Chapter - 2:Vrithangal 1) Quest:

Marks :(4)

A,B, C are points in the circle with centre O. If $\angle OCA = x$ thenFind $\angle OAC$ Prove that $\angle OCA + \angle ABC = 90^{\circ}$.

 $\angle OCA = x$, $\angle OAC = x$ - 1 Hint: $\angle AOC = 180 - 2x$ - 1 $\angle B = 90 - x$ - 1 $\angle OCA + \angle ABC = 90 - x + x = 90^{\circ}$ - 1

2) In the circle with centre O , \angle CAD= 40° then

- 1

- 1

Find $\angle B$, and $\angle ACD$?

Hint:	
∠B =	∠D= 90°

 $\angle ACD = 50^{\circ}$

3) In the figure O is the centre of the circle. And $\angle ADB=120^\circ$, $\angle OAC=30^\circ$, Then Find ∠ACB Find ∠OAB

Justify that ABC is an equilateral Triangle.

Hint: ∠C=180-120=60° - 1 ∠AOB =120° ∠OAB =30° - 1 $\angle A=60^{\circ}$, $\angle B=60^{\circ}$ ABC is equilateral - 2 **4)** In the figure $\angle C = 40^\circ, \angle OBC = 15^\circ$ Find ∠AOB

Find ∠OAB Find all angles of triangle ABC

Hint: a) ∠AOB = 80° - 1 $(180 - 80) = 50^{\circ}$ b) ∠OAB = 2 - 1 c) ∠B=65°, ∠A=75° - 2 5) Draw a rectangle of length 6cm and breadth 4cm Construct a square having same area of the rectangle.

Hint:

For Drawing the rectangle	- 1
For extending length by adding the breadth with length	- 1
For drawing the perpendicular bisector of this line	- 1
Drawing the Square	- 2
6) In the figure PA=PC, Which are the triangles forme	ed when AC and BD are joined ?

Prove that ABDC is an isosceles trapezium?

For drawing angles 100°, 120°, 140°at the centre For drawing the triangle

9) In the figure the chords MA and NB extended and met at P. MA=5cm , PA=7cm and PB=6cm.Calculate the length of NB?

- 1

Hint:	
MP=12 cm	- 1
PA xPM= PB xPN	- 1
PN=14cm	- 1
NB=8 cm	- 1

10) a) What is the measure of ∠ADC ? b) Find the radius of the circle.

CD=5cm.Then Find the measure of ∠ACB Find the measure of $\angle D$ Find the measure of \angle BCD Calculate the diameter of the circle Hint: a) ∠ACB =60° - 1 b) ∠D =120° - 1 c) ∠BCD =30° - 1 12 cm d) ∠ACD=90 ° - 1 AD=13cm 1 12) In the figure O is the centre of the circle. If $\angle AOC=100^{\circ}$ find D $\angle ABC ?$ Hint: $\angle ADC = \frac{1}{2} \times \angle AOC = \frac{1}{2} \times 100^\circ = 50^\circ$ 1 ∠ABC =180° - 50° =130° 1 100° 13) In the figure $\angle BAC = 35^{\circ}$ find В the measures of $\angle BDC$ and ∠ADC? 35° Hint: В $\angle BDC = 35^{\circ}$ - 1 $\angle ADC = \angle ADB + \angle BDC = 90$ + 35 = 125° - 1

14)the figure O is the centre of the circle. If \angle AOB = 80° Find the measures of \angle OCB and \angle OBC

1 Hint: $\angle \text{OCB} = \frac{\overline{2}}{2} \text{ X} \angle \text{AOB} = \frac{\overline{2}}{2} \text{ X } 80^\circ = 40^\circ$ - 1 $\triangle OBC$ is isosceles, so $\angle OBC = 40^{\circ}$ - 1 15)the figure of a clock , numbers 12 , 7 , and 5 are joined to form a triangle. (a) What are the measure of the angles of this triangle ? (b) Give a suitable name for this triangle. (c) Howmany such triangles can be drawn in this clock ? Hint: 12 Angles are 75° , 75° , 30° -- 2 11 Isosceles triangle -- 1 10 12 -- 2 9 D 3 I6)he figure the length of the arc CNB is $\frac{1}{5}$ of the 0

В

Ν

1

perimetre of the circle and the length of the arc AMD is $\overline{6}$ of the perimetre of the circle.

(a) What is the measure of centre angle of the arc CNB ?

(b) Find the measure of \angle CDB ?

(c) Find the measurement of \angle ABD.

- (d) Write the measurement of \angle APD.**Hint:**
- Centre angle of arc CNB = 72°
- \angle CDB = 36°
- $\angle ABD = 30^{\circ}$
- \angle APD = 66°

17)the figure chords CE , GD , CF are extended to meet outside the circle at A and B. The lengths AG and BD are equal. If AE x AC = AG x AD

-- 1

-- 1

- 2

-- 1

(a) Write the product equal to BF x BC?

equal to

the angles

R

in Part 1

Part 1 Part 2 ∠ACB ∠BDC ∠ABD ∠AOD ∠BAC ∠ADB

∠ACD

Hint:	
$\angle ACB = \angle ADB$	- 1
$\angle ABD = \angle ACD$	- 1
$\angle BAC = \angle BDC$	- 1

20)

In the figure O is the centre of the circle and AB is the diametre. If $\angle BOC = 120^{\circ}$, Find $\angle OCA$ and \angle OAC ? \angle OCA = \angle OAC = 60° - 2 **21)** In the figure O is the centre of the circle. \triangle ABC is equilateral .Find the measures of Hint: a) $\angle A = 60^{\circ}$ a) ∠A b) ∠BOC -1, b) $\angle BOC =$ 120° -1 22) In the figure PC=10 cm,CD=4cm, and PB:PA=2:3. Then a) Find the length of PD b) Find the length of AB Hint: a) PD = 6cm 1b) $PA \times PB = PC \times PD$, PB : PA = 2 : 3, PB = 2x, PA = 3x1 60 $3x \times 2x = 10 \times 6$, $x^2 = 6 = 10$, $x = \sqrt{10}$ $AB = PA - PB = 3x - 2x = x = \sqrt{10}$ 1 23)In the circle the chords AB and CD intersect at E. The central angle of arc BQC is 130°. The central angle of arc APD is 40° . Find a) $\angle ACE$ b) ∠CAE c)∠BEC a) $\angle ACE = 20^{\circ}$ -1 b) $\angle CAE = 65^{\circ}$ - 1 c) ∠BEC= 85° - 1

24) Based on the figure write the angles from Δ BPD equal to the following angles in Δ APC

a) $\angle ACP$ b) $\angle CAP$ **Hint:** a) $\angle ACP = \angle PBD$ - 1 b) $\angle CAP = \angle PDB$ - 1

25) In the figure PA=9cm, PB=4cm, and PC is 9cm more than PD(a) If PD = *x* find the length of PC ?

26)

• In the figure O is the centre of the circle and PQ is its diametre.

If PR = OR(a) Prove that Δ OPR is an equilateral triangle.

(b) Find all the angles of Δ OQR.

Hint: For finding the angles of $\triangle OPR$ are 60° -- 1

• For finding the angles of Δ OQR

27) In the figure ABCD is a quadrilateral .If a circle is drawn through A,B,and D state the position of the point C as

Outside the circle,Inside the circle,or On the circle? Justify your answer.

-- 2

Hint: $\angle A = 55^{\circ}$ - 1 $\angle A + \angle C < 180$ - 1C is outside the circle- 1

28) In the figure \angle AED=40° then

Which of the following can be the measure of $\angle ABC$?

(140°, 130° , 150°, 180°)

Using the above measure of $\angle ABC$, find the measures of angels of $\triangle EAD$

Hint: \angle ABC=130° (\angle ABC + \angle E < 180)</td>- 1 \angle EDA=130°, <EAD = 10°</td>- 2

29) In the figure AB is the diameter of the semicircle. IF AB = 9 cm, PB = 3 cm then

- a) find PA ?
- b) find PC² ?
- c) Draw a square of area 18cm²?

Hint: a) PA = 6 cm - 1 b) $PC^2 = PA \times PB = 6 \times 3 = 18$ - 1 c) For Drawing the square by copying the figure - 3

30) In the figure P,Q,R,S are points on a circle. Find all angles of quadrilateral PQRS?

- Hint:

 $\angle PSR = 105^{\circ}$ 1

 $\angle SPQ = 85^{\circ}$ -1

 $\angle PQR = 75^{\circ}$ -1

 $\angle QRS = 95^{\circ}$ -1
 - 31) Draw the figure in your paper.
 - (a) Mark a point C on the circle with \angle MBC = 30°
 - (b) Join M, B, C to get a triangle.
 - (c) Find other two angles of the triangle MBC
 - (d) Write the ratio of the smallest side to the radius of this triangle.

Hint: (a) For Drawing \angle MBC = 30°

- (b) Joining the points M , B , C and making triangle -- 1
- (c) For finding other angles of Δ MBC -- 2
- (d) For finding the ratio as 1:1 -- 1 32) In the figure O is the centre and AB is the diametre of the circle. PC is perpendicular to AB. If $PA \times PB = PC^2$ (a) What is the length of OP ?

-- 1

- (b) Find the length of PC .
- (c) Write the ratio of the areas of Δ PBC and Δ APC ?
- (d) Find the area of quadrilateral ACBD.

ι.		
•	(a) OP = 2cm.	1
•	(b) PC = $\sqrt{32}$	1
•	(c) For finding the ratio as 1 : 2	1
•	(d) 36 + 6 √32	2

33) A, B, and C are points on the circle with centre O . If $\, \angle A$ = 60° , BC = 4cm then Find $\, \angle \, BOC$

- (1) Find the circumradius
- (2) When $\angle A = 30^\circ$, Prove that BC is equal to circumradius.

- 34) In the figure the diameter of the larger semi circle is 13 cm AP=8cm, PQ = 4 cm.
- (a) Then PA x PB =.....
- (b) PB =
- (c) Find the radius of the smaller semicircle?
- (d) What is the area of the square BMRS?

Hint:	
$(a0 PA xPB=PQ^2 = 16)$	- 1
(b) PB=2	- 1
(c) Radius of the small semicircle =5 cm	- 1
BM ² =10 x3	- 1
(d) Area of the square BMRS = 30	- 1