Instructions:

1. The question paper has four parts A, B, C, and D. All the parts are compulsory.
2. Write balanced chemical equations and draw labelled diagrams wherever required.
3. Use log tables and simple calculators if necessary (Use of Scientific calculator is not allowed)

PART - A
I. Answer all the following questions: $10 \times 1=10$

1. Give the S.I. unit for luminous intensity.
2. State Boyle's law.
3. Write IUPAC name of the elements with an atomic number 114.
4. Define dipole moment.
5. Write the conjugate base for $\mathrm{HSO}_{4}{ }^{-}$.
6. What is the composition of water gas?
7. Which is the strongest reducing agent among alkali metals?
8. Name the allotropic form of carbon whose structure resembles soccer ball.
9. How many σ and π bonds are present in $\mathrm{CH}_{3} \mathrm{OH}$.
10. Name a suitable technique for separation of component from a mixture of calcium sulphate and camphor.

PART - B
II. Answer any FIVE of the following questions. $\mathbf{5 \times 2 = 1 0}$
11. Calculate the molarity of NaOH in the solution prepared by dissolving it's 4 g in enough water to form
250 ml of the solution.
12. Distinguish between sigma and pi bonds.
13. Calculate the volume occupied by 8.8 g of carbon dioxide at $31.1^{\circ} \mathrm{C}$ and 1 bar pressure.
14. How is hydrogen formed as a byproduct in the electrolysis of water?
15. Give any two reasons for the anomalous behavior of Berillium.
16. Write all the differences between Inductive effect and Electromeric effect.
17. What are silicones?
18. Name the gases responsible for green house effect.

PART - C

III. Answer any FIVE questions

$$
5 \times 3=15
$$

19. a) State modern periodic law.
b) Arrange the following in the increasing order of the lonic size $\mathrm{Mg}^{2+}, \mathrm{O}^{2-}, \mathrm{Na}^{+}$and $\mathrm{F}^{-} \quad(1+2 \mathrm{M})$
20. Explain $S P^{3}$ hybridisation with suitable example.
21. Write the electronic configuration of Helium molecule based on molecular orbital theory and calculate it's bond order.
(3M)
22. a) Calculate the oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
b) What is the oxidation state of a substance in the elemental state?
23. What happens:
I. Mg is burnt in air
II. Quick lime is heated with silica
III. Chlorine react with slaked lime
24. Discuss any three uses of Aluminium.
25. a) How diborane is prepared in laboratory?
b) Give the chemical formula of borazine.
26. Give any three postulated of VSEPR theory

PART - D

IV. Answer any FIVE of the following questions:

27. a) Write any two limitations of Rutherford's model of an atom.
b) Calculate the wave number of the shortest wave appearing in the Balmer's series of hydrogen
spectrum. (Given $\mathrm{R}=1.097 \mathrm{X} 107 \mathrm{M}-1$)

$$
(2+3 M)
$$

28. a) A Carbohydrate contains $40 \% \mathrm{C}, 6.73 \% \mathrm{H}$ and $53.3 \% \mathrm{O}$. The molecular mass of the compound is 180. Determine it's molecular formula.
b) Define limiting reagent
29. a) Write the main postulates of Bohr's theory
b) State and explain Heisenberg's theory
30. a) Write any four postulates of kinetic theory of gases.
b) Define critical temperature of a gas
31. a) State first law of thermodynamics and write its mathematical expression.
b) Explain closed system with example.
c) Calculate the amount of work done by 2 moles of an ideal gas at 298 K in a reversible isothermal expansion from $10 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$?
32. a) Describe the characterstics of chemical equilibrium
b) Write Gibb's equation and explain the terms
33. a) Explain Born-Haber cycle to calculate lattice energy of NaCl .
b) State pauli's exclusion principle
34. a) Calculate the PH of a buffer solution containing 0.1 mole of acetic acid and 0.15 mole of sodium acetate. K_{a} for acetic acid is 1.75×10^{-5}
b) Define lonic product of water?
V. Answer any TWO of the following
35. a) Explain the mechanism of hydrogen bromide added to propene.
b) How is methane is obtained from decarboxylation?
(3+2M)
36. a) What is the principle in the estimation of halogens in an organic compound? Describe the process involved in the estimation.
b) With a suitable example explain functional isomerism.
37. a) Explain the mechanism of nitration of benzene.
b) How is an alkene prepared from vicinal dibromide .
