SRI BHAGAWAN MAHAVEER JAIN COLLEGE

Vishweshwarapuram, Bangalore 560004

Mock Examination Question Paper - January 2019

		•		•	·			
Cour	se:	I PUC		Subject:	Chemistry			
Max	. Marks:	70		Duration:	3:15 hrs.			
Instru	ctions:							
	The ques	tion paper has five parts A, B, C, I	O ₄ an	$d D_5$.				
		lanced chemical equations and nea		_	nerever necessary.			
	Use log t	able and simple calculator for calc						
т	A		PAR'			10 1 10		
I 1	Answer ALL the following. Each question carries one mark. $10 \times 1 = 10$							
1 2	Express 0.053 in scientific notation. Mention the SI unit of coefficient of viscosity.							
3			ty.					
4	What is common ion effect? Among Mg and Ca which has larger atomic radius.							
5								
6	Identify the oxidising agent in the following reaction, Zn + CuSO ₄ →ZnSO ₄ + Cu. Which alkali metal is strongest reducing agent							
7	Which alkali metal is strongest reducing agent. What are zeolite?							
8	What are zeolite? Give the formula of inorganic benzene.							
9	Write the IUPAC name of $CH_3 - CH - CH_2 - CHO$							
	vviite tile			110				
		OH						
10	What is I	Lindlar's Catalyst?						
		•	PAR'	Т-В				
II	Answer	any FIVE questions. Each questi	on c	arries two marl	KS.	$5 \times 2 = 10$		
11	Calculate the amount of water produced by the combustion of 32g of methane.							
12	Give any two difference between real and ideal gases.							
13	State Octet rule. Mention one of its limitation.							
14	How does Li and Na react with O_2 on burning? Give equations.							
15	What are	silicates? Give an example.						
16	Give equ	ations for the following reaction.						
	(i) Ethyne is treated with Baeyer's reagent.							
	(ii) Hydrogen bromide is added to propene in presence of peroxide.							
17	_	opens when 1, 2 dibromoethane is			-			
18	How is o	zone layer formed in the stratosph			emical that causes its	depletion.		
]	PAR	T-C				

 $5 \times 3 = 15$

2+1

Answer any FIVE question. Each question carries three marks.

19 a) The radius of Na⁺ cation is less than that of Na atom. Give reasons?

Ш

b) Define ionisation enthalpy.

Mock	Exam Question Paper Jan.2019	I PUC Chemistry	Page: 2
20	Give the molecular orbital en property.	ergy diagram for oxygen molecules	and account for its paramagnetic
21 a)		Molecule based on VSEPR theory.	-
b)	Write the electronic configur	ation of N ₂ Molecule.	2+1
22 a)	Dipole moment of NF ₃ <nh<sub>3</nh<sub>	. Give reason.	
b)	Give the mathematical expre-	ssion for dipole moment.	2+1
23	Balance the following redox	reaction using oxidation number me	thod
	$MnO_4^- + Br^- \rightarrow MnO_2 + BrC$	O_3 in basic medium.	
24 a)	What are Ionic hydrides? Give	ve example.	
b)	Complete the reaction. $C_{(s)}$ +	$H_2O_{(g)} \xrightarrow{\Delta} ?.$	2+1
25 a)	Describe the manufacture of	sodium hydroxide by Castner-Kelne	er process.
b)	What is slaking of lime?		2+1
26	Give reason.		
	(a) Graphite is soft and slippe	ery.	
	(b) Boron is used as control r		
	(c) The stability of +3 oxidat	ion state of 13 group elements decre PART-D ₄	ases down the group. $1+1+1$
		7	
IV	Answer any FIVE question	s. Each question carries five mark	$5 \times 5 = 25$
	500 ml of Na ₂ CO ₃ solution co	ontains 2.65 g of Na ₂ CO ₃ (mol mass	of Na ₂ CO ₃ =106) if 10ml of this
27 a)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar	of Na ₂ CO ₃ =106) if 10ml of this
27 a) b)	500 ml of Na ₂ CO ₃ solution co	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar	of Na ₂ CO ₃ =106) if 10ml of this
27 a) b) c) 28 a)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force.	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model.	s of Na ₂ CO ₃ =106) if 10ml of this nt solution? 2+2+1
27 a) b) c) 28 a)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vo	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is 7.0 x 10 ¹⁴ S ⁻¹ . Calculate	s of $Na_2CO_3=106$) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron
27 a) b) c) 28 a)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vo	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model.	s of $Na_2CO_3=106$) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron
27 a) b) c) 28 a) b)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vo	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is $7.0 \times 10^{14} \text{S}^{-1}$. Calculate ency V.1 $.0 \times 10^{15} \text{S}^{-1}$ hits the metal. (6)	s of $Na_2CO_3=106$) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron
27 a) b) c) 28 a) b) 29 a)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vorteemitted when radiation frequency State Hund's rule of maximum	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is $7.0 \times 10^{14} \text{S}^{-1}$. Calculate ency V.1 $.0 \times 10^{15} \text{S}^{-1}$ hits the metal. (6)	s of Na ₂ CO ₃ =106) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron $Ch = 6.626 \times 10^{-34} Js) \qquad 3+2$
27 a) b) c) 28 a) b) 29 a) b)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vortemitted when radiation frequency State Hund's rule of maximum Mention the significance of proceedings.	ontains 2.65 g of Na_2CO_3 (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is $7.0 \times 10^{14} S^{-1}$. Calculate ency V.1 $.0 \times 10^{15} S^{-1}$ hits the metal. (mount in multiplicity.	s of Na ₂ CO ₃ =106) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron $Ch=6.626 \times 10^{-34} Js) \qquad 3+2$ mbers. frequency $3 \times 10^{15} H_z$
27 a) b) c) 28 a) b) 29 a) b)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vocamitted when radiation frequency State Hund's rule of maximum Mention the significance of property of the significance	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is 7.0 x 10 ¹⁴ S ⁻¹ . Calculate ency V.1 .0x10 ¹⁵ S ⁻¹ hits the metal. (or multiplicity.	s of $Na_2CO_3=106$) if 10ml of this at solution? $2+2+1$ the kinetic energy of an electron $Ch=6.626 \times 10^{-34} Js) \qquad 3+2$ where.
27 a) b) c) 28 a) b) 29 a) b) c)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vore emitted when radiation frequency State Hund's rule of maximu Mention the significance of proceeding Calculate the energy of the Proceeding (h=6.626 x 10 ⁻³⁴ Js). Calculate the pressure exerter	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is 7.0 x 10 ¹⁴ S ⁻¹ . Calculate ency V.1 .0x10 ¹⁵ S ⁻¹ hits the metal. (or model and azimuthal quantum numboton which corresponds to light of d by 88g of CO ₂ occupying a volume	s of Na ₂ CO ₃ =106) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron $Ch=6.626 \times 10^{-34} Js) \qquad 3+2$ mbers. frequency $3 \times 10^{15} H_z$ $1+2+2$
27 a) b) c) 28 a) b) 29 a) c) 30 a)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Voremitted when radiation frequency We must be a significance of process of the Proce	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is 7.0 x 10 ¹⁴ S ⁻¹ . Calculate ency V.1 .0x10 ¹⁵ S ⁻¹ hits the metal. (cm multiplicity. principal and azimuthal quantum numboton which corresponds to light of d by 88g of CO ₂ occupying a volume	s of Na ₂ CO ₃ =106) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron $Ch=6.626 \times 10^{-34} Js) \qquad 3+2$ mbers. frequency $3 \times 10^{15} H_z$ $1+2+2$
27 a) b) c) 28 a) b) c) 30 a) b)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vortemitted when radiation frequentited when radiation frequentited when radiation frequency State Hund's rule of maximum Mention the significance of proceedings of the Proceeding Calculate the energy of the Proceeding Calculate the pressure exerted (R = 0.0821 L atm / K / mol) State Boyle's law. Give its more solution is diluted to 1L. What Mention any two postulates of the postulates of the proceeding the procedure of the proceeding the procedure of the pro	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is 7.0 x 10 ¹⁴ S ⁻¹ . Calculate ency V.1 .0x10 ¹⁵ S ⁻¹ hits the metal. (cm multiplicity. principal and azimuthal quantum numboton which corresponds to light of d by 88g of CO ₂ occupying a volume	s of Na ₂ CO ₃ =106) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron $Ch = 6.626 \times 10^{-34} Js) \qquad 3+2$ the solution of this nt solution? $3+2$ the kinetic energy of an electron $3+2$ the solution of this nt solution?
27 a) b) c) 28 a) b) c) 30 a) b) 31 a)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vortemitted when radiation frequentited when radia	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is 7.0 x 10 ¹⁴ S ⁻¹ . Calculate ency V.1 .0x10 ¹⁵ S ⁻¹ hits the metal. (cm multiplicity. principal and azimuthal quantum numboton which corresponds to light of d by 88g of CO ₂ occupying a volumentathematical form. emics and give its mathematical form when 1 mole of a gas expands iso to	s of Na ₂ CO ₃ =106) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron $Ch = 6.626 \times 10^{-34} Js) \qquad 3+2$ the mbers. $frequency \ 3 \times 10^{15} H_z$ $1+2+2$ the of 1.5 L at 100K. $3+2$ the mally and reversibly from an
27 a) b) c) 28 a) b) c) 30 a) b) 31 a) b)	500 ml of Na ₂ CO ₃ solution consolution is diluted to 1L. What Mention any two postulates of Give the SI unit of force. Mention any three postulates The threshold frequency Vortemitted when radiation frequentited when radia	ontains 2.65 g of Na ₂ CO ₃ (mol mass at is the concentration of the resultar of Dalton's atomic theory. of Bohr's theory of atomic model. for a metal is 7.0 x 10 ¹⁴ S ⁻¹ . Calculate ency V.1 .0x10 ¹⁵ S ⁻¹ hits the metal. (or multiplicity. or incipal and azimuthal quantum numboton which corresponds to light of d by 88g of CO ₂ occupying a volumentathematical form. emics and give its mathematical form the when 1 mole of a gas expands iso the nal value of 40dm ³ at 298 K. (R = 8.5)	s of Na ₂ CO ₃ =106) if 10ml of this nt solution? $2+2+1$ the kinetic energy of an electron $Ch = 6.626 \times 10^{-34} Js) \qquad 3+2$ the mbers. $frequency \ 3 \times 10^{15} H_z$ $1+2+2$ the of 1.5 L at 100K. $3+2$ the mally and reversibly from an

	Mock Exam Question Paper Jan.2019 I PUC Chemistry			
32 a)	What is lattice enthalpy? Ho Born-Haber cycle?	w do you calculate the lattice enthal	py of sodium chloride by u	sing
b)	•	at happens to entropy, when a liquid	crystallizes into a solid?	3+2
33 a)		etic acid is 1.74 x 10 ⁻⁵ . Calculate the	-	acetic
		alculate the conc of acetic ions in the		
b)	The concentration of hydrogen	en in a sample of soft drink is 3.8 x 1	0 ⁻³ M. What is its P ^H .	3+2
	State Lechatelier's principle.			
b)	Equilibrium constant for a re	action is $2x10^{13}$ at 300K. Calculate Δ	G° at the same temperature	
c)	Give an example for acidic b	uffer.		2+2+1
		PART-D ₅		
V	Answer any TWO question	. Each carries five marks.	2:	x 5 = 10
35 a)	Give the IUPAC name for the	e compound. $CH \equiv C - CH = CH =$	CH_3 .	
b)	Identify the number of sigma	and Pi bonds.		
c)	Identify the type of hybridisa	tion of each carbon atom.		
d)	Write the bond line formula	of the compound.		
e)	Mention whether the compou	and is saturated or unsaturated.	2	+2+1
36 a)	Write the principle and calculation involved in the estimation of carbon present in an organic compound.			
b)	Explain Lassaignes test to de	tect the presence of S in an organic of	compound.	3+2
\	Write three steps involved in	the mechanism of alkylation of benz	zene.	
37 a)	<u> </u>	an example.		3+2
