WORK SHEET 1

Sl No	STRUCTURAL FORMULA	IUPAC NAME
1	CH ₄	
2	CH ₃ -CH ₃	
3	CH ₃ -CH ₂ -CH ₂ -CH ₃	
4	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	
5	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	
6	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	

Give the structures of the following

1	Methane	
2	Propane	
3	Pentane	
4	Decane	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 2

1	CH ₃ - CH-CH ₃ CH ₃	
2	CH ₃ - CH-CH ₂ -CH ₃ CH ₃	
3	CH ₃ -CH ₂ -CH-CH ₃ CH ₃	
4	CH ₃ -CH ₋ CH ₂ -CH ₂ -CH ₃ CH ₃	
5	CH ₃ -CH ₂ - CH-CH ₂ -CH ₃ CH ₃	

To join our whatsapp/Telegram Group SMS your Name to 9447490316/7012498606

Space for rough work

WORK SHEET 3

1	CH ₃ - CH-CH ₃ CH ₂ - CH ₃	
2	CH ₃ -CH-CH ₂ -CH ₃ CH ₂ -CH ₂ -CH ₃	
3	CH ₃ -CH ₂ - CH-CH ₃ CH ₂ - CH ₂ - CH ₂ - CH ₃	
4	CH ₂ - CH ₃ CH ₃ -CH-CH ₂ -CH ₂ -CH ₃	

Give the structures of the following

1	2- Methylhexane	
2	3-Methylpentane	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 4

1	CH ₃ CH ₃ -CH-CH-CH ₃	
1	CH ₃ -CH-CH ₃	
2	CH ₃ CH ₃ CH ₃ -CH-CH ₂ -CH-CH ₃	
3	CH ₃ CH ₃ - CH - CH-CH ₃ CH ₃	
4	CH ₃ CH ₃ -C-CH ₃ CH ₃	

Give the structures of the following

1	2,3-Dimethylhexane	
2	2,2-Dimethylpentane	
3	3,4-Dimethyloctane	
4	3,3-Dimethylpentane	

* Question:

A student wrote the IUPAC name of the compound as **2-Ethyl Butane. Is it Correct? Justify** your answer

Your Answer	Reason

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 5

1	CH ₃ -CH ₂ - CH ₂ -CH-CH ₂ -CH ₃ CH ₂ -CH ₃	
2	CH ₂ -CH ₃ CH ₃ -CH ₂ -C-CH ₂ -CH ₃ CH ₂ -CH ₃	
3	CH ₂ -CH ₃ CH ₃ -CH ₂ - CH-CH-CH ₂ -CH ₃ CH ₂ -CH ₃	
4	CH ₂ -CH ₃ CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ CH ₂ -CH ₃	

Give the structures of the following

1	3,3-Di ethylhexane	
2	3,3-Di ethylpentane	
3	3,4-Di ethyloctane	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 6

1	CH ₃ CH ₃ -CH ₂ -CH-CH ₃ CH ₂ -CH ₃	
2	CH ₃ CH ₃ CH ₃ -CH ₂ - CH-CH-CH ₃ CH ₃	
3	CH ₃ CH ₃ CH ₃ CH ₃ -CH- CH-CH-CH ₃ CH ₃	
4	CH ₃ CH ₃ CH ₃ CH ₃ -CH- CH-CH ₂ -CH-CH ₃	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 7

	CH ₂ -CH ₃	
1	CH ₃ -CH ₂ -CH-CH-CH ₃	
	CH ₃	
2	CH ₃ CH ₂ -CH ₃	
	CH ₃ -CH- CH-CH ₂ -CH ₂ -CH ₃	
	CH ₃ CH ₃	
3	CH ₃ -CH-CH-CH ₂ -CH ₃	
	CH ₂ -CH ₃	
	CH ₃ CH ₃ CH ₂ -CH ₃	
4	CH ₃ -CH- CH-CH ₂ -CH ₃	
	CH ₃	* Only for advanced learning
5	CH ₃ -CH ₂ -CH-CH ₂ -CH ₃	* Only for advanced learning
	CH ₂ -CH ₃	

Give the structures of the following

1	2,3,3-Trimethylhexane	
2	3-Ethyl-2-methylpentane	
3	3-Ethyl-2,2-Dimethylpentane	
4	3,3-Diethyl-2,2- Dimethyloctane	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 8

1	CH ₂ =CH ₂	
2	CH ₃ -CH=CH ₂	
3	CH ₃ -CH ₂ -CH=CH ₂	
4	CH ₃ -CH=CH-CH ₃	
5	CH ₂ =CH-CH ₂ -CH ₃	
6	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH=CH-CH ₃	

Give the structures of the following

1	Ethene	
2	Hex-3-ene	
3	Hex-2-ene	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 9

1	CH ≡ CH	
2	CH ₃ -C ≡ CH	
3	CH ₃ -CH ₂ -C ≡ CH	
4	CH_3 - $C \equiv C$ - CH_3	
5	$CH \equiv C-CH_2-CH_3$	
6	CH_3 - CH_2 - CH_2 - $C \equiv C$ - CH_3	

Give the structures of the following

1	Ethyne	
2	Propyne	
3	But-1-yne	
4	But-2-yne	

Space for rough work

 *C_1 - METH *C_2 - ETH *C_3 - PROP *C_4 - BUT *C_5 - PENT *C_6 - HEX *C_7 - HEPT *C_8 - OCT *C_9 NON $^*C_{10}$ - DEC *

FUNCTIONAL GROUPS

SI No	FUCTIONAL GROUP	STRUCTURE	NAME	NAME OF THE COMPOUND	IUPAC NAME
1	-OH	-OH	Hydroxy	Alcohol	ol
2	-СНО	O CH	Aldehyde	Aldehyde	al
3	-CO-	O C	Keto group	Ketone	one
4	-СООН	O COH	Carboxylic	Carboxylic Acid	oic acid
5	-NH ₂	-NH ₂	Amino	Amine	an amine
6	-F /-Cl / -Br /-I	-F /-Cl / -Br /-I	Halo	Halo	Halo
7	-O-	-O-	Alkoxy	Ether	Alkoxyalkane

WORK SHEET 10

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

1	CH ₃ -OH
2	CH ₃ -CH ₂ -OH
3	CH ₃ -CH ₂ -CH ₂ -OH
4	CH ₃ -CH-CH ₃ OH
5	CH ₃ -CH ₂ CH ₂ -CH-CH ₃ OH

Give the structures of the following

1	L	Ethanol	
2	2	Propan – 1- ol	
3	3	Propan – 2- ol	

^{*} Can you write Propan -3 -ol? Give reason.

Your Answer	Reason

Space for rough work

WORK SHEET 11

1	н-сно	

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

2	CH ₃ -CHO	
3	CH ₃ -CH ₂ -CHO	

Give the structures of the following

1	Propanal	
2	Pentanal	

WORK SHEET 12

1	CH ₃ -CO- CH ₃	
2	CH ₃ -CO- CH ₂ -CH ₃	
3	CH ₃ -CO-CH ₂ -CH ₃	
4	CH ₃ -CO-CH ₂ -CH ₂ -CH ₃	
5	CH ₃ -CH ₂ -CO-CH ₂ .CH ₃	

Give the structures of the following

1	Propanone	
2	Butanone	
3	Pentan-3-one	

Space for rough work

WORK SHEET 13

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

1	НСООН	
2	CH ₃ -COOH	
3	CH ₃ -CH ₂ -COOH	
4	CH ₃ -CH ₂ -COOH	
5	CH ₃ -CH ₂ -CH ₂ -COOH	

Give the structures of the following

1	Hexanoic acid	
2	Propanoic acid	
3	Butanoic acid	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 14

1	CH₃-Cl
2	CH ₃ -CH ₂ -Cl
3	CH ₃ -CH ₂ -CH ₂ -Cl
4	CH ₃ -CH-CH ₃ Cl
5	CH ₃ -CH ₂ -CH-CH ₃ Cl
6	CH ₃ -Br
7	CH ₃ -CH ₂ -I
8	CH ₃ -CH ₂ -CH ₂ -Br
9	CH ₃ -CH-CH ₃ Br
10	CH ₃ -CH ₂ -CH-CH ₃ Br

Give the structures of the following

1	1- Chloropropane	
2	2- Chloropropane	
3	2 - Bromobutane	

Space for rough work

WORK SHEET 15

1	Cl Cl CH ₃ -CH- CH-CH ₃	
2	Cl Cl CH ₃ -CH-CH ₂ -CH-CH ₃	
3	Br Br CH ₃ - CH- C-CH ₃ Br	
4	Cl CH ₃ -C-CH ₃ Cl	

Give the structures of the following

1	2,2- Dichlorobutane	
2	2,3- Dibromopentane	
3	2,2,3- Trichlorobutane	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 16

1	CH ₃ -NH ₂	
2	CH ₃ -CH ₂ -NH ₂	
3	CH ₃ -CH ₂ -CH ₂ -NH ₂	
4	CH ₃ -CH-CH ₃ NH ₂	
5	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ NH ₂	

Give the structures of the following

1	Propan – 2- amine	
2	Butan -2-amine	
3	Pentan -3- amine	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 17

1	CH ₃ -O-CH ₃	
2	CH ₃ -CH ₂ -O-CH ₂ -CH ₃	
3	CH ₃ -CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -CH ₃	
4	CH ₃ -O-CH ₂ -CH ₃	
5	CH ₃ -CH ₂ -O-CH ₃	
6	CH ₃ -CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₃	

Give the structures of the following

1	Ethoxyethane	
2	Methoxypropane	
3	Ethoxybutane	

Space for rough work

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

For Advanced Learning (Page 208 of Teacher Text)

WORK SHEET 18

The order of priority among the above mentioned functional groups is COOH> -CHO> CO > OH>NH₂> Alkenes> Alkynes

Alkyl groups and Alkoxy groups are always prefixes in poly functional compounds.

1	CH ₃	
	CH ₃ -CH-CH ₂ -CH ₂ -OH	
2	CH ₃	
	CH ₃ -C-CH ₂ -CH ₂ -OH	
	CH ₃	

Give the structures of the following

1	3-methyl-butan-1-ol	
2	2-methyl-butan-1-ol	
3	2-methyl-butan-2-ol	

Space for rough work

 *C_1 - METH *C_2 - ETH *C_3 - PROP *C_4 - BUT *C_5 - PENT *C_6 - HEX *C_7 - HEPT *C_8 - OCT *C_9 NON $^*C_{10}$ - DEC *

Answers / Hints

WORK SHEET 1

1	CH ₄	Methane
3	CH ₃ -CH ₂ -CH ₂ -CH ₃	Butane
6	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	Octane

WORK SHEET 2

1	CH ₃ -CH-CH ₃	2-Methylpropane
	CH ₃	
2	CH ₃ -CH-CH ₂ -CH ₃ CH ₃	2-Methylbutane
3	CH ₃ -CH ₂ - CH-CH ₃ CH ₃	2-Methylbutane
5	CH ₃ -CH ₂ -CH ₂ -CH ₃ CH ₃	3-Methylhexane

WORK SHEET 3

1	CH ₃ -CH-CH ₃ CH ₂ - CH ₃	2-Methyl butane	Longest chain
2	CH ₃ -CH-CH ₂ -CH ₃ CH ₂ -CH ₂ -CH ₃	3-Methyl hexane	Longest chain
3	CH ₃ -CH ₂ - CH-CH ₃ CH ₂ - CH ₂ - CH ₂ - CH ₃	3-Methyl heptane	Longest chain

WORK SHEET 4

2	CH ₃ CH ₃	2,4-Dimethylpentane
	CH ₃ -CH-CH ₂ - CH-CH ₃	
	CH ₃	2,2 – Dimethylpropane
4	CH ₃ -C-CH ₃	
	CH ₃	

 *C_1 - METH *C_2 - ETH *C_3 - PROP *C_4 - BUT *C_5 - PENT *C_6 - HEX *C_7 - HEPT *C_8 - OCT *C_4 NON $^*C_{10}$ - DEC *

WORK SHEET 5

1	CH ₃ -CH ₂ - CH ₂ -CH ₋ CH ₃	3-Ethylhexane
2	CH ₂ -CH ₃ CH ₃ -CH ₂ -CH ₂ -CH ₃ CH ₂ -CH ₃	3,3-Diethylpentane

WORK SHEET 6

		3,4-Dimethylhexane	Longest chain
1	CH ₃		
	CH ₃ -CH ₂ -CH-CH ₃ CH ₂ -CH ₃		
	ÇH ₃ ÇH ₃	2,3,4-Trimethylhexane	Lowest sum rule
2	CH₃-CH₂- CH-CH-CH₃		
	CH ₃		
	CH ₃ CH ₃ CH ₃	2,3,4,5- Tetramethylhexane	
3	CH₃-CH-CH-CH-CH₃ CH₃		
4	CH ₃ CH ₃ CH ₂ -CH ₃ CH ₃ -CH-CH ₂ -CH-CH ₃	2,3,5-Trimethylheptane	Longest chain + Lowest sum

 *C_1 - METH *C_2 - ETH *C_3 - PROP *C_4 - BUT *C_5 - PENT *C_6 - HEX *C_7 - HEPT *C_8 - OCT *C_9 NON $^*C_{10}$ - DEC *

WORK SHEET 7

1	CH ₂ -CH ₃ CH ₃ -CH ₋ CH-CH ₃ CH ₃	3-Ethyl-2-methylpentane	Lowest sum + Alphabetical order
2	CH ₃ CH ₂ -CH ₃ CH ₃ -CH-CH ₂ -CH ₂ -CH ₃	3-Ethyl-2-methylhexane	
3	CH ₃ CH ₃ CH ₃ -CH- CH-CH ₂ -CH ₃ CH ₂ -CH ₃	4-Ethyl-2,3-dimethylhexane	
5	CH ₃ CH ₃ -CH ₂ -CH-CH ₂ -CH ₃ CH ₂ -CH ₃	3 – ethyl-4-methylhexane *(Only for advanced learning)	

WORK SHEET 8

2	CH ₃ -CH=CH ₂	Propene
3	CH ₃ -CH ₂ -CH=CH ₂	But-1-ene
4	CH ₃ -CH=CH-CH ₃	But-2-ene
6	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH=CH-CH ₃	Hept-2-ene

WORK SHEET 9

1	CH = CH	Ethyne
4	CH_3 - $C \equiv C$ - CH_3	But-2-yne
5	CH≡ C-CH ₂ -CH ₃	But-1-yne
6	CH_3 - CH_2 - CH_2 - $C \equiv C$ - CH_3	Hept-2-yne

^{*} Number should be given to carbon atoms of normal alkenes or alkynes having FOUR or more carbon atoms

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 10

2	CH ₃ -CH ₂ -OH	Ethanol
3	CH ₃ -CH ₂ -CH ₂ -OH	Propan – 1-ol
5	CH ₃ -CH ₂ -CH-CH ₃	Pentan -2-ol
	ОН	

* Number should be given to alcohols having three or more carbon atoms WORK SHEET11

1	Н-СНО	Methanal
3	CH ₃ -CH ₂ -CHO	Butanal

^{*} For straight chain aldehydes, there is **no** need to provide number to each carbon atom . CHO group will always be at one end.

WORK SHEET 12

2	CH ₃ -CO- CH ₂ -CH ₃	Butanone
3	CH ₃ -CO-CH ₂ -CH ₃	Butanone
4	CH ₃ -CO-CH ₂ -CH ₂ -CH ₃	Pentan -2-one
5	CH ₃ -CH ₂ -CO-CH ₂ -CH ₃	Pentan -3-one

* Number should be given to straight chain **ketones** having **five or more carbon atoms**WORK SHEET 13

	CH ₃ -CH ₂ -CH ₂ -COOH	Dentanciascid
10	CH ₃ -CH ₂ -CH ₂ -COOH	Pentanoicacid
_	- 0 - 2 - 2	

^{*} For straight chain Carboxylic acids, there is **no** need to provide number to each carbon atom

WORK SHEET 14

2	CH ₃ -CH ₂ -Cl	Chloroethane
3	CH ₃ -CH ₂ -CH ₂ -Cl	1- Chloropropane
4	CH ₃ -CH-CH ₃	2- Chloropropane
5	CH ₃ -CH ₂ -CH ₋ CH ₃ Cl	2- Chloropentane
9	CH ₃ -CH-CH ₃ Br	2- Bromopropane

^{*} Number should be given to haloalkanes having three or more carbon atoms

 *C_1 - METH *C_2 - ETH *C_3 - PROP *C_4 - BUT *C_5 - PENT *C_6 - HEX *C_7 - HEPT *C_8 - OCT *C_9 NON $^*C_{10}$ - DEC *

WORK SHEET 15

3	Br Br CH ₃ -CH- C-CH ₃ Br	2,2,3- Tribromobutane
4	Cl CH₃-C-CH₃ Cl	2,2 - Dichloropropane

WORK SHEET 16

2	CH ₃ -CH ₂ -NH ₂	Ethanamine
3	CH ₃ -CH ₂ -CH ₂ -NH ₂	Propan -1-amine
4	CH ₃ -CH-CH ₃	Propan- 2-amine
	NH ₂	

^{*} Number should be given to amines having three or more carbon atoms

WORK SHEET 17

1	CH ₃ -O-CH ₃	Methoxymethane
2	CH ₃ -CH ₂ -O-CH ₂ -CH ₃	Ethoxyethane
4	CH ₃ -O-CH ₂ -CH ₃	Methoxyethane
5	CH ₃ -CH ₂ -O-CH ₃	Methoxyethane
6	CH ₃ -CH ₂ -CH ₂ -CH ₂ -O-CH ₂ -CH ₃	Ethoxybutane

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 18

For Advanced Learning (Page 208 of Teacher Text)

The order of priority among the above mentioned fuctional groups is $COOH>-CHO>CO>OH>NH_2>Alkenes>Alkynes$

CH ₃	3-Methylbutan -1-ol *
CH ₃ -CH-CH ₂ -CH ₂ -OH	
CH ₃	3,3- Dimethylbutan -1-ol *
CH ₃ -C-CH ₂ -CH ₂ -OH	
CH ₃	
ОН	5- Hydroxyhexan -2-one **(Only for advanced learning)
CH ₃ -CH-CH ₂ -CO-CH ₃	

* Alkyl groups and Alkoxy groups are always prefixes in poly functional compounds.

 *C_1 - METH *C_2 - ETH *C_3 - PROP *C_4 - BUT *C_5 - PENT *C_6 - HEX *C_7 - HEPT *C_8 - OCT *C_9 NON $^*C_{10}$ - DEC *

^{**} CO group has more preference than OH group.

ISOMERISM

Identify the pair/s of isomers from those given below .Also Find the type of isomerism exhibited by them.

Identify	y the pair/s of isomers from those given below .Also Find the type of isom	ierism exhibited by them.
No	Structure	Molecular formula
a	CH_3	
	CH ₃ -CH ₂ -CH-CH ₃	
	CH_3	C ₇ H ₁₆
b	CH ₃	
	CH ₃ -CH ₂ -CH-CH ₃	
С	CH_3	
	CH₃-CH₂-C-CH₂-CH₃	
	CH_3	
d	CH ₃	
	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	
e	CH ₃ -O-CH ₃	C_2H_6O
f	CH ₃ -CH ₂ -CH ₂ -CH ₃	
g	CH ₃ -CH ₂ -OH	
h	CH ₃ -CH ₂ -CHO	
i	CH ₃ -CH ₂ -CH ₂ -Cl	
j	CH ₃ -CH-CH ₃	
	ОН	
k	CH ₃ -CO-CH ₃	
1	CH ₃ -CH ₂ -CH ₂ -OH	
m	CH₃-CH-CH₃	
	Cl	C₃H ₇ Cl
n	CH ₃	
	CH ₃ -C-CH ₂ -OH	
	CH ₃	Hint : n and o are Chain isomers
0	CH ₃	
	CH ₃ -CH-CH ₂ -CH ₂ -OH	

*C₁ - METH * C₂ - ETH * C₃ - PROP * C₄ - BUT * C₅ - PENT * C₆ - HEX * C₇ - HEPT * C₈- OCT * C₉ NON * C₁₀ - DEC *

WORK SHEET 20

Write all possible isomers of the following

Molecular formula	Isomers	IUPAC name
C_5H_{12}		
C_2H_6O		
C_3H_6O		
C_3H_8O		
C II		
C_6H_{12}		
C_4H_8		
$\mathbf{C}_{3}\mathbf{H}_{6}$		

Note: By changing the position of the double boned, we can write more position isomers to alkenes

 *C_1 - METH *C_2 - ETH *C_3 - PROP *C_4 - BUT *C_5 - PENT *C_6 - HEX *C_7 - HEPT *C_8 - OCT *C_9 NON $^*C_{10}$ - DEC *

WORK SHEET 20

Answers

Molecular formula	Isomers	IUPAC name
	CH ₃ -CH ₂ -CH ₂ -CH ₃	Pentane
$\mathbf{C_5H_{12}}$	CH ₃ -CH-CH ₂ -CH ₃	2- Methyl butane
	CH ₃ CH ₃ -C-CH ₃ CH ₃	2,2 – Dimethylpropane
	CH ₃ -CH ₂ -OH	Ethanol
C_2H_6O	CH ₃ -O-CH ₃	Methoxymethane
6 22 6	CH ₃ -CH ₂ -CHO	Propanal
C ₃ H ₆ O	CH ₃ -CO-CH ₃	Propanone
	CH ₃ -CH ₂ -CH ₂ -OH	Propan -1-ol
C_3H_8O	CH ₃ - CH-CH ₃ OH	Preopan - 2- ol
	CH ₃ -O-CH ₂ -CH ₃	Methoxyethane
	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH=CH ₂	Hex -1-ene *
$\mathrm{C_6H_{12}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cyclohexane
	CH ₃ -CH ₂ -CH=CH ₂	But – 1 -ene *
C ₄ H ₈	H H H-C-C-H H-C-C-H H-H-H H-H	Cyclobutane
6 **	CH ₃ -CH=CH ₂	Propene
$\mathbf{C_3H_6}$	H H H	Cyclopropane

Note: *By changing the position of the double boned, we can write more position isomers to alkenes