A+ Mathematics Questions and answers English Variant Prepared by Dr.V.S.RaveendraN(ath .

Airborne : 9447206495, 7012030930

Chapter 1. Arithmetic Series.

Bird's eye.
First term = f., Common difference $=d ., \mathrm{X}_{n}=$ Nth term., $\mathrm{S}_{n}=$ Sum. $n=$ number of term.

$$
\mathrm{X}_{n}=f+(n-1) d \quad ; \mathrm{X}_{n}=d n+(f-d) \quad ; \mathrm{X}_{n}=a n+b
$$

(a - common difference , $\mathrm{a}+\mathrm{d}$ first term).
$d=x_{2}-x_{1} ; x_{2}=x_{1}+d$ or $f+d ; x_{3}=2 f+d ; d=\frac{x_{m}-x_{n}}{m-n}$;
$d=\frac{\text { differenc e of terms }}{\text { differenc e of posistion valu e }}$
$n=\frac{x_{n}-x_{1}}{d}+1$ or $n=\frac{\text { last term }- \text { first term }}{\text { commondifferenc } \mathrm{e}}+1$
If a, b and c be the consecutive three terms of an AP
The arithmetic mean (AM) $b=\frac{a+c}{2}$.

$$
\begin{aligned}
& \mathrm{S}_{n}=\frac{n}{2}[2 f+(n-1) d] ; \quad \mathrm{S}_{n}=\frac{n}{2}\left[x_{1}+x_{2}\right] \text { or } \mathrm{S}_{n}=\frac{n}{2}[f+l] \\
& \mathrm{S}_{n}=\frac{d}{2} n+n\left(f-\frac{d}{2}\right) .
\end{aligned}
$$

If $x, x+d, x+2 d, x+3 d, x+4 d$ be the consecutive five terms of an AP,
Then the sum of the AP $=5 \times$ middl eterm. or $5 \times(x+2 d)$.
If $x, x+d, x+2 d, x+3 d, x+4 d, x+5 d, x+6 d$ be the consecutive seven terms of an AP,
Then the sum of the AP $=7 \times$ middl eterm or $7 \times(x+3 d)$

Question 1.

Second and fourth terms of the following arithmetic sequence are missing. Find the numbers at these positions.

$$
11,-, 19,-, \ldots \ldots .
$$

Answer:-

Given $\mathrm{a}=11$, $\mathrm{b}=$? , $\mathrm{c}=19$
If a, b, and c be the three consecutive numbers ,
$b=\frac{a+b}{2}=\frac{11+19}{2}=\frac{30}{2}=15$
$\therefore \mathrm{AP}=11,15,19$,
$\mathrm{d}=x_{2}-x_{1}=15-11=4$
$4^{\text {th }}$ term $=19+4=23$.
.drvsr

Question 2

The sum of first n terms of an arithmetic sequence is $5 n^{2}+2 n$.
a) What is the sum of first two terms of this sequence?
(b) Write the first two terms of this sequence.

Answer:-

Given, Sum of the term $=5 n^{2}+2 n$

$$
\begin{aligned}
\text { First term } & =5 \times 1^{2}+2 \times 1 \\
& =5+2=7
\end{aligned}
$$

a) Sum of the first two terms $=5 \times 2^{2}+2 \times 2=24$.

Common difference (d) $=17-7=10$.
b) The first two terms of this sequence $=7,17$.
.drvsr

Question 3

a) Write the algebraic form of the arithmetic sequence
$1,4,7,10, \ldots$.
b) Is 100 a term of this sequence? Why?
c) Prove that the square of any term of this sequence is also a term of it.

Answer:-

Given Sequence $=1,4,7,10, \ldots \ldots \ldots \ldots \ldots$
Common difference (d) $=4-1=3$.
a) The algebraric form $\mathrm{X}_{n}=d n+(f-d)$

$$
=3 n+(1-3)=3 n-2 .
$$

b) $\mathrm{X}_{n}=3 n-2$, ie., $100=3 n-2$

$$
\mathrm{n}=\frac{102}{2}=34 .
$$

Hear, n is a natural number being 100 in this sequence.
c) The square of the third term be $(3 n-2)^{2}=9 n^{2}-12 n+4$

The difference between first term and this will equal to the multiple of the common difference.
ie., $9 x^{2}-12 n+4-1=9 n^{2}-12 n+3$

$$
=3\left(3 n^{2}-4 n+1\right)
$$

Hence, the square of any term of this sequence is also a term of it. drvsr
Question 4.
The $n^{\text {th }}$ term of an AP is $3-5 n$. What is the $(n+1)^{\text {th }}$ term?
Answer.
Given $n^{\text {th }}$ term of an $A P=3-5 n, d=-5$ (the coefficient of n be the common difference)
\therefore the $(n+1)^{\text {th }}$ term $=3-5 n+-5=-5 n-2$
drvsr

Question 5.

How many terms are there in the AP $18,15 \frac{1}{2}, 13, \ldots \ldots,-47$.

Answer.

Given , $\mathrm{a}=18, \mathrm{~d}=\frac{-5}{2}$
Let the given AP has n terms
ie., $\mathrm{X}_{n}=-47$ We know that $n=\frac{\mathrm{X}_{n}-x_{1}}{d}+1$

$$
n=\frac{-47-18}{-\frac{5}{2}}+1=-65 \times \frac{-2}{5}+1=26+1=27 .
$$

\therefore The given AP has 27 terms

> .drvsr

Questions 6

Is -150 a term of AP $11,8,2,5, \ldots \ldots \ldots$?

Answer.

Given $\mathrm{a}=11, \mathrm{~d}=8-11=-3 . \quad \mathrm{X}_{n}=-150$
We know $n=\frac{X_{n}-x_{1}}{d}+1$, $=n=\frac{-150-11}{-3}+1=\frac{-161}{-3}+1=54 \frac{2}{3}$.
This is not possible because " n " is +ve integer.
Hence, - 150 is not a term of given AP.
.drvsr

Question 7.

a) How many three digit numbers are divisible by 7 ?
b) How many multiples of 4 lie between 10 and 250?

Answer

a) Three digit numbers divisible by 7 are 105, 112, 119,

It is an AP, $a=105 d=7 \quad X_{n}=994$ Find n ?
We know $n=\frac{X_{n}-x_{1}}{d}+1=\frac{994-105}{7}+1=128$.
Hence, there are 128 three digits numbers which is divisible by 7.
b) Multiples of $4 \mathrm{~b} / \mathrm{w} 250$ be 12, 16, 20, 24, 28, 248.

Which is an AP . $\mathrm{A}=12, \mathrm{~d}=4, \quad \mathrm{X}_{n}=248, \mathrm{n}=$?
We know that, $n=\frac{X_{n}-x_{1}}{d}+1=f+2 d=20$
So, there are 60 multiples of 4 lying b/w 10 and 250.
drvsr

Question.8.

If the sum of the $6^{\text {th }}$ and $20^{\text {th }}$ term of an AP is 84 , what is the sum of the first 25 terms?
Answer.
Let "a" and "d" be the first term and common difference of the given AP respectively.
$6^{\text {th }}$ term $=20^{\text {th }}$ term , sum 84 .
Given condition $f+5 d+f+19 d=84$
ie., $2 f+24 d=84$
Hence the sum of the first 25 terms

$$
\begin{aligned}
& \mathrm{S}_{n}=\frac{n}{2}[2 f+(n-1) d],=\frac{25}{2}[2 f+24 d] \\
& \text { ie., } \frac{25}{2}[2 f+24 d]=\frac{25}{2} \times 84=1050 .
\end{aligned}
$$

Question 9

In a flower decoration, flowers are arrange in ten concentric circles . If the third and eight circles have 20 and 35 flowers respectively. Find the number of flowers in the outermost circle, using the idea of AP.

Answer.

Given $\mathrm{n}=10$, Third term $=20$., ie., $f+2 d=20 \rightarrow(1)$

$$
\text { Eight term }=35 ., \text { ie., } f+7 d=35 \rightarrow(2)
$$

Solve equation (1) and (2) We get $f=14$ and $d=3$
The number of outermost circle $=\mathrm{X}_{10}=f+9 d=14+9 \times 3=41$.
.drvsr

Question 10.

See these figures made with matchsticks:

Figure 1

Figure 2

Figure 3
(a) How many sticks are needed for the next figure?
(b) If we continue this, what is the relation between the numbers $1,2,3, \ldots$ and the number of matchsticks used in Figure 1, Figure 2, Figure 3 and so on ?
(c) If we write the number of matchsticks in order, what is the algebraic expression to find the $n^{\text {th }}$ term of this sequence?

Answer.

a) Number of sticks are needed for the first figure $=9$

Number of sticks are needed for the second figure $=12$
Number of sticks are needed for the third figure $=15$
Common difference $=12-9=3$.
\therefore Number of sticks are needed for the next figure $=15+3=18$.
b) Here the number of sticks will be used the 3 times of each number of 1 , $2,3, \ldots$. be added 6 will get $1,2,3$..
(ie., $1 \times 3+6=9 ; 2 \times 3+6=12 ; 3 \times 3+6=15$)
c) Sequence $=9,12,15$,

The algebraical form of $n^{\text {th }}$ term

$$
\begin{aligned}
\mathrm{X}_{n} & =d n+(f-d) \\
& =3 \mathrm{n}+(9-3) \\
& =3 \mathrm{n}+6 .
\end{aligned}
$$

.drvsr

Question 11

Consider the arithmetic sequence $12,23,34, \ldots$
(a) What is the $10^{\text {th }}$ term of this seguence?
(b) Is 1111 a term of this sequence? Why?

Answer.

Given $\mathbf{A P}=12,23,34$,
Common difference $(\mathrm{d})=23-12=11$.
a) The $10^{\text {th }}$ term $=f+9 d=12+9 \times 11=111$.
b) We know the algebraical form $\mathrm{X}_{n}=d n+(f-d)$

$$
\begin{aligned}
& =11 \mathrm{n}+(12-11) \\
& =11 \mathrm{n}+1 \\
\text { ie., } 11 \mathrm{n}+1 & =1111 \\
11 \mathrm{n} & =1111-1 \\
& =1110 \\
\mathrm{n} & =\frac{1110}{11}=100.9090 \ldots
\end{aligned}
$$

n is not an integer ,so 1111 is not a term in this sequence.
drvsr

Question 12.

The first term of an arithmetic sequence is 6 and the sum of the first 6 terms is 66 .
(a) What is its $6^{\text {th }}$ term?
(b) What is the common difference of the sequence?
(c) What are the first o terms of this sequence?

Answer.

First term $(\mathrm{f})=6 . \quad$ Sum of the first 6 terms $=66 ., \quad \mathrm{n}=6$.
a) $\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\text { ie., } \begin{aligned}
66 & =\frac{6}{2}[2 \times 6+(6-1) d] \\
66 & =3[12+5 d] \\
22 & =12+5 d \\
5 d & =22-12=10 \\
d & =10 / 5=2 .
\end{aligned}
$$

The $6^{\text {th }}$ term $=\mathrm{f}+5 \mathrm{~d}$

$$
=6+10=16 .
$$

b) Common difference $=2$.
c) First 6 terms of the sequence $=6,8,10,12,14,16$.

Question13.

The first term of an arithmetic sequence is 6 and the common difference is 4 .
(a) What is the algebraic form of this sequence? •
(b) What is the algebraic expression to find the sum of the first n terms of this sequence?
(c) How many terms of this sequence, starting from the first, are to be added to get $510 ?$

Answer\{-

Given, First term (f) $=6$; Comm0n difference $=4$.
a) Algebraical form $\mathrm{X}_{n}=d n+(f-d)$

$$
\begin{aligned}
& =4 n+(6-4) \\
& =4 n+2 .
\end{aligned}
$$

b) The algebraic expression to find the sum of the first n terms

$$
\begin{aligned}
\mathrm{S}_{n} & =\frac{n}{2}[2 f+(n-1) d] \\
& =\frac{n}{2}[2 \times 6+(n-1) 4] \\
& =\frac{n}{2}[12+4 n-4] \\
& =\frac{n}{2} \times 2[6+2 n-2] \\
& =n(2 n+4)=2 n^{2}+4 n
\end{aligned}
$$

c) Consider the sum of the first n terms be 510 .

$$
\begin{aligned}
& \text { ie., } 2 n^{2}+4 n=510 . \\
& 2 n^{2}+4 n-510=0 \text { Solve the equation to get } n \\
& 2 n^{2}+4 n-510=0 \text {. Dividing through out by } 2 \\
& n^{2}+2 n-255=0 \\
& (\mathrm{n}+17)(\mathrm{n}-15)=0 \\
& \mathrm{n}+17-0 \text { or } \mathrm{n}-15=0 \\
& \mathrm{n}=-17 \text { or } \mathrm{n}=15 \text {-ve } 17 \text { rejected } \\
& \therefore \mathrm{n}=15 .
\end{aligned}
$$

15 terms to be added to get 510 .

Question 14.

The $25^{\text {th }}$ term of an arithmatic sequence is 140 and the $27^{\text {th }}$ term is 166 What is the common difference? What is the $35^{\text {th }}$ term?
Answer:-
Given $25^{\text {th }}$ term $=140$ and $27^{\text {th }}$ term is 166 .
But $x_{27}-x_{25}=2 d \quad$ ie., $2 \mathrm{~d}=166-140=26$

$$
\mathrm{d}=\frac{26}{2}=13
$$

$$
\begin{aligned}
35^{\text {dh }} \text { term } & =x_{25}+10 d \\
& =140+(10 \times 13)=140+130=270 .
\end{aligned}
$$

OR

```
Given 25 }\mp@subsup{5}{}{\mathrm{ th}}\mathrm{ term = 140 and 27 }\mp@subsup{7}{}{\mathrm{ th }}\mathrm{ term is 166.
a +24d = 140 and a + 26d = 166.
Solve this equations for a and d
Then we get d=13 and a=-172
\therefore35'th}\mathrm{ term =a + 34d
= - 172+34\times13
= - 172+442
=270.
```


Question 15.

Sum of the first tive tems of an arithemetc equente is 45. What is the third tom?
The common difference of the sequence is 4 . Write the first two ferms. Write another arithemetce sequence havireg the sum of the first five term 45

Answer:-

Given the sum of the first five term of an $\mathrm{AP}=45$.
Common difference $=4$
Third term
Sum $=$ middle term \times number of terms
ie, $X_{3} \times 5=45$
$\therefore x_{2}=\frac{45}{5}=9$
Second term $=$ third term - common difference

$$
=9-4=5
$$

First term $=$ Second term - common difference.

$$
=5-4=1 .
$$

The first two terms = 1 and 5 .
If the sum of the first five term of an AP is 45 , then the third term should be 9 but the common difference may be changed. In this condition we can make many AP's.
Hence The AP $=5,7,9,11,13, \ldots$.
or $\quad=3,6,9,12,15$,
drvsr

Question 16.

(a) Find the least and heighest three digit number which leave a remainder 1 on division by 9 .
(b) How many three digit numbers are there, which leave a remainder one on division by 9 ?
(c) Find the sum of all such numbers.

Answer:-

The smallest three digit nulmber dividing by 9 , the reminder comes up 1 : $99+1=100$.
The largest three digit number dividing by $9=999-8=991$.
b) $\mathrm{n}=\frac{x_{n}-f}{d}+1=\frac{991-100}{9}+1=\frac{891}{9}+1=99+1=100$.
c) Sum $=\frac{n}{2}\left[f+x_{n}\right]=\frac{100}{2}[100+991]=50 \times 1091=54550$ drvsr

Question 17

Write down the first three terms of the sequence of natural numbers leaving remainder 1 on division by 5 . Check whether 510 is a term of above sequence.

Answer:-

The first natural number leaving remainder 1 on division by $5=1$ The second natural number leaving remainder 1 on division by $5=6$ The third natural number leaving remainder 1 on division by $5=11$
\therefore The first three terms of the sequence $=1,6$, and 11 .
We know that $n=\frac{\mathrm{X}_{n}-f}{d}+1$; Here $\mathrm{f}=1 ; \mathrm{d}=6-1=5 . \mathrm{X}_{n}=510$
$\therefore n=\frac{510-1}{5}+1=\frac{509}{5}+1$

$$
=102.8
$$

Hence, n is not an intiger so 510 is not belonging this sequence. .drvsr

Question 18.

In these figures, the sides of the smaller squares are in the arithmetic sequence $2,5,8, \ldots \ldots \ldots \ldots$ and the sides of the larger squares are in the arithmetic sequence $5,8,11, \ldots \ldots \ldots \ldots$
a) Write down the algebraic form of each sequence.
b) Write down the algebraic form of the sequence of areas of the shaded portion in each figure.

Answer:-

Given sequence $=2,5,8, \ldots \ldots \ldots \ldots \ldots \ldots$.
$\mathrm{f}=2 ; \mathrm{d}=5-2=3$.
a) Algebraical form $\mathrm{X}_{n}=d n+(f-d)$

$$
\begin{aligned}
& =3 n+(2-3) \\
& =3 n-1 .
\end{aligned}
$$

The given sequence $=5,8,11, \ldots \ldots \ldots . . f=5 ; d=8-5=3$. lgebraical form $\mathrm{X}_{n}=d n+(f-d)$

$$
\begin{aligned}
& =3 n+(5-3) \\
& =3 n+2 .
\end{aligned}
$$

b) The first figure, larger side of the square $=5 \mathrm{~cm}$.

$$
\text { The smaller square side }=2 \mathrm{~cm} \text {. }
$$

\therefore The area of the shaded region $=5^{2}-2^{2} \quad$ (Area of a square $=a^{2}$)

$$
=25-4=21 .
$$

Similarly, the second figure area
The shaded aera
The third figure aera

$$
\begin{aligned}
& =8^{2}-5^{2} \\
& =64-25=39 \\
& =11^{2}-8^{2} \\
& =121-64=57 .
\end{aligned}
$$

\therefore The sequence of the aeras of the shaded region $=21,39,57, \ldots \ldots$ $\mathrm{f}=21$; d=39-21=18.
Hence the algebraic form $\mathrm{X}_{n}=d n+(f-d)$

$$
\begin{aligned}
& =18 n+(21-18) \\
& =18 n+3 .
\end{aligned}
$$

Question 19.

The first figure above is an equilateral triangle of side 2 cm . The second figure is obtained by drawing lines passing through the vertices and parallel to the sides of the triangle in the first figure. The third figure is got by drawing lines passing through the vertices and parallel to the sides of the triangle in the second figure.
a) Write the sequence of perimeters of biggest triangle in each figure obtained by continuing this process.
b) Write the sequence of areas of biggest triangle in each figure.
c) Write algebraic forms of both of the above sequences.

Answer:-

In the first figure , one side of the biggest triangle $=2 \mathrm{~cm}$

$$
\therefore \text { Perimeter }=3 a=3 \times 2=6 \mathrm{~cm}
$$

In the second figure, one side of the biggest triangle $=2 \times 2=4 \mathrm{~cm}$

$$
\therefore \text { Perimeter }=3 a=3 \times 4=12 \mathrm{~cm}
$$

In the third figure, one side of the biggest triangle $i 2 \times 4=8 \mathrm{~cm}$
\therefore Perimeter $=3 \mathrm{a}=3 \times 8=24 \mathrm{~cm}$
Hence the sequence of perimeter $=6,12,24$,. (is a geometric sequence, GP)
b) Area of an equilateral triangle $=\frac{\sqrt{3} a^{2}}{4}$

In the figure, area of the first biggest triangle $=\frac{\sqrt{3} a^{2}}{4}$ (formula)

$$
=\frac{\sqrt{3} 2^{2}}{4}=\sqrt{3} \mathrm{~cm}^{2}
$$

In the figure, area of the second biggest triangle $=\sqrt{3} \frac{(4)^{2}}{4}=4 \sqrt{3} \mathrm{~cm}^{2}$.
In the figure, area of the third biggest triangle $=\frac{\sqrt{3} \times(8)^{2}}{4}=16 \sqrt{3} \mathrm{~cm}^{2}$.
Hence the sequence of the area of the biggest triangle

$$
=\sqrt{3}, 4 \sqrt{3}, 16 \sqrt{3}
$$

c)Here the sequence of the perimeters of the biggest triangles

$$
=6,12,24, \ldots \ldots \text { which is a GP. (This is beyond our study) }
$$

$\mathrm{f}=6 ; \quad$ common ratio $(\mathrm{r})=\frac{12}{6}=2$.
Algebraic form $=X_{n}=a r^{n-1}=6 \times 2^{n-1}=3 \times 2 \times 2^{n-1}=3 \times 2^{n}$ drvsr

Question 19.

Consider the arithmetic sequence $135,141,147, \ldots \ldots .$. can the sum of any 25 consecutive terms of the sequence be 2016? Justify your answer.

Answer:-

Given arithmetic sequence $=135,141,147, \ldots$
$\mathrm{f}=135 ; \quad \mathrm{d}=141-135=6 . \mathrm{n}=25$; sum $=2016$
Algebraic form sum

$$
\begin{aligned}
\mathrm{S}_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
2016 & =\frac{25}{2}[2 \times 135+(25-1) 6]
\end{aligned}
$$

$$
2016 \neq 1550
$$

Here the sum is not equal. So, 2016 is not in the sequence . .drvsr

Question 20.

The product of two consecutive terms of the arithmetic sequence $5,8,11, \ldots \ldots \ldots \ldots$. is 598 . Find the position of the terms multiplied.

Answer:-

Given arithmetic sequence $=5,8,11, \ldots \ldots \ldots$.
$\mathrm{f}=5 ; \mathrm{d}=8-5=3$.

Let the next to terms be x and $x+3$.
Given condition $x(x+3)=598$.

$$
\begin{aligned}
& \text { ie., } x^{2}+3 x-598=0 \text {. Solve the equation } \\
& \quad(x-23(x+26)=0 \\
& x-23=0 \text { or } x+26=0 \\
& \text { ie., } x=23 \text { or } x=-26
\end{aligned}
$$

In this sequence all the numbers be positive , so -ve 26 be rejected Hence $x=23$. The next term $3+3=26$.
Algebraic form be $\mathrm{X}_{n}=d n+(f-d)$

$$
\begin{aligned}
& =3 n+(5-3) \\
& =3 n+2
\end{aligned}
$$

$$
\text { ie., } 3 n+2=23 ; 3 n=23-2 ; n=\frac{21}{3}=7
$$

Next term $3 n+2=26 ; 3 n=26-2 ; n=\frac{24}{3}=8$.
Hence the position of the term be 7 and 8 .
Question 21.
a) Find the sum of the natural numbers from 1 to 15 .
b) The sum of 15 terms of an arithmetic sequence with common difference 6 is 780 . Write the algebraic expression of the sequence .
c) Write the algebraic expression for the sum of the sequence.

Answer:-

a)The sum of the first natural numbers be $\frac{n(n+1)}{2}$; (formula) $\mathrm{n}=15$ ie., $\operatorname{sum}=\frac{15(15+1)}{2}=120$.
b) Given, $\mathrm{d}=6$; sum $=780 . \mathrm{n}=15 . \mathrm{f}=? \mathrm{f}$ can be find out by the sum formula

$$
\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

ie., $780=\frac{15}{2}[2 a+(15-1) 6]$
$750=\frac{15}{2}[2 a+84]$
$2 a+84=\frac{780 \times 2}{15} ; 2 \mathrm{a}+84=104 ; 2 \mathrm{a}=104-84$
$2 \mathrm{a}=20 ; \mathrm{a}=20 / 2=10$.
Algebraic expression for the sum of the sequence.

$$
\begin{aligned}
& =d n+(f-d) \\
& =6 n+* 10-6) \\
& =6 n+4 .
\end{aligned}
$$

c) The algebraic expression for the sum of the sequence.

$$
\begin{aligned}
\frac{d}{2} n^{2}+\left(f-\frac{d}{2}\right) n & =\frac{6}{2} n^{2}+\left(10-\frac{6}{2}\right) n \\
& =6 n^{2}+7 n .
\end{aligned}
$$

.drvsr
Question .22.
How many integers are tere in between 100 an 300 which are exactly divisible by 11 ?.

Answer:-

The multiple of 11 form an arithmetic sequence
The first number after 100 which is divisible by 11 is 110 and the last number before 100 is 297 .
$\mathrm{f}=110 ; \quad \mathrm{d}=11 ; \quad \mathrm{X}_{n}=297$

$$
n=\frac{s_{n}-f}{d}+1 \quad ; n=\frac{297-110}{11}+1=18 .
$$

Hence there are 18 numbers between 100 and 300 which are divisibl by 11 . .drvsr

Question 23.

In an arithmetic sequence nth term be $6 \mathrm{n}-5$. Find the sum of the first 20 terms.

Answer\{-

Given nth term $=6 n-5$.

First term, put $\mathrm{n}=1$ in the nth term
ie., $6 \times 1-5=6-5=1$. $d=6$ (the coefficient of n all ways d in the case of AP)
Put $\mathrm{n}=20$ to get last term
ie., $S_{n}=6 \times 20-5=115$
Hence sum 20 terms $=\frac{n}{2}\left[s_{n}+f\right]=\frac{20}{2}[115+1]-1160$.
.drvsr

Question 24

Find three numbers in arithmetic sequence such that their sum is 30 nd product is 840 .
Answer:-
Given , sum of three numbers $=30$; Product $=840$
Let consider the three numbers are $\mathrm{f}-\mathrm{d}, \mathrm{f}, \mathrm{f}+\mathrm{d}$.
ie., $\mathrm{f}-\mathrm{d}+\mathrm{f}+\mathrm{f}+\mathrm{d}=30$
$3 f=30 ; f=30 / 3=10$
All so product , $(\mathrm{f}-\mathrm{d})(\mathrm{f})(\mathrm{f}+\mathrm{d})=840$.

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{f}^{2}-\mathrm{d}^{2}\right)=840 \\
10\left(100-\mathrm{d}^{2}\right)=840 \\
100-\mathrm{d}^{2}=840 / 10 \\
-\mathrm{d}^{2}=84-100 \\
-\mathrm{d}^{2}=-16 . \\
\mathrm{d}=4 .
\end{gathered}
$$

Hence the numbers are $\mathrm{f}-\mathrm{d}=10-4=6, \mathrm{f}=10$,

$$
\mathrm{f}+\mathrm{d}=10+4=14
$$

ie., 6, 10, 14.

Question 25.

The angles of a right angled triangle are in arithmetic sequence .
Find the angle by forming suitable equation.
Answer:-
Let consider the angles be $\mathrm{f}-\mathrm{d}, \mathrm{f}, \mathrm{f}+\mathrm{d}$.
ie., $\mathrm{f}-\mathrm{d}+\mathrm{f}+\mathrm{f}+\mathrm{d}=180$ (sum of the three angle be 180)

$$
3 \mathrm{f}=180 ; \mathrm{f}=180 / 3 ; \mathrm{f}=60
$$

We know that $\mathrm{f}+\mathrm{d}=90$ (largest angle of right angle be 90 .) ie., $60+\mathrm{d}=90$; $\mathrm{d}=90-60=30$.
The angles are 30, 60, 90 .

The end of the chapter - 1, Arithmetic sequence. Prepared by $\mathcal{D r} . \mathcal{V} . S$. RaveendraN(ath

