

SRI BHAGAWAN MAHAVEER JAIN COLLEGE Vishweshwarapuram, Bangalore 560004

Mock Paper - 2019

Cou	rse:	I PUC		Subject:	Physics	
Max	. Marks:	70		Duration:	3:15 hrs.	
			PAR	τ_Λ		
I 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Name the What doe Which co Why athl Give the What is t State Be Mention	ALL the following e scientist who disc es the area under for omponent of velocit etes run a few step SI unit of moment he effect of temper rnoulli's principle. the value of Reyno significance of first the distance betwee	questions covered X-rays. orce – displacemen y of a projectile is z s before taking a ju of inertia. ature on elasticity? Id's number for stre law of thermodyna	nt graph represer ero at maximum imp? eamline flow of a imics. secutive antinode	height?	10 x 1 = 10 /e.
II 11. 12. 13. 14. 15 16. 17. 18.	Answer any FIVE of the following questions Write the dimensional formula for the terms (i) linear momentum and (ii) pressure. What is impulsive force? Give one example. When will be the dot product of two vectors (i) maximum and (ii) minimum? Write Stoke's formula and explain the terms. Give the general conditions for equilibrium of a rigid body. Mention any two uses of polar satellites. State and explain the law of equipartition of energy. Distinguish between transverse and longitudinal waves. PART-C					5 x 2 = 10
 III A 19. 20. 21. 22. 	Explain p Obtain th Give any	y FIVE of the follo parallax method of one expression for tir three methods of r prk – energy theore	determining the size ne of flight of a proj educing friction.	jectile.		5 x 3 = 15

- 23. State Kepler's laws of planetary motion.
- 24. Using perpendicular axes theorem, obtain an expression for moment of inertia of a disc about its diameter.
- 25. Draw schematic diagram of refrigerator and define its coefficient of performance.
- 26. Mention three characteristics of simple harmonic motion.

Preparatory Exam Jan.2019	I PUC Physics	Page: 2					
PART-D							

IV Answer any TWO of the following questions

- 27. What is velocity time graph? Derive $v^2 \square u^2 \square 2aS$ using velocity time graph.
- 28. Define centripetal acceleration. Obtain the expression for it.
- 29. Prove the law of conservation of mechanical energy in the case of a freely falling body.

V Answer any TWO of the following questions

- 30. Define escape velocity of a body and hence obtain the expression for it.
- 31. (i) Distinguish between isothermal and adiabatic process.
- (ii) Derive an expression for work done in isothermal process.
- 32. Explain Newton's formula and Laplace's correction for speed of sound in gases.

VI Answer any THREE of the following questions

- 33. A cricketer can throw a ball to a maximum horizontal distance of 100 *m*. How much high above the ground can the cricketer throw the same ball? Given: $g \square 9.8 \text{ ms}^{\square 2}$
- 34. A grenade of mass 10 kg moving with velocity of 36 kmph breaks into two parts. The larger part moves with velocity of 25 $ms^{\Box 1}$ in the original direction. The other part moves with a velocity of 1.5 $ms^{\Box 1}$ in the opposite direction. Find the masses of the two parts.
- 35. The angular speed of a wheel increases from 600 rpm to 1200 rpm in 20
 - seconds. Calculate (i) angular acceleration
 - (ii) angular displacement and
 - (iii) number of revolutions does it make in this period of time.
- A Carnot engine operating between temperatures 36. T and T has an efficiency of $\frac{1}{2}$. When T is 1 2 6 lowered by 62 K, its efficiency increases to $\frac{1}{2}$. What are the values of T and T? 1 2 3
- 37. The displacement *y* of an oscillating particle varies with time *t* according to the equation $y \Box 2\sin(0.5 \Box t)$ where *y* is in metre and *t* in second. Find
 - (i) amplitude of the oscillation
 - (ii) time period
 - (iii) maximum velocity and
 - (iv) maximum acceleration of the particle

2 x 5 = 10

2 x 5 = 10

3 x 5 = 15