I. Answer all the TEN questions:

1. Write the power set of $A=\{a, b\}$.
2. If $(x-1, y+4)=(3,9)$. Find $x$ and $y$.
3. If $\tan x=\frac{3}{4}, x$ lies in $3^{\text {rd }}$ quadrant. Find $\sin x$.
4. Find n if ${ }^{\mathrm{n}} \mathrm{C}_{7}={ }^{\mathrm{n}} \mathrm{C}_{6}$.
5. Find the $20^{\text {th }}$ term of G P $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots \ldots .$.
6. Find the slope and $y$ intercept of $3 x+4 y-10=0$
7. Find the eccentricity of ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
8. Find the derivative of $2 x-\frac{3}{4}$.
9. Write the negation of "Every natural number is greater than zero".
10. Write the sample space for the experiment "a coin is tossed repeatedly 3 times".

PART-B

## II. Answer any TEN questions:

10X2=20
11. If $A=\{1,2,3,4\} \quad B=\{2,3,5\} \quad C=\{3,5,6\}$ find $A \cup(B \cap C)$.
12. If $X$ and $Y$ are 2 sets such that $X \cup Y$ has 50 elements, $X$ has 28 elements and $Y$ has 32 elements. How many elements does $X \cap Y$ have?
13. Taking set of natural numbers as the universal set If $A=\{x: x \varepsilon N$ and $2 x+1>10\}$ and $B=\{x: x \in N$ and $3 x-1>8\}$. Find $A^{\prime}$ and $B^{\prime}$.
14. A wheel makes 360 revolutions in one minute; through how many radians does it turn in one second.
15. Find the value of $\sin 15^{\circ}$.
16. Find the least positive integer $m$ such that $\left(\frac{1+i}{1-i}\right)^{4 m}=1$
17. Solve $7 x+1 \leq 4 x+5$ and represent the solution graphically on the number line.
18. Find the distance of the point $(3,-5)$ from the line $3 x-4 y-5=0$.
19. Find the equation of the line parallel to $3 x-4 y+2=0$ and passing through the point $(-2,3)$.
20. Find the ratio in which the line joining $(4,8,10)$ and $(6,10,-8)$ is divided by YZ - plane.
21. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{1-\cos x}{x}$.
22. Write the converse and contrapositive of "if a parallelogram is a square then it is square".
23. Write the mean of the given data $6,7,10,12,13,4,6,12$.
24. Given $\mathrm{P}(\mathrm{A})=0.54$ and $\mathrm{P}(\mathrm{B})=0.69$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.35$, find $\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)$.

## PART-C

## III. Answer any TEN questions:

10X3=30
25. In a survey of 600 students 150 students were found taking tea and 225 taking coffee, 100 were taking both tea \& coffee. Find how many students were taking neither tea nor coffee?
26. Write the relation $R$ defined as $R=\{(x, x+5): x \in\{0,1,2,3,4\}\}$ in roster form. Write down its rage and domain.
27. Find the general solution of $\sec ^{2} 2 x=1-\tan 2 x$.
28. Express $\frac{-1+i}{\sqrt{2}}$ in the polar form.
29. Solve the equation $2 x^{2}+\sqrt{3} x-1=0$.
30. If $5.4 p_{r}=6.5 p_{r-1}$ find $r$.
31. Find the coefficient of $x^{6} y^{3}$ in the expression of $(x+2 y)^{6}$.
32. Find the sum of the sequence: $7+77+777+\ldots . n$ terms.
33. Insert 3 arithmetic mean between 8 and 24 .
34. Find the derivative of 'sin $x$ ' w. r. to $x$ from $1^{\text {st }}$ principles.
35. A parabola with vertex at origin has its focus at the centre of $x^{2}+y^{2}-10 x+9=0$. Find it's derectrix and lactus rectum.
36. Verify by method of contradiction that $\sqrt{7}$ is irrational.
37. Find the number of different 8 - letter arrangements that be made from the letters of the word DAUGHTER so that: a) all vowels occur together b) All vowels do not occur together.
38. Find the probability that when a hand of 7 cards is drawn from a well shuffled deck of 52 cards, it contains : a) 3 kings b) at least 3 kings.

## PART-D

## IV. Answer any SIX of the following:

39. Define modulus function. Draw the graph of modulus function. Write down its domain and range.
40. Prove that $\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$.
41. Prove by mathematical induction $1^{3}+2^{3}+3^{3}+\ldots . \mathrm{n}^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
42. Solve graphically $2 x+y \geq 4, x+y \leq 3,2 x-3 y \leq 6$.
43. State and prove Binomial theorem.
44. Derive an expression for the coordinate of a point that divides the line joining $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}\right.$, $y_{2}, z_{2}$ ) internally in the ratio $m: n$ and hence find the co-ordinate of the mid point of $A B$ where $\mathrm{A}=(1,2,3$,$) and \mathrm{B}=(5,6,7)$
45. Derive a formula for the angle between lines with slopes $m_{1}$ and $m_{2}$. Hence find the slopes of the lines which make an angle $\frac{\pi}{4}$ with the line $x-2 y+5=0$.
46. Prove that $\lim _{\theta-0} \frac{\operatorname{Sin} \theta}{\theta}=1$ ( $\theta$ being in radians) and hence prove that $\lim _{\theta-0} \frac{\tan \theta}{\theta}=1$
47. A group consists of 7 boys and 5 girls. Find the number of ways in which a team of 5 members can be selected so as to have at least one boy and one girl in team.
48. Find the mean deviation about the mean for the following data

| Marks obtained | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No of students | 2 | 3 | 8 | 14 | 8 | 3 | 2 |

## PART-E

## V. Answer any one of the following:

49. a) Prove geometrically that $\cos (A+B)=\cos A \cos B-\sin A \sin B$.
b) Find the derivative of $f(x)=\frac{3+4 \sin x}{5+6 \cos x}$.
50) a) Define ellipse as a set of points. Derive its equation in the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 . \quad(6+4)$
b) Find the sum to ' $n$ ' terms of the series $1^{2}+\left(1^{2}+2^{2}\right)\left(1^{2}+2^{2}+3^{2}\right)+$
