SSLC A+ Questions and Answers English Variant 2018-19

Prepared by Dr.V.S.RaveendraNath. Airbon: 944720645, 70120320930

Chapter 5, Trigonometry.

Bird's Sagacity View.

$$Sin = \frac{Oppositeside}{hypotenuse}$$

$$Cos = \frac{adjacentside}{hypotenuse}$$

$$tan = \frac{oppositeside}{adjacentside}$$

$$A$$
Hypotenuse
$$D$$
Adjacent side

One Ancient Teacher Of History Swore At His Class.

- 1) If the angles are $45^{\scriptscriptstyle 0}$, $45^{\scriptscriptstyle 0}$, $90^{\scriptscriptstyle 0}$, then the ratio of the sides $1:1:\sqrt{2}\,$.
- 2) If the angles are 30° , 65° , 90° , then the ratio of the sides $1:\sqrt{3}:2$.

Values of trigonometric functions.

+							
	Functions	0	30	45	60	90	180
	Sin	0	1/2	$1/\sqrt{2}$	$\sqrt{3/2}$	1	0
	Cos	1	$\sqrt{3/2}$	$1/\sqrt{2}$	1/2	0	-1
	Tan	0	1/√3	1	$\sqrt{3}$	Not	0
						defined	

......drvsr

Question 1.

In triangle ABC , AB = 8cm, BC = 10cm, \angle CBA 130 $^{\circ}$. Find the area of the \triangle ABC. ($\sin 50$ = 0.76, $\cos 50$ = 0.64, $\tan 50$ = 1.19)

Answer:-

Given, AB = 8cm, BC = 10cm, $\angle CAB = 130^{\circ}$.

Area =
$$\frac{1}{2}ac \sin B$$

$$= \frac{1}{2} \times 10 \times 8 \times \sin 130^{\circ} \quad \Rightarrow 5 \times 8 \times (180 - 130)$$

- \Rightarrow 50 \times sin 50.
- \Rightarrow 40 \times 0.76=30.4 cm²

.drvsr

Question. 2.

To adjacent sides of a triangle are 10cm and 15cm long and ths angle b/w these sides is 50° . Compute its area. ($\sin 50 = 0.7660$)

Answer:-

Area of the triangle = $\frac{1}{2}ac \sin B$

Triangle ADC is right angled triangle.

Let *h* be the height

$$\sin 50 = \frac{h}{15}$$

$$0.7660 = \frac{h}{15}$$

$$h=15\times0.7660=11.4900$$

Hence the area = $\frac{1}{2} \times 10 \times 11.49 = 57.49 \, cm^2$.

......drvsr

Question 3

Find the radius of an equilateral triangle of side 6cm Answer:-

$$\cos 30 = \frac{3}{radius}$$

$$\frac{\sqrt{3}}{2} = \frac{3}{radius}$$

$$radius = \frac{3 \times 2}{\sqrt{3}} = 2\sqrt{3}$$

Hence the radius of the circle = $2\sqrt{3}$ *cm*.

Question 4.

A man standing at the foot of a tower 40 meters away from a hill at an angle of elevation 60° clibing to the top of the tower, he sees the top of the hill at an angle of elevation 45° . Compute the heigh of the tower. ($\sin 45 = 0.7071$, $\cos 45 = 0.7071$, $\tan 45 = 1.00$, $\sin 60 = 0.8660$, $\cos 60 = 0.5000$, $\tan 60 = 1.7321$.)

Answer:-

Let the height of the hill be AB, and the height of the tower be CD in \triangle ABC.

$$BC = 40m \angle ACB = 60^{\circ}$$

$$\tan 60^{\circ} = \frac{AB}{BC} \implies \tan 60^{\circ} = \frac{AB}{40}$$

AB =
$$40 \tan 60^{\circ}$$
.
= 40×1.7321
= $69.28....(1)$

Hence the height of the hill = 69.28m.

In ΔADP,

$$\angle ADP = 45^{\circ}$$
, PD = 40.

$$\tan 45^{\circ} = \frac{AP}{PD}$$

$$\Rightarrow 1 = \frac{AP}{40}$$
; $AP = 40$

So,
$$PB = AB - AP$$

= $69.28 - 40 = 29.28$

$$PB = CD = 29.28.$$

Hence, the height of the tower = 29.28m.

Question 5

AC and BC are two equal chords of a circle with diameter AB. If the equal chords have lengths 10cm find the area of the circle.

Answer:-

$$45^{0}$$
 45^{0} 90^{0}
 $1 : 1 : \sqrt{2}$
 \downarrow \downarrow
 $10 : 10 \sqrt{2}$

Diameter AB = $10\sqrt{2}$ cm

Radius =
$$5\sqrt{2}$$
 cm

Area =
$$\pi r^2 = \pi \times (5\sqrt{2})^2 = 50\pi \text{ sq.cm}$$

......drvsı

Question 6.

Two sides of a triangle are 9cm and 10cm and the angle between those sides is 105°. find the area of the triangle.

$$[\sin 75^{\circ} = 0.97]$$

Answer

In
$$\triangle BDC \angle CBD = 180^{\circ} - 105^{\circ} = 75^{\circ}$$

$$\sin 75^{\circ} = \frac{\mathrm{CD}}{9}$$

$$0.97 = \frac{\text{CD}}{9}$$

$$\mathrm{CD}~=~0.97\times9=8.73~\mathrm{cm}$$

$$Area = \frac{1}{2} \times 10 \times 8.77$$

= 43.65 sq.cm

......drvsr

Question 7.

When the sun is at an elevation of 40°; the shadow of a flagpost is 15 metres.

- (a) Find the height of the flagpost?
- (b) What would be the length of the shadow, when the sun is at an elevation of 45° [tan $40^{\circ} = 0.84$; sin $40^{\circ} = 0.64$]

Answer

Let H be the height of the flagpost

$$\tan 40^{\circ} = \frac{H}{15}$$
 $H = 15 \times \tan 40^{\circ}$
 $= 15 \times 0.84 = 12.60 \text{ metre}$

Two buildings in a plane ground are 20 metres apart. From the top of the smaller building, one sees the base of the building at a depression of 50° and its top at an elevation of 25°

- (a) Draw a rough figure and mark the measurements
- (b) Find the height of the smaller building
- (c) Find the heights of the bigger building

$$[\tan 50 = 1.2; \tan 25 = 0.4]$$

Answer

In $\triangle ADE$,

$$\tan 50^{\circ} = \frac{AE}{DE}$$

$$AE = 20 \times \tan 50^{\circ}$$

$$= 20 \times 1.2 = 24 \text{ m}$$

Height of the smaller building = 24 metre

......drvsr

Question 9

A man sees the bottom and top of a building at a depression of 55° and 35° respectively from the top of a 40 metres high tower.

- (a) Draw a rough figure using the given data and mark the measurements
- (b) Find the distance from tower to the building
- (c) Find the height of the tower.

$$[\tan 55^{\circ} = 1.43; \tan 35^{\circ} = 0.7]$$

Answer

Tower $\Rightarrow CD = 40 + x$ building $\Rightarrow AB$

In $\triangle BED$,

$$\tan 35^{\circ} = \frac{x}{BE}$$

$$BE = \frac{x}{\tan 35^{\circ}}$$
40 cm

In $\triangle ACD$,

$$\tan 55^{\circ} = \frac{40 + x}{AC}$$

$$AC = \frac{40 + x}{\tan 55^{\circ}}$$

$$BE = AC \Rightarrow \frac{x}{\tan 35^{\circ}} = \frac{40 + x}{\tan 55^{\circ}}$$

$$x \tan 55^{\circ} = (40 + x) \tan 35^{\circ}$$

$$x (\tan 55^{\circ} - \tan 35^{\circ}) = 40 \tan 35^{\circ}$$

$$x = \frac{40 \times \tan 35^{\circ}}{\tan 55^{\circ} - \tan 35^{\circ}}$$

$$= \frac{40 \times 0.7}{1.43 - 0.7}$$

$$=\frac{28}{0.73} = 3835$$

Height of the tower =
$$CD = 40 + x$$

$$= 40 + 38.35 = 78.35$$
 metre

Distance from the tower to the building=
$$BE = \frac{x}{\tan 35^{\circ}} = \frac{38.35}{0.7}$$

......drvs:

Question 10

The top of a building is seen at an angle of elevation 30° when viewed from the foot of a tower. When viewed from the foot of the building, the top of the tower is see at an angle of elementary 65° .

- a) What is the distance b/w the tower and the building.
- b) What is the height of the building.

Answer:-

AB = Building
CD = Tower.

$$\tan 65 = \frac{\text{CD}}{\text{BD}} \implies \tan 65^{\circ} = \frac{60}{x}$$

 $\Rightarrow 2.14 = 60/x$
 $\Rightarrow x = 60/2.14 = 28.03\text{m}$

Hence the distance b/w the building and the tower = 28.03m.

b)
$$\frac{h}{x} = \tan 30^{\circ} \implies \frac{h}{28.03} = \frac{1}{\sqrt{3}} \implies h = \frac{28.03}{\sqrt{3}} = 9.34\sqrt{3}$$

Height of the building = $9.34 \times 1.732 = 16.17$ m.

.....drvsr

The End of the Chapter – Trigonometry

Prepared by Dr.V.S.RaveendraNath

Mobile: 944720645, 70120320930