SRI BHAGAWAN MAHAVEER JAIN COLLEGE

Vishweshwarapuram, Bangalore 560004
Mock Examination Question Paper-1 (January 2019)

Course:	II PUC

Max. Marks:	100

Subject:	Mathematics
Duration:	$3: 15$ hrs.

Instructions: The question paper has FIVE parts. Answer all
 Use graph sheet for the question on LPP in Part E.
 PART -A

I Answer ALL the questions:
$10 \times 1=10$

3 If A is a square matrix and $|A|=8$. Find the value of $|A A|$.
$4 \quad$ Find x and y if $\left[\begin{array}{lc}x+2 & y-3 \\ 0 & 4\end{array}\right]$ is a scalar matrix.
$5 \quad$ Find $d y / d x$ if $y=\sin \left(x^{2}+5\right)$.
6 Evaluate $\int \sec ^{2}(7-4 x) d x$.
$7 \quad$ Write the vector joining the points $\mathrm{A}(2,3,0)$ and $\mathrm{B}(-1,-2,-4)$.
8 Find the cartesian equation of a line passing through the points $(-1,0,2)$ and $(3,4,6)$.
9 Define objective function in LPP.
10 If $P(A)=4 / 15 \quad \mathrm{P}(B / A)=2 / 5$. Find $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$.

PART-B

II Answer any TEN questions:
11 Find gof and fog if $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$.
12 Evaluate: $\sin \left[\pi / 3-\sin ^{-1}(-1 / 2)\right]$.
13 Solve : $\tan ^{-1}\left[\frac{1-x}{1+x}\right]=\frac{1}{2} \tan ^{-1}(x)$.
14 Without expanding the determinant, Evaluate:
$\left[\begin{array}{lll}4 & a & b+c \\ 4 & b & c+a \\ 4 & c & a+b\end{array}\right]$.
Check the continuity of the function f given by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ at $\mathrm{x}=1$.
Find $\frac{d y}{d x}$ if $y=\sec ^{-1}\left[\frac{1}{2 x^{2}-1}\right]: 0<x<1 / \sqrt{2}$.
17 Using differentials approximate $(25)^{1 / 3}$.
18 Evaluate : $\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x$.
19 Evaluate: $\int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x$.

20 Find the order and degree of the differential equation $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$.
21 If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ prove that \vec{a} and \vec{b} are perpendicular.
22 If the position vector of the points A and B respectively are $i+2 j-3 k$ and $j-k$. Find the direction consine of $\overrightarrow{A B}$.
23 Find the equation of the plane $x+y+z-6=0$ and $2 x+3 y+4 z+5=0$ and the point $(1,1,1)$.
24 Two coins are tossed once E : no tail appears F : no head appears find P (E / F).

PART-C

III Answer any TEN questions:
25 Show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even $\}$ is an equivalence relation.
Show that $2 \tan ^{-1}(1 / 2)+\tan ^{-1}(1 / 7)=\tan ^{-1}\left(\frac{31}{17}\right)$.
Express the matrix $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ as the sum of symmetric and skew-symmetric matrix.
Differentiate $x^{\sin x}+(\sin x)^{\cos x}$ with respect to x.
29 Find two numbers whose product is 100 and whose sum is minimum.
30 Differentiate $\operatorname{Sin}^{2} \mathrm{x}$ with resepct to $\mathrm{e}^{\cos \mathrm{x}}$.
Evaluate: $\int \frac{\sin \left(2 \tan ^{-1} x\right)}{1+x^{2}} d x$.
Evaluate: $\int e^{x}\left[\frac{x-3}{(x-1)^{3}}\right] d x$.
33 Find the area at the region bounded by the curve $\mathrm{y}^{2}=\mathrm{x}$ and the lines $\mathrm{x}=1, \mathrm{x}=4$ and the x - axis in the first quadrant.
34 Form the differential equations representing the family of curves $y=a \sin (x+b)$ where ' a ' and ' b ' are arbitrary constants.
Show that the points A $(-1,4,-3), \mathrm{B}(-3,2,-5) \mathrm{C}(-3,8,-5)$ and $\mathrm{D}(-3,2,1)$ are coplonar.
Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=0$. Evaluate the quantity $\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$. if $|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$.
Find the cartesian and vector equation of the line passes through the points ($3,-2,-5$) and ($3,-2,6$). Two cards are drawn successively with replacement from a well shuffled deck of 52 cards. Find the probability distribution of the number of Aces.

PART-D

Answer any SIX of the following:

If $f: R \rightarrow[-5, \infty)$ given by $\mathrm{g}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Show that ' f ' is invertible with $f^{-1}=\left\{\frac{\sqrt{y+6}-1}{3}\right\}$.
If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$ Prove that $\mathrm{A}^{3}-23 \mathrm{~A}-401=0$

$$
x+y+3 z=10
$$

Solve by Matrix method: $x-y-z=-2$

$$
2 x+3 y+4 z=4
$$

If $y=3 \cos (\log x)+4 \sin (\log x)$ show that $x^{2} y_{2}+x y_{1+} y=0$
Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{sec}$. The falling sand form a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cms .

44 Find the integral of $\sqrt{a^{2}-x^{2}}$ and hence evaluate $\int \sqrt{1-4 x-x^{2}} d x$.
45 Find the area of the region bounded by the parabola $y^{2}=4 x$ and the line $y=2 x$.
46 Find the particular solution of the differential equation $\frac{d y}{d x}+\cot \mathrm{x} y=4 \mathrm{x} \operatorname{cosec} \mathrm{x}$ given $\mathrm{y}=0$ when $x=\pi / 2$.
47 Derive the formula to find the shortest distance between the two skew lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}} a n d \vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$ in the vector form.
48 A person buys a lottery ticket in 50 lottories in each of which his chance of winning a prize is $1 / 100$. What is the probability that he will with a prize? (i) atleast once (ii) exactly once (iii) atleast twice.

PART-C

V Answer any ONE of the following:
49 (a) Prove that $\int_{0}^{2 a} f(x) d x=\left\{\begin{array}{c}2 \int_{0}^{a} f(x) d x \text { if } f(2 a-x)=f(x) \\ 0 \text { if } f(2 a-x)=-f(x)\end{array}\right.$ and hence evaluate $\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$.
(b) Prove that $\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$.

50 (a) Minimize and maximize $Z=3 x+9 y$ subject to the constraints $x+3 y \leq 60, x+y \geq 10, x \leq y, x, y \geq 0$ by graphical method.
(b) Find the value of ' k ' so that function
$f(x)=\left\{\begin{array}{cl}\frac{1-\cos 2 x}{1+\cos 2 x} & \text { if } x \neq 0 \\ k & \text { if } x=0\end{array}\right.$ is a continuous function at $x=0$.

