times 3=30$

III. Answer any TEN questions.

25. Show that the relation R in the set of integers given by $R=\{(a, b) / 5$ divides (a-b) $\}$ is an equivalence relation.
26. Prove that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y<1$
27. If A and B are symmetric matrices, prove that $A B=B A$ is skew symmetric.
28. If $y=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ prove that $\frac{d y}{d x}=\frac{1}{2\left(1+x^{2}\right)}$
29. Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.
30. Find $\frac{d y}{d x}$ if $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$
31. Evaluate $\int \frac{1}{x+x \log x} d x$
32. Evaluate $\int_{a}^{b} x d x$ as limit of a sum
33. Find the area of the region bounded by the curve $x^{2}=4 y$ and the lines $y=2, y=4$ and the y-axis.
34. Form the differential equation of the family of parabolas having vertex at origin..
35. Show that the four points with position vectors

$$
4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k} \text { and } 5 \hat{i}+8 \hat{j}+5 \hat{k} \text { are coplanar. }
$$

36. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$

37 Find the shortest distance between the lines l_{1} and l_{2} whose vector equation are $\vec{r}=\hat{l}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$
38. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

PART-D

IV. Answer any SIX of the following questions.
39. Let $f: R \rightarrow R$ defined by $f(x)=4 x+3$ show that f is invertible, find the inverse of f.
40. If $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ 0 & 2 \\ -1 & 4\end{array}\right]$ and $C=\left[\begin{array}{cccc}1 & 2 & 3 & -4 \\ 2 & 0 & -2 & 1\end{array}\right]$ prove that $(A B) C=A(B C)$
41. Solve the following system of equations by Matrix method.
$3 x-2 y+3 z=8$
$2 x+y-z=1$
$4 x-3 y+2 z=4$
42. If $y=\left(\tan ^{-1} x\right)^{2}$, show that $\left(x^{2}+1\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(x^{2}+1\right) \frac{d y}{d x}=2$
43. A ladder 5 m long is leaning against a wall, the bottom of the ladder is pulled along the ground, away from the wall at the rate of $2 \mathrm{cms} / \mathrm{sec}$. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
44. Find $\int \frac{1}{x^{2}-a^{2}} d x$ and hence evaluate $\int \frac{1}{3 x^{2}+13 x-10} d x$
45. Find the area of the curve $y=\cos x$, between $x=0$ and $x=2 \pi$
46. Find the particular solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}}$ when $y=0$ and $x=1$.
47. Derive the equation of a plane passing through a given point and perpendicular to a given vector.
48. A die is thrown 6 times, if 'getting an odd number is success' what is the probabrity of (i) 5 success (ii) atleast 5 success (iii) atmost 5 success.

PART-E

V. Answer any ONE question.

49. (a) Prove that $\int_{-a}^{a} f(x) a x=\left\{\begin{array}{cc}2 \int_{0}^{a} f(x) d x, & \text { if } f(x) \text { is even } \\ 0 & \text { if } f(x) \text { is odd. }\end{array}\right.$
and hence evaluate $\int_{\frac{-\pi}{2}}^{\pi / 2}\left(x^{3}+x \cos x\right) d x$
(b) Prove that $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$
50. (a) Maximize and minimize $Z=x+2 y$

$$
\text { subject to the constraints } \begin{aligned}
& x+2 y \geq 100 \\
& 2 x-y \leq 0 \\
& 2 x+y \leq 200 \\
& x \geq 0, y \geq 0 \quad \text { by graphical method. }
\end{aligned}
$$

(b) Determine the value of K if $f(x)=\left\{\begin{array}{cl}\frac{K \cos x}{\pi-2 x} & \text { if } x \neq \frac{\pi}{2} \\ 3 & \text { if } x=\frac{\pi}{2} .\end{array}\right.$ is continous at $x=\frac{\pi}{2}$

