Chapter - 2:Vrithangal

 1) Quest:

Find $\angle \mathrm{B}$, and $\angle \mathrm{ACD}$?

Marks :(4)
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are points in the circle with centre O . If $\angle \mathrm{OCA}=\mathrm{x}$ thenFind $\angle \mathrm{OAC}$ Prove that $\angle \mathrm{OCA}+\angle \mathrm{ABC}=90^{\circ}$.

$$
\begin{array}{lll}
\text { Hint: } \quad \angle \mathrm{OCA}=\mathrm{x}, \angle \mathrm{OAC}=\mathrm{x} & & -1 \\
\angle \mathrm{AOC}=180-2 \mathrm{x} & -1 & \\
\angle \mathrm{~B}=90-\mathrm{x} & -1 \\
\angle \mathrm{OCA}+\angle \mathrm{ABC}=90-\mathrm{x}+\mathrm{x}=90^{\circ} & -1
\end{array}
$$

2) In the circle with centre $\mathrm{O}, \angle \mathrm{CAD}=40^{\circ}$ then

Hint:

$\angle \mathrm{B}=\angle \mathrm{D}=90^{\circ} \quad-1$
$\angle \mathrm{ACD}=50^{\circ} \quad-1$
3) In the figure O is the centre of the circle. And $\angle \mathrm{ADB}=120^{\circ}, \angle \mathrm{OAC}=30^{\circ}$, Then Find $\angle \mathrm{ACB}$
Find $\angle \mathrm{OAB}$
Justify that ABC is an equilateral Triangle.

Hint:

$\angle \mathrm{C}=180-120=60^{\circ} \quad-1$
$\angle \mathrm{AOB}=120^{\circ} \angle \mathrm{OAB}=30^{\circ}$
$\angle \mathrm{A}=60^{\circ}, \angle \mathrm{B}=60^{\circ} \mathrm{ABC}$ is equilateral

- 2

4) In the figure $\angle \mathrm{C}=40^{\circ}, \angle \mathrm{OBC}=15^{\circ}$

Find $\angle \mathrm{AOB}$
Find $\angle \mathrm{OAB}$
Find all angles of triangle ABC

Hint:

a) $\angle \mathrm{AOB}=80^{\circ} \quad-1$
b) $\angle \mathrm{OAB}=\frac{(180-80)}{2}=50^{\circ}$
c) $\angle \mathrm{B}=65^{\circ}, \angle \mathrm{A}=75^{\circ} \quad-2$
5) Draw a rectangle of length 6 cm and breadth 4 cm

Construct a square having same area of the rectangle.

Hint:

For Drawing the rectangle
For extending length by adding the breadth with length For drawing the perpendicular bisector of this line Drawing the Square
6) In the figure $\mathrm{PA}=\mathrm{PC}$, Which are the triangles formed when AC and BD are joined?

Prove that ABDC is an isosceles trapezium?

Hint:

a) $\triangle \mathrm{PAC}, \triangle \mathrm{PBD} \quad-1$
b) $\mathrm{PB}=\mathrm{PD} \quad(\mathrm{PA}=\mathrm{PC}, \mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD})$

- 1
$\mathrm{AB}=\mathrm{CD}$
(AC and BD are parallel ($\angle \mathrm{PAC}=\angle \mathrm{PBD}$)
ABDC is an isosceles trapezium
- 1 7)

In the figure if we draw a circle with diagonal BD of the quadrilateral
ABCD as diameter, where will be the positions of the vertices A and $\mathrm{C}(\angle \mathrm{C}$
8) Draw a circle with radius 3 cm .Construct a triangle with vertices on the circle and having angles $50^{\circ}, 60^{\circ}, 70^{\circ}$

Hint:

For Drawing the circle
For drawing angles $100^{\circ}, 120^{\circ}, 140^{\circ}$ at the centre For drawing the triangle -2
9) In the figure the chords MA and NB extended and met at P . $\mathrm{MA}=5 \mathrm{~cm}, \mathrm{PA}=7 \mathrm{~cm}$ and $\mathrm{PB}=6 \mathrm{~cm}$.Calculate the length of NB?

Hint:

$\mathrm{MP}=12 \mathrm{~cm}$	-1
$\mathrm{PA} \times P \mathrm{M}=\mathrm{PB} \times P \mathrm{~N}$	-1
$\mathrm{PN}=14 \mathrm{~cm}$	-1
$\mathrm{NB}=8 \mathrm{~cm}$	-1

$\mathrm{PN}=14 \mathrm{~cm}$

- 1
-1

10) a) What is the measure of $\angle \mathrm{ADC}$?
b) Find the radius of the circle.

Hint:a) $\angle \mathrm{ADC}=90^{\circ}$

- b) diameter
$=10 \mathrm{~cm}$
- 1
radius $=5 \mathrm{~cm}$
- 1

11) In the figure $\triangle \mathrm{ABC}$ is equilateral.

$$
\mathrm{BD}=\mathrm{CD}, \mathrm{AC}=12 \mathrm{~cm} \text { and }
$$

Hint:

a) $\angle \mathrm{ACB}=60^{\circ} \quad-1$
b) $\angle \mathrm{D}=120^{\circ} \quad-1$
c) $\angle \mathrm{BCD}=30^{\circ} \quad-1$
d) $\angle \mathrm{ACD}=90^{\circ} \quad-1$
12)

In the figure O is the centre of the circle. If $\angle \mathrm{AOC}=100^{\circ}$ find $\angle \mathrm{ABC}$?

Hint:

$$
\begin{align*}
& \angle \mathrm{ADC}=\frac{1}{2} \times \angle \mathrm{AOC}=\frac{1}{2} \times 100^{\circ}=50^{\circ} \\
& \angle \mathrm{ABC}=180^{\circ}-50^{\circ}=130^{\circ}
\end{align*}
$$

13)

In the figure $\angle \mathrm{BAC}=35^{\circ}$ find the measures of $\angle \mathrm{BDC}$ and $\angle \mathrm{ADC}$?

Hint:

$\angle \mathrm{BDC}=35^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{ADC}=\angle \mathrm{ADB}+\angle \mathrm{BDC}=90 \\
& +35=125^{\circ} \quad-1
\end{aligned}
$$

14)the figure O is the centre of the circle. If $\angle \mathrm{AOB}=80^{\circ}$ Find the measures of
$\angle \mathrm{OCB}$ and $\angle \mathrm{OBC}$

Hint: $\angle \mathrm{OCB}=\frac{1}{2} \mathrm{X} \angle \mathrm{AOB}=\frac{1}{2} \mathrm{X} 80^{\circ}=40^{\circ}$
$\triangle \mathrm{OBC}$ is isosceles, so $\angle \mathrm{OBC}=40^{\circ}$
15)the figure of a clock , numbers 12,7 , and 5 are joined to form a triangle.
(a) What are the measure of the angles of this triangle ?
(b) Give a suitable name for this triangle.
(c) Howmany such triangles can be drawn in this clock ?

Hint:

- Angles are $75^{\circ}, 75^{\circ}, 30^{\circ}$
- Isosceles triangle
- 12

perimetre of the circle and the length of the arc AMD is $\frac{1}{6}$ of the perimetre of the circle.
(a) What is the measure of centre angle of the arc CNB ?
(b) Find the measure of $\angle \mathrm{CDB}$?
(c) Find the measurement of $\angle \mathrm{ABD}$.
(d) Write the measurement of \angle APD.Hint:
- Centre angle of arc CNB $=72^{\circ}$
- $\angle \mathrm{CDB}=36^{\circ}$
- $\angle \mathrm{ABD}=30^{\circ}$
- $\angle \mathrm{APD}=66^{\circ}$
- 2
17)the figure chords CE , GD , $C F$ are extended to meet outside the circle at A and B. The lengths $A G$ and $B D$ are equal. If $\mathrm{AE} \times \mathrm{AC}=\mathrm{AG} \times \mathrm{AD}$
(a) Write the product equal to $B F \times B C$?
(b) Prove that $\mathrm{AE} \times \mathrm{AC}=\mathrm{BF} \times \mathrm{BC}$

Hint:

- BD x BG
-- 1
- $\mathrm{AG} \times \mathrm{AD}=\mathrm{BD} \times \mathrm{BG}$
- $\mathrm{BF} \times \mathrm{BC}=\mathrm{AG} \times \mathrm{AD}$
$\mathrm{BF} \times \mathrm{BC}=\mathrm{AE} \times \mathrm{AC}$

18) In the figure O is the centre of the circle and $E D$ is its diametre. If $\angle \mathrm{EGP}=67^{\circ}$
(a) What is the measure of $\angle \mathrm{EDP}$.
(b) Find other two angles of \triangle ODP ?

Hint:

- a) $\angle \mathrm{EDP}=67^{\circ}$
-- 1
- b) $\angle \mathrm{DOP}=46^{\circ}, \angle \mathrm{OPD}=$ 67°
-- 2

19)

in Part 1

Part 1 Part 2

$\angle A C B \angle B D C$
$\angle A B D \angle A O D$
$\angle \mathrm{BAC} \quad \angle \mathrm{ADB}$
$\angle \mathrm{ACD}$

Hint:

$\angle \mathrm{ACB}=\angle \mathrm{ADB} \quad-1$
$\angle \mathrm{ABD}=\angle \mathrm{ACD} \quad-1$
$\angle \mathrm{BAC}=\angle \mathrm{BDC} \quad-1$
20)

In the figure O is the centre of the circle and AB is the diametre. If $\angle \mathrm{BOC}=120^{\circ}$, Find $\angle \mathrm{OCA}$ and $\angle \mathrm{OAC}$?

$$
\angle \mathrm{OCA}=\angle \mathrm{OAC}=60^{\circ} \quad-2
$$

21) In the figure O is the centre of the circle. $\triangle \mathrm{ABC}$ is equilateral. Find the measures of
a) $\angle \mathrm{A}$
b) $\angle \mathrm{BOC}$
Hint:
a) $\angle \mathrm{A}=60^{\circ}$
-1 , b) $\angle \mathrm{BOC}=$
22) In the figure $\mathrm{PC}=10 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}$, and $\mathrm{PB}: P A=2: 3$. Then
a) Find the length of PD
b) Find the length of AB

Hint: a) $P D=6 \mathrm{~cm}$
1b) $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$,

PB : PA= $2: 3, P B=2 x, P A=3 x$
$3 x \times 2 x=10 \times 6, \quad x^{2}=\frac{60}{6}=10, \quad x=\sqrt{10}$
$A B=P A-P B=3 x-2 x=x=\sqrt{10}$
23)In the circle the chords $A B$ and $C D$ intersect at E. The central angle of arc BQC is 130°. The central angle of arc APD

is 40°. Find a) $\angle \mathrm{ACE}$
b) $\angle \mathrm{CAE}$
c) $\angle \mathrm{BEC}$
a) $\angle \mathrm{ACE}=20^{\circ}$
-1
b) $\angle \mathrm{CAE}=65^{\circ}$

- 1
c) $\angle \mathrm{BEC}=85^{\circ}$
- 1

24) Based on the figure write the angles from \triangle BPD equal to the following angles in \triangle APC

a) $\angle \mathrm{ACP}$
b) $\angle \mathrm{CAP}$

Hint:

a) $\angle \mathrm{ACP}=\angle \mathrm{PBD}$
b) $\angle \mathrm{CAP}=\angle \mathrm{PDB}$
25) In the figure $\mathrm{PA}=9 \mathrm{~cm}, \mathrm{~PB}=4 \mathrm{~cm}$, and PC is 9 cm more than PD
(a) If PD $=x$ find the length of PC ?

(b) Find the length of PD ?

Hint: (a) $P D=x, P C=x+9$
(b) $\mathrm{PA} \times \mathrm{PB}=\mathrm{PC} \times \mathrm{PD}$
$9 \mathrm{x} 4=(\mathrm{x}+9) \mathrm{x} \quad 1$
$x^{2}+9 x=36, x=3 \quad 1$
PC = 12
$\mathrm{PD}=3 \quad 1$
26)

- In the figure O is the centre of the circle and PQ is its diametre.

If $\mathrm{PR}=\mathrm{OR}(\mathrm{a})$ Prove that $\Delta \mathrm{OPR}$ is an equilateral triangle.
(b) Find all the angles of $\triangle \mathrm{OQR}$.

Hint: For finding the angles of $\triangle \mathrm{OPR}$ are $60^{\circ} \quad-1$

- For finding the angles of $\Delta \mathrm{OQR}$
-- 2

27) In the figure $A B C D$ is a quadrilateral .If a circle is drawn through A, B, and D state the position of the point C as Outside the circle,Inside the circle,or On the circle? Justify your answer.

Hint:

$\angle \mathrm{A}=55^{\circ} \quad-1$
$\angle \mathrm{A}+\angle \mathrm{C}<180 \quad-1$
C is outside the circle $\quad-1$
28) In the figure $\angle \mathrm{AED}=40^{\circ}$ then

Which of the following can be the measure of $\angle \mathrm{ABC}$?
$\left(140^{\circ}, 130^{\circ}, 150^{\circ}, 180^{\circ}\right)$
Using the above measure of $\angle \mathrm{ABC}$, find the measures of angels of $\triangle \mathrm{EAD}$

Hint:

$\angle \mathrm{ABC}=130^{\circ}(\angle \mathrm{ABC}+\angle \mathrm{E}<180) \quad-1$
$\angle \mathrm{EDA}=130^{\circ}, \angle \mathrm{EAD}=10^{\circ}-2$
29) In the figure AB is the diameter of the semicircle. IF $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}$ then
a) find PA ?
b) find PC^{2} ?
c) Draw a square of area $18 \mathrm{~cm}^{2}$?

Hint:

a) $\mathrm{PA}=6 \mathrm{~cm} \quad-1$
b) $\mathrm{PC}^{2}=\mathrm{PA} \times \mathrm{PB}=6 \times 3=18 \quad-1$
c) For Drawing the square by copying the figure - 3
30) In the figure P, Q, R, S are points on a circle. Find all angles of quadrilateral PQRS?

Hint:
$\angle \mathrm{PSR}=105^{\circ} \quad 1$
$\angle \mathrm{SPQ}=85^{\circ} \quad-1$
$\angle \mathrm{PQR}=75^{\circ} \quad-1$
$\angle \mathrm{QRS}=95^{\circ} \quad-1$

31) Draw the figure in your paper.
(a) Mark a point C on the circle with $\angle \mathrm{MBC}=30^{\circ}$
(b) Join M , B , C to get a triangle .
(c) Find other two angles of the triangle MBC
(d) Write the ratio of the smallest side to the radius of this triangle.

Hint: (a) For Drawing $\angle \mathrm{MBC}=30^{\circ}$

- (b) Joining the points M , B , C and making triangle -- 1
- (c) For finding other angles of Δ MBC-- 2
- (d) For finding the ratio as $1: 1$-- 1

32) In the figure O is the centre and $A B$ is the diametre of the circle. $P C$ is perpendicular to $A B$. If $P A \times P B=P C^{2}$
(a) What is the length of OP ?
(b) Find the length of PC .
(c) Write the ratio of the areas of \triangle PBC and $\triangle \mathrm{APC}$?
(d) Find the area of quadrilateral ACBD.

Hint:

- (a) $\mathrm{OP}=2 \mathrm{~cm}$. . -- 1
- (b) $\mathrm{PC}=\sqrt{ } 32 \quad--1$
- (c) For finding the ratio as $1: 2$-- 1
- (d) $36+6$ 32 -- 2

33) A, B, and C are points on the circle with centre O. If $\angle A=60^{\circ}, B C=4 \mathrm{~cm}$ then

Find $\angle \mathrm{BOC}$
(1) Find the circumradius
(2) When $\angle \mathrm{A}=30^{\circ}$, Prove that BC is equal to circumradius.

Hint:

(a) $\angle \mathrm{BOC}=120^{\circ} \quad-1$
(b) $\angle \mathrm{CBO}=30^{\circ}(30,60,90)(1: \sqrt{3}: 2)$
$\mathrm{OB}=2 \times \frac{2}{\sqrt{3}}=\frac{4}{\sqrt{3}}$
(c) When $\angle \mathrm{A}=30^{\circ}$ Triangle OBC becomes equilateral $\mathrm{OB}=\mathrm{BC}$
34) In the figure the diameter of the larger semi circle is $13 \mathrm{~cm} \mathrm{AP}=8 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}$.
(a) Then $\mathrm{PA} \times \mathrm{PB}=$
(b) $\mathrm{PB}=$ \qquad
(c) Find the radius of the smaller semicircle?
(d) What is the area of the square BMRS?

Hint:

(a0 $\mathrm{PA} x \mathrm{~PB}=\mathrm{PQ}^{2}=16 \quad-1$
(b) $\mathrm{PB}=2$
(c) Radius of the small semicircle $=5 \mathrm{~cm}$
(d) Area of the square BMRS $=30$

