

Published by :

LATEST SYLLABUS

PART - I

1. MATHEMATICAL LOGIC

> Statements - Logical connectives - Statement patterns and logical equivalence - Algebra of statements.
> Venn diagram.
2. MATRICES
> Definition of matrix - Types of matrices - Algebra of matrices - Elementary transformation.
> Inverse of a matrix - Solution of system of linear equations-Inversion method-Reduction method.
3. CONTINUITY
$>$ Continuity of a function at a point - Algebra of continuous functions - Types of discontinuity Continuity of some standard functions.
4. DIFFERENTIATION
> Derivative of an Inverse function - Logarithmic Differentiation.
$>$ Derivative of an Implicit function - Derivative of a parametric function-second order derivatives.
5. APPLICATIONS OF DERIVATIVE
> Increasing and decreasing functions - Applications of derivative in economic elasticity of demandMarginal property.
> Maxima and minima.
6. INTEGRATION
$>$ Definition of an integral - Integral of standard functions - Rules of Integration - Methods of Integration-Integration by parts.

7. DEFINITE INTEGRALS

$>$ Definite Integrals-Properties of definite integral-Applications: Area and Volume.

Contd.

PART - II

1. RATIO PROPORTION AND PARTNERSHIP
> Ratio, Percentage, Proportion and Partnership
2. COMMISION, BROKERAGE AND DISCOUNT
$>$ Commission and Brokerage - Discount - Present worth - Sum due - True discount - Bills of exchange-Banker's discount-Banker's gain.

3. INSURANCE AND ANNUITY

> Fire, Marine \& accident Insurance Annuity, Various technologies of Annuity, Annuity Due, Sinking Fund.
4. DEMOGRAPHY
> Definition of demography uses of vital statistics-Measurement of mortality life tables.
5. BIVARIATE FREQUENCYDISTRIBUTION AND CORRELATION
> Bivariate frequency distribution: Karl Pearson's.
> Coefficient of correlation: Rank Correlation.
6. REGRESION ANALYSIS
> Equation of line of regression-Regression coefficients and their properties.
7. RANDOM VARIABLE AND PROBABILITY DISTRIBUTION
> Definition and types of random variables - Probability distribution of a Discrete Random variable - Probability distribution of a Continuous random variable - Binomial Theorem - Binomial Distribution-Poisson Distribution-Normal Distribution.
8. LINEAR INEQUATIONS AND LINEARPROGRAMMING
> Inequations-Linear programming problems.
9. ASSIGNMENT PROBLEM AND SEQUENCING
> Assignment problem-Sequencing

	Maharashtra HSC Exam	Mathematics
Solved Paper	March 2018	\& Statistics
	Set No. J-269	(Commerce)

Time : 3 Hours

General Instructions :

(i) All questions are compulsory.
(ii) Figures to the right indicate full marks.
(iii) Graph paper is necessary for L.P.P.
(iv) Use of logarithmic table is allowed.
(v) Answer to the question in Section-I and Section-II should be written in two separate answer books.
(v) Questions from Section-I attempted in the answer book of Section-II and vice-versa will not be assessed/not be given any credit.
(vi) Answer to every question must be written on a new page.

SECTION-I

1. Attempt any SIX of the following :
(i) Draw Venn diagram for the truth of the following statements :
(a) All rational number are real numbers.
(b) Some rectangles are squares.
(ii) Find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$ using elementary transformations.
(iii) Examine the continuity of
$f(x)=x^{2}-x+9$ for $x \leq 3$
$=4 x+3$ for $x>3$, at $x=3$
(iv) Find $\frac{d y}{d x}$, if $y=\cos ^{-1}(\sin 5 x)$
(v) The price P for demand D is given as $P=183+120 D-3 D^{2}$.

Find D for which the price is increasing.
(vi) Evaluate : $\int \frac{1}{x(3+\log x)} d x$
(vii) Find cofactors of the elements of the matrix $A=\left[\begin{array}{ll}-1 & 2 \\ -3 & 4\end{array}\right]$.
(viii) Evaluate : $\int \frac{1}{9 x^{2}+49} d x$
2. (A) Attempt any TWO of the following :

(ii) Examine whether the following statement pattern is tautology, contradiction or contingency :
$p \vee-(p \wedge q)$
(iii) If $x=\cos ^{2} \theta$ and $y=\cot \theta$ then find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{4}$.
(B) Attempt any TWO of the following:
(i) The sum of three numbers is 6 . If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.
(ii) Find the area of the region bounded by the parabola $y^{2}=16 x$ and the line $x=4$.
(iii) The consumption expenditure E_{c} of a person with the income x. is given by $E_{c}=0.0006 x^{2}+0.003 x$. Find MPC, MPS, APC and APS when the income $x=200$.
3. (A) Attempt any TWO of the following :
(6) $[14]$
(i) Discuss continuity of $f(x)=\frac{x^{3}-64}{\sqrt{x^{2}+9}-5}$ for $x \neq 4$

$$
\begin{equation*}
=10 \text { for } x=4 \tag{3}
\end{equation*}
$$

at $x=4$
(ii) Find $\frac{d y}{d x}$, if $e^{x}+e^{y}=e^{x-y}$
(iii) Using truth table show that $-(p \rightarrow-q) \equiv p \wedge q$
B) Attempt any TWO of the following :
(i) Evaluate : $\int \frac{\sin x}{\sqrt{\cos ^{2} x-2 \cos x-3}} d x$
(ii) The total cost function of a firm is $C=x^{2}+75 x+1600$ for output x. Find the output (x) for which average cost is minimum. Is $C_{A}=C_{M}$ at this output?
(iii) Evaluate: $\int_{1}^{2} \frac{1}{(x+1)(x+3)} d x$

SECTION-II

4. Attempt any SIX of the following :
[12]
(i) A shop valued at ₹ $2,40,000$ is insured for 75% of its value. If the rate of premium is 90 paise percent, find the premium paid by the owner of the shop.
(ii) Find the Age-Specific Death Rate (Age-SDR) for the following data :

Age groups (in years)	Population (in '000)	Number of deaths
$1-10$	11	240
$10-20$	12	150
$20-60$	9	125
60 and above	2	90

(iii) If $\Sigma d_{i}^{2}=25, n=6$ find rank correlation coefficient where d_{i}, is the difference between the ranks of $i^{\text {th }}$ values.
(2)
(iv) The following table gives the ages of husbands and wives :

Age of wives (in years)	Age of husbands (in years)			
	$\mathbf{2 0} \mathbf{- 3 0}$	$\mathbf{3 0} \mathbf{- 4 0}$	$\mathbf{4 0} \mathbf{- 5 0}$	$\mathbf{5 0} \mathbf{- 6 0}$
$15-25$	5	9	3	-
$25-35$	-	10	25	2
$35-45$	-	1	12	2
$45-55$	-	-	4	16
$55-65$	-	-	-	4

Find: (i) The marginal frequency distribution of the age of husbands.
(ii) The conditional frequency distribution of the age of husbands when the age of wives lies between 25-35.
(2)

To know about more useful books for class-12 click here
(v) The regression equation of Y on X is $y=\frac{2}{9} x$ and the regression equation of X on Y is $x=\frac{y}{2}+\frac{7}{6}$

Find: (i) Correlation coefficient between X and Y.
(ii) σ_{y}^{2} if $\sigma_{x}^{2}=4$.
(vi) Identify the regression equations of X on Y and Y on X from the following equations: $2 x+3 y=6$ and $5 x+7 y-12=0$
(vii) If X has Poisson distribution with parameter $m=1$, find $P[X \leq 1]$. (Use $e^{-1}=0.3679$)
(viii) Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X.
5. (A) Attempt any TWO of the following :
(i) Ramesh, Vivek and Sunil started a business by investing capitals in the ratio $4: 5: 6$. After 3 months Vivek withdrew all his capital and after 6 months Sunil withdrew all his capital from the business. At the end of the year Ramesh received ₹ 6,400 as profit. Find the profit earned by Vivek.
(ii) Solve the following minimal assignment problem and hence find the minimum value :

	I	II	III	IV
A	2	10	9	7
B	13	2	12	2
C	3	4	6	1
D	4	15	4	9

(iii) Calculate from $e^{0}{ }_{0}, e^{0}{ }_{1}, e_{2}^{0}$ from the following data:

Age \boldsymbol{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
I_{x}	1000	900	700
T_{x}	-	-	11500

(B) Attempt any TWO of the following:
(i) A bill was drawn on $12^{\text {th }}$ April for ₹ 3,500 and was discounted on 4 th July at 5% p.a. If the banker paid ₹ 3,465 for the bill. Find period of the bill.
(ii) Find Karl Pearson's correlation coefficient for the following data :

\boldsymbol{X}	3	2	1	5	4
\boldsymbol{Y}	8	4	10	2	6

(iii) Solve the following using graphical method :

$$
\begin{array}{ll}
\text { Minimize : } & Z=3 x+5 y \\
\text { Subject to } & 2 x+3 y \geq 12 \\
& -x+y \leq 3 \\
& x \leq 4, y \geq 3, x \geq 0, y \geq 0 \tag{4}
\end{array}
$$

6. (A) Attempt any TWO of the following :
(i) Given the following information:

Age groups (in years)	Population	Number of deaths
$0-20$	40,000	350
$20-65$	65,000	650
65 and above	15,000	x

Find X, if the $C D R=13.4$ per thousand.
(ii) The manager of a company wants to find a measure which he can use to fix the monthly wages of persons applying for a job in the production department. As an experimental project, he collected data of 7 persons from that department referring to years of service and their monthly income :
To know about more useful books for class-12 click here

Years of service	11	7	9	5	8	6	10
Income (₹ in thousands)	10	8	6	5	9	7	11

Find regression equation of income on the years of service.
(iii) Solve the following inequation :
$-8<-(3 x-5)<13$.
(B) Attempt any TWO of the following :
(i) Find the probability of guessing correctly at most three of the seven answers in a True or False objective test.
(ii) A person bought a television set paying ₹ 20,000 in cash and promised to pay ₹ 1,000 at the end of every month for the next 2 years. If the money is worth 12% p.a. converted monthly, what is the cash price of the television set? $\left[(1.01)^{-24}=0.7884\right]$
(iii) There are four jobs to be completed. Each job must go through machines M_{1}, M_{2}, M_{3} in the order $M_{1}-M_{2}$ $-M_{3}$. Processing time in hours is given below. Determine the optimal sequence and idle time for Machine M_{1}.

Jobs	A	B	C	D
M_{1}	5	8	7	3
M_{2}	6	7	2	5
M_{3}	7	8	10	9

Solutions

SECTION-I

1. (i) (a)We know that all rational numbers are real number i.e., $\mathrm{Q} \subset \mathrm{R}$.

(b) We know that all squares are also rectangles us i.e., set of squares c set of rectangles.

(ii)

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]
$$

We have $\quad A=I A$

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] A
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] A
$$

Applying $R_{1} \rightarrow R_{1}-2 R_{2}$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right] A
$$

Hence $\quad A^{-1}=\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right]$
(iii)

$$
f(x)=\left\{\begin{array}{ccc}
x^{2}-x+9 & \text { for } & x \leq 3 \\
4 x+3 & \text { for } & x>3
\end{array}\right.
$$

We check the continuity at $x=3$

LHL (at $x=3$)

$$
\begin{aligned}
& =\lim _{x \rightarrow 3^{-}} f(x) \\
& =\lim _{h \rightarrow 0} f(3-h) \\
& =\lim _{h \rightarrow 0}\left[(3-h)^{2}-(3-h)+9\right] \\
& =\lim _{h \rightarrow 0}\left[9+h^{2}-6 h-3+h+9\right]=15
\end{aligned}
$$

$$
\operatorname{RHL}(\text { at } x=3)=\lim _{x \rightarrow 3^{+}} f(x)=\lim _{h \rightarrow 0} f(3+h)
$$

$$
=\lim _{h \rightarrow 0}[4(3+h)+3]=15
$$

Also $\quad f(3)=9-3+9=15$
Hence

$$
\mathrm{LHL}=f(3)=\text { RHL }
$$

Hence $f(x)$ is continuous at $x=3$
(iv)

$$
y=\cos ^{-1}(\sin 5 x)
$$

$$
=\cos ^{-1}\left\{\cos \left(\frac{\pi}{2}-5 x\right)\right\}
$$

$$
=\frac{\pi}{2}-5 x
$$

diff. w.r.t. x

$$
\frac{d y}{d x}=-5
$$

(v) The given function is $p=183+120 D-3 D^{2}$
$\therefore \quad \frac{d P}{d D}=120-6 \mathrm{D}$

Now

$$
\frac{d P}{d D}=0 \Rightarrow 120-6 D=0 \Rightarrow D=20
$$

For increasing the price

$$
\begin{aligned}
\frac{d P}{d D} & >0 \\
120-6 D & >0 \\
-6 D & >-120
\end{aligned}
$$

To know about more useful books for class-12 click here

$$
\begin{aligned}
& D<\frac{120}{6} \\
& D<20
\end{aligned}
$$

Demand and price cannot be negative
\therefore Price is increasing in the internal $(0,20)$.
(vi) $\int \frac{1}{x(3+\log x)} d x$

Put $\quad 3+\log x=t$

$$
\frac{1}{x} d x=d t
$$

$\therefore \quad \int \frac{d t}{t}+c=\log t+c=\log (3+\log x)+c$
(vii)

$$
A=\left[\begin{array}{ll}
-1 & 2 \\
-3 & 4
\end{array}\right]
$$

Cofactors are $\quad A_{11}=(-1)^{1+1}(4)=4$

$$
\begin{aligned}
& A_{12}=(-1)^{1+2}(-3)=3 \\
& A_{21}=(-1)^{2+1}(2)=-2 \\
& A_{22}=(-1)^{2+2}(-1)=-1
\end{aligned}
$$

(viii) $\int \frac{1}{9 x^{2}+49} d x$

$$
=\int \frac{1}{(3 x)^{2}+(7)^{2}} d x
$$

Put $\quad 3 x=t$

$$
\begin{aligned}
d x & =\frac{d t}{3} \\
& \left.=\frac{1}{3} \int \frac{d t}{t^{2}+7^{2}}\right) \\
& =\frac{1}{3}\left[\frac{1}{7} \tan ^{-1} \frac{t}{7}\right]+c
\end{aligned}
$$

$$
=\frac{1}{21} \tan ^{-1} \frac{3 x}{7}+c
$$

2. (A) (i) $\lim _{x \rightarrow 0}\left[\frac{\log (1+3 x)}{5 x}\right]$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left[\frac{3 x-\frac{(3 x)^{2}}{2}+\frac{(3 x)^{3}}{3}-\ldots \ldots}{5 x}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{3}{5}-\frac{9 x}{10}+\frac{9}{5} x^{2} \ldots \ldots\right]
\end{aligned}
$$

$$
=\frac{3}{5}
$$

$\because f$ is continuous at $x=0$

$$
\therefore \quad \lim _{x \rightarrow 0} f(x)=f(0) \Rightarrow k=\frac{3}{5}
$$

(ii) We make the truth table as follows

p	q	$p \wedge q$	$-(p \wedge q)$	$p v-(p \wedge q)$
T	T	T	F	T
T	F	F	T	T
F	T	F	T	T
F	F	F	T	T

So the final statement is always true. So it is a tautology.

$$
\text { (iii) } x=\cos ^{2} \theta \text { and } y=\cot \theta
$$

$$
\frac{d x}{d \theta}=\frac{d}{d \theta}\left(\cos ^{2} \theta\right)
$$

$$
\frac{d x}{d \theta}=-2 \cos \theta \sin \theta
$$

$$
\frac{d y}{d \theta}=-\operatorname{cosec}^{2} \theta
$$

$$
\frac{d y}{d x}=\frac{d y}{d \theta} / \frac{d x}{d \theta}
$$

$$
=\frac{-\operatorname{cosec}^{2} \theta}{-2 \cos \theta \sin \theta}
$$

$$
=\frac{1}{2 \sin ^{3} \theta \cos \theta}
$$

$$
=\left(\frac{1}{2 \sin ^{3} \theta \cos \theta}\right) \theta=\frac{\pi}{4}
$$

$$
\left(\frac{d y}{d x}\right)_{\theta}=\frac{\pi}{4}
$$

$$
=\frac{1}{2\left(\frac{1}{\sqrt{2}}\right)^{3} \frac{1}{\sqrt{2}}}
$$

$$
=\frac{1}{2 \frac{1}{4}}=2
$$

$$
\begin{aligned}
\left(\frac{d y}{d \theta}\right)_{\theta=\frac{\pi}{4}} & =2 \\
\theta & =\frac{\pi}{4}
\end{aligned}
$$

(B) (i) Let the three numbers are x, y and z according to condition

$$
\begin{align*}
x+y+z & =6 \tag{i}\\
3 z+y & =11 \tag{ii}\\
x+z & =2 y \tag{iii}
\end{align*}
$$

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 3 \\
1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
11 \\
0
\end{array}\right]
$$

$R_{2}: R_{2} \leftrightarrow R_{3}$

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
0 \\
11
\end{array}\right]
$$

$R_{2}: R_{2}-R_{1}$

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -3 & 0 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
-6 \\
11
\end{array}\right]
$$

$$
R_{3}: 3 R_{3}+R_{2}
$$

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -3 & 0 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
-6 \\
27
\end{array}\right]
$$

$$
R_{3}: \frac{R_{3}}{9}, R_{2}: \frac{R_{2}}{-3}
$$

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
2 \\
3
\end{array}\right]
$$

$$
R_{1}: R_{1}-\left(R_{2}+R_{3}\right)
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

$$
I\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

$x=1, y=2$ and $z=3$
(ii) The region bounded by the parabola $y^{2}=16 x$ and the line $x=4$ is the area $O A C O$

The area $O A C O$ is symmetrical about x-axis

$$
\begin{aligned}
\text { Area of } O A C O & =2(\text { Area of } O A B) \\
& =2 \int_{0}^{4} 4 \sqrt{x} d x \\
& =8\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)_{0}^{4} \\
& =\frac{16}{3}\left((4)^{\frac{3}{2}}\right) \\
& =\frac{16}{3}(8)=\frac{128}{3}
\end{aligned}
$$

Therefore, the required area is $\frac{128}{3}$ sq. units.
(iii) The expenditure E_{C} of a person with income x is given by

$$
E_{C}=[0.0006] x^{2}+[0.003] x
$$

So, marginal propensity to consume $(M P C)=\frac{d E_{C}}{d I}$

$$
\begin{aligned}
\therefore \quad M P C & =\frac{d E_{C}}{d x}=2(0.0006) x+(0.003) \\
& =0.0012 x+0.003 \\
\therefore M P C \text { at } \quad x & =200 \text { is }
\end{aligned}
$$

$$
\begin{aligned}
& =0.0012(200)+0.003 \\
& =0.24+0.003 \\
& =0.243
\end{aligned}
$$

As $M P C+M P S=1$

$$
\begin{aligned}
M P S & =1-M P C \\
& =1-0.0243 \\
& =0.757 \\
\text { Now } \quad A P C & =\frac{E_{C}}{x} \\
& =0.0006 x+0.003 \\
\text { At } x & =200 \\
A P C & =0.0006 \times 200+0.003 \\
& =0.12+0.003 \\
& =0.123 \\
\text { As APS } & =1-A P C \\
& =1-0.123 \\
& =0.877
\end{aligned}
$$

$$
\lim _{x \rightarrow 4} \frac{(x+4 x+16)\left(\sqrt{x^{2}+9}+5\right)}{(x+4)} \quad[x \neq-4]
$$

$$
\frac{\left\{(4)^{2}+4(4)+16\right\}\left(\sqrt{4^{2}+9}+5\right)}{(4+4)}
$$

$$
\frac{(16+16+16)(5+5)}{8}
$$

$$
\underset{\lim x \rightarrow 4}{f(x)}=60
$$

$$
\lim _{x \rightarrow 4} f(x) \neq f(4)
$$

$\therefore f(x)$ is not continuous at $x=4$.
(ii)

$$
e^{x}+e^{y}=e^{x-y}
$$

diff. w.r.t. x

$$
\begin{aligned}
& \frac{d e^{x}}{d x}+\frac{d e^{y}}{d x}=\frac{d e^{x-y}}{d x} \\
& e^{x}+e^{y} \frac{d y}{d x}=e^{x-y}\left(1-\frac{d y}{d x}\right)
\end{aligned}
$$

(B) (i) $\int \frac{\sin x}{\sqrt{\cos ^{2} x-2 \cos x-3}} d x$

$$
\begin{aligned}
& \text { Put } \cos x=t \\
&-\sin x d x=d t \\
& \sin x d x=-d t
\end{aligned} \quad \begin{aligned}
& =-\int \frac{d t}{\sqrt{t^{2}-2 t-3}} \\
& =-\int \frac{d t}{\sqrt{(t-1)^{2}-4}} \\
& =-\int \frac{d t}{\sqrt{(t-1)^{2}-(2)^{2}}}
\end{aligned}
$$

Put $t-1=\theta$

$$
d t=d \theta
$$

$$
=-\int \frac{d \theta}{\sqrt{\theta^{2}-(2)^{2}}}
$$

$$
=-\log \left|\theta+\sqrt{\theta^{2}-(2)^{2}}\right|+C
$$

$$
=-\log \left|t-1+\sqrt{(t-1)^{2}-4}\right|+C
$$

$$
=-\log \left|t-1+\sqrt{t^{2}-2 t-3}\right|+C
$$

$$
=-\log \left|\cos x-1+\sqrt{\cos ^{2} x-2 \cos x-3}\right|+C
$$

(ii) Given cost function

$$
\begin{aligned}
C(x) & =x^{2}+75 x+1600 \\
\bar{C}(x) & =\frac{C(x)}{x} \\
& =\frac{x^{2}+75 x+1600}{x} \\
& =x+75+\frac{1600}{x}
\end{aligned}
$$

Now

$$
\bar{C}^{\prime}(x)=\frac{d \bar{C}(x)}{d x}=1-\frac{1600}{x^{2}}
$$

For minimum average cost $\bar{C}^{\prime}(x)=0$
i.e., $\quad 1-\frac{1600}{x^{2}}=0 \quad \Rightarrow x^{2}=1600$
$\Rightarrow x=40$
$\therefore \quad \bar{C}^{\prime \prime}(x)=\frac{d^{2} C(x)}{d x^{2}}$

$$
=\frac{3200}{x^{3}}>0[\text { For } \mathrm{x}=40]
$$

\therefore it is minimum
\therefore Minimum average cost $=\bar{C}(x)=40+75+$

$$
\frac{1600}{40}=155
$$

$$
\therefore \quad C_{A}=155
$$

Now we find marginal cost i.e.,

$$
\begin{align*}
C_{m} & =\frac{d C}{d x} \\
C_{m} & =\frac{d}{d x}\left(x^{2}+75 x+1600\right) \\
& =2 x+75 \tag{1}
\end{align*}
$$

$$
\begin{aligned}
&=\frac{1}{2} \int_{1}^{2}\left(\frac{1}{(x+1)}-\frac{1}{x+3}\right) d x \\
&=\frac{1}{2}\left[\{\log (x+1)\}_{1}^{2}-\{\log (x+3)\}_{1}^{2}\right] \\
&=\frac{1}{2}[(\log 3-\log 2)-(\log 5-\log 4)] \\
&=\frac{1}{2}[(\log 3+\log 4)-(\log 2+\log 5)] \\
&=\frac{1}{2}[\log 12-\log 10] \\
&=\frac{1}{2} \log \frac{12}{10} \\
& \therefore \int_{1}^{2} \frac{1}{(x+1)(x+3)} d x=\frac{1}{2} \log \frac{6}{5} .
\end{aligned}
$$

\therefore put $x=40$ in eq (1)

$$
\therefore \quad C_{A}=C_{m} \text { for } x=40
$$

(iii) $\int_{1}^{2} \frac{1}{(x+1)(x+3)} d x$

$$
\begin{aligned}
C_{m} & =2 \times 40+75 \\
& =80+75=155
\end{aligned}
$$

SECTION-II

4. (i) Given, property value $=₹ 2,40,000$

$$
\text { = ₹ } 180000
$$

$$
\text { Rate of premium = } 90 \text { paise } \%=₹ 0.9 \%
$$

Since, the shop is insured for 75% of its value

$$
\begin{array}{ll}
\therefore & \text { Policy value }=75 \% \text { of property value } \\
\therefore & \text { Policy value }=\frac{75}{100} \times 240000
\end{array}
$$

Now, amount of premium $=0.9 \%$ of policy value

$$
=\frac{0.9}{100} \times 180000
$$

$$
=₹ 1620
$$

(ii) We present the computation in the following table

Age group	Population $n^{P} \boldsymbol{x}$	No of Deaths $n^{D} \boldsymbol{x}$	Age - SDR per thousand $=\frac{\boldsymbol{n}^{\boldsymbol{D}} \boldsymbol{x}}{\boldsymbol{n}^{\boldsymbol{P}} \boldsymbol{x}} \times \mathbf{1 0 0 0}$
$0-10$	11000	240	21.81
$10-20$	12000	150	12.50
$20-60$	9000	125	13.88
0 and above	2000	90	45.00

4. (iii) Here given $\quad \Sigma d i^{2}=25$

$$
n=6
$$

The rank correlation coefficient is given by

$$
r=1-\frac{6 \Sigma d i^{2}}{n\left(n^{2}-1\right)}
$$

$$
=1-\frac{6 \times 25}{6(36-1)}
$$

$$
=1-\frac{150}{6 \times 35}
$$

$$
=1-\frac{5}{7}
$$

$$
r=\frac{2}{7}
$$

(iv)

Age of wives (in years)	Age of husbands (in years)			
	$\mathbf{2 0} \mathbf{- 3 0}$	$\mathbf{3 0 - 4 0}$	$\mathbf{4 0} \mathbf{- 5 0}$	$\mathbf{5 0 - 6 0}$
$15-25$	5	9	3	-
$25-35$	-	10	25	2
$35-45$	-	1	12	2
$45-55$	-	-	4	16
$55-65$	-	-	-	4
Total	$\mathbf{5}$	$\mathbf{2 0}$	$\mathbf{4 4}$	$\mathbf{2 4}$

Now, marginal distribution of age of husbands.

Age (years)	$20-30$	$30-40$	$40-50$	$50-60$	Total
Number	5	20	44	24	93

Now marginal distribution of husband, when the age of wives lies between $25-35$

Age (years)	$20-30$	$30-40$	$40-50$	$50-60$	Total
Number	-	10	25	2	37

(v) The repression eqn. of y on x is $y=\frac{2}{9} x$

Comparing with $y-\bar{y}=b_{y x}(x-\bar{x})$

Here

$$
b_{y x}=\frac{2}{9}
$$

Now the regression eqn. of x on y is $x=\frac{y}{2}+\frac{7}{6}$
Comparing with $x-\bar{x}=b_{x y}(y-\bar{y})$

Here

$$
b_{x y}=\frac{1}{2}
$$

(a) we have, correlation coefficient between x and y is

$$
\begin{aligned}
r & =\sqrt{b_{y x} \cdot b_{x y}} \\
& =\sqrt{\frac{2}{9} \times \frac{1}{2}}=\sqrt{\frac{1}{9}} \pm \frac{1}{3}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad r=\frac{1}{3}\left(\because b_{y x} \text { and } b_{x y} \text { are positve }\right) \quad \text { here } \quad b_{x y}=\frac{-7}{5} \tag{ii}
\end{equation*}
$$

(b)

$$
\sigma_{x}^{2}=4 \Rightarrow \sigma_{x}=2
$$

$$
\begin{array}{ll}
\text { We have } & b_{y x}=r \cdot \frac{\sigma_{y}}{\sigma_{x}} \\
\therefore & \frac{2}{9}=\frac{1}{3} \cdot \frac{\sigma_{y}}{2} \\
\Rightarrow & \sigma_{y}=\frac{12}{9} \\
\Rightarrow & \sigma_{y}=\frac{4}{3}
\end{array}
$$

(vi) Let the regression eqn. of y on x is

$$
\begin{align*}
& 2 x+3 y & =6 \\
\Rightarrow & y & =\frac{-2}{3} x-2 \\
\text { Here } & b_{y x} & =\frac{-2}{3}
\end{align*}
$$

The regression eqn. of x on y is $5 x+7 y-12=0$
from eqn. (i) and (ii)

$$
\begin{aligned}
b_{y x} \times b_{x y} & =\frac{-2}{3} \times \frac{-7}{5} \\
& =\frac{14}{15}<1
\end{aligned}
$$

Hence regression eqn. of y on x is $2 x+3 y=6$ and regression eqn. of x on y is $5 x+7 y-12=0$
(vii) We have, the Poisson distribution is given by

$$
P(r)=\frac{e^{-m} \cdot m^{r}}{r!}
$$

Here

$$
m=1 \text { (given) }
$$

$$
\text { Then } \quad P(X \leq 1)=P(0)+P(1)
$$

$$
\begin{aligned}
& =\frac{e^{-m} \cdot(1)^{0}}{0!}+\frac{e^{-1}(1)^{1}}{1!} \\
& =e^{-1}+e^{-1} \\
& =2 e^{-1} \\
& =2(0.3679) \\
& \quad e^{-1}=0.3679 \text { (given) } \\
& =0.7358
\end{aligned}
$$

(viii) probability of getting head

$$
\begin{aligned}
& P=\frac{1}{2} \\
& q=1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

The probability distribution is as follows

x (No. of heads)	0	1	2	3
$P(x)$	${ }^{3} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$	${ }^{3} C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{2}=\frac{3}{8}$	${ }^{3} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)=\frac{3}{8}$	${ }^{3} C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{0}=\frac{1}{8}$

5. (A) (i) Since Ratio of their capital is $4: 5: 6$
\therefore Let Ramesh capital be $4 x$, Vivek capital be $5 x$ and Sunil capital be $6 x$
\therefore Ramesh invested ₹ $4 x$ for 12 month
Vivek invested ₹ $5 x$ for 3 month
Sunil invested ₹ $6 x$ for 6 month
\therefore Profit is distributed in the ratio
i.e., $4 x \times 12: 5 x \times 3: 6 x \times 6$
$16 x: 5 x: 12 x$
$16: 5: 12$
Also $16+5+12=33$
Now given that Ramesh profit is ₹ 6400
\therefore Ramesh share in the profit

$$
\begin{aligned}
& =\frac{16}{33} \times \text { Total profit } \\
6400 & =\frac{16}{33} \times \text { Total profit }
\end{aligned}
$$

$$
\text { Total profit }=₹ 13,200
$$

Now Vivek share in the profit $=\frac{5}{33} \times 13200$

$$
\text { = ₹ } 2000
$$

and \quad Sunil share in the profit $=\frac{12}{33} \times 13200$

$$
=₹ 4800
$$

(ii)

	I	II	III	IV
A	2	10	9	7
B	13	2	12	2
C	3	4	6	1
D	4	15	4	9

Subtracting minimum element from each row, we have

	I	II	III	IV
A	0	8	7	5
B	11	0	10	0
C	2	3	5	0
D	0	11	0	5

Subtracting minimum element from each Column, we have

	I	II	III	IV
A	0	8	7	5
B	11	0	10	
C	2	3	5	0
D	M	11	0	5

Hence $A \rightarrow$ I, B \rightarrow II, C \rightarrow IV, D \rightarrow III
Minimum value is $2+2+1+4=9$
(iii) $l_{0}=1000, l_{1}=880, l_{2}=876$

$$
\begin{aligned}
& T_{2}=3323 \\
& L_{0}=\frac{l_{0}+l_{1}}{2}=\frac{1000+880}{2}
\end{aligned}
$$

$$
=\frac{1880}{2}=940
$$

$$
L_{1}=\frac{l_{1}+l_{2}}{2}=\frac{880+876}{2}
$$

$$
=\frac{1756}{2}=878
$$

$$
T_{1}=L_{1}+T_{2}
$$

$$
=828+3323
$$

$$
=4201
$$

$$
T_{0}=L_{0}+T_{1}
$$

$$
=940+4201
$$

$=5141$

$$
\begin{aligned}
& \mathrm{e}_{0}^{0}=\frac{T_{0}}{l_{0}}=\frac{5141}{1000}=5.141 \\
& \mathrm{e}_{1}^{0}=\frac{T_{1}}{l_{1}}=\frac{4201}{880}=4.7738 \\
& \mathrm{e}_{2}^{0}=\frac{T_{2}}{l_{2}}=\frac{3323}{876}=3.7933
\end{aligned}
$$

(B) (i) S.D. $=3500$, C.V. $=3465$

Now

$$
\begin{aligned}
\text { B.D. } & =\text { S.D. }- \text { C.V. } \\
& =3500-3465 \\
& =35
\end{aligned}
$$

Also

$$
\begin{aligned}
\text { B.D. } & =\frac{\mathrm{S} . \mathrm{D} \times n \times r}{100} \\
35 & =\frac{3500 \times n \times 5}{100} \\
n & =\frac{1}{5} \text { year }=\frac{365}{5}=73 \text { days }
\end{aligned}
$$

The period for which the discount is deducted is 73 days which is counted from the date of discounting i.e., $4^{\text {th }}$ July

July	August	September	Total
27	31	15	73

\therefore The legal due date is 15 September. Hence the period of the bill is from 12th April to 15 September i.e., 5 month.
(ii)

x	y	x^{2}	y^{2}	$x y$
3	8	9	64	24
2	4	4	16	8
1	10	1	100	10
5	2	25	4	10
4	6	16	36	24
$\mathbf{1 5}$	$\mathbf{3 0}$	55	$\mathbf{2 2 0}$	76

Here $n=5, \Sigma x=15, \Sigma y=30, \Sigma x^{2}=55, \Sigma y^{2}=220$, $\Sigma x y=76$

Karl pearson coefficient of correlation between x and y is

$$
\begin{aligned}
r(x, y) & =\frac{n \Sigma x y-\Sigma x \Sigma y}{\sqrt{n \Sigma x^{2}-(\Sigma x)^{2}} \sqrt{n \Sigma y^{2}-(\Sigma y)^{2}}} \\
& =\frac{5 \times 76-15 \times 30}{\sqrt{5 \times 55-(15)^{2}} \sqrt{5 \times 220-(30)^{2}}} \\
& =\frac{380-450}{\sqrt{275-225} \sqrt{1100-900}}
\end{aligned}
$$

$$
=\frac{-70}{\sqrt{50} \sqrt{200}}
$$

$$
=\frac{-70}{100}=-0.7
$$

(iii)
S.t. $\quad 2 x+3 y \geq 12$

$$
\begin{equation*}
-x+y \leq 3 \tag{i}
\end{equation*}
$$

$x \leq 4, y \geq 3, x \geq 0, y \geq 0$
Taking eqn (i)

$$
2 x+3 y=12
$$

Putting $x=0, \quad y=4$ Let the point is $(0,4)$
Now putting $y=0, x=6$ Let the point is $(6,0)$
Now taking eqn (ii)

$$
\begin{equation*}
-x+y=3 \tag{0,3}
\end{equation*}
$$

Putting $x=0, \quad y=3$
Putting $y=0, \quad x=-3$
The graph is as follows

$A B C D A$ be the feasible region bounded by these lines Now we find the coordinates of A, B, C and D for A, Solving the eqns.

$$
2 x+3 y=12 \text { and }-x+y=3
$$

We get $\quad x=\frac{+3}{5}$ and $y=\frac{18}{5}$

$$
\text { coordinate of } A\left(\frac{+3}{5}, \frac{18}{5}\right)
$$

Now

$$
\begin{aligned}
Z & =3 \times\left(\frac{+3}{5}\right)+5 \times \frac{18}{5} \\
& =\frac{+9}{5}+\frac{90}{5}=\frac{99}{5}
\end{aligned}
$$

For B, Solving the eqns

We get

$$
\begin{gathered}
2 x+3 y=12 \text { and } y=3 \\
x=\frac{3}{2}, y=3
\end{gathered}
$$

\therefore Coordinate of $B\left(\frac{3}{2}, 3\right)$

Now

$$
\begin{aligned}
Z & =3 \times \frac{3}{2}+5 \times 3 \\
& =\frac{9}{2}+15=\frac{39}{2}
\end{aligned}
$$

For C. Solving the eqn $x=4$ and $y=3$
\therefore Coordinate of $C(4,3)$
Now

$$
\begin{aligned}
Z & =3 \times 4+5 \times 3 \\
& =12+15=27
\end{aligned}
$$

For D, Solving the eqn

$$
\begin{gathered}
-x+y=3 \text { and } x=4 \\
x=4, y=7
\end{gathered}
$$

$$
\text { Now } \quad \begin{aligned}
Z & =3 \times 4+5 \times 7 \\
& =12+35=47
\end{aligned}
$$

$$
\operatorname{Min} Z=\frac{39}{2}, \text { for } x=\frac{3}{2}, y=3
$$

$$
\begin{aligned}
& =\frac{7 \times 469-56 \times 56}{7 \times 476-(56)^{2}} \\
& =\frac{3283-3136}{3332-3136} \\
& =\frac{147}{196}=0.75
\end{aligned}
$$

Hence the regression line of y on x is given by
or

$$
\begin{aligned}
y-\bar{y} & =b_{y x}(x-\bar{x}) \\
y-8 & =0.75(x-8) \\
y-8 & =0.75 x-6.00 \\
y & =0.75 x+2 \\
y & =\frac{3}{4} x+2 \\
4 y & =3 x+8
\end{aligned}
$$

(iii) The given inequality is

$$
\begin{aligned}
-8 & <-(3 x-5)<13 \\
& =-8<-3 x+5<13 \\
& =-8-5<-3 x+5-5<13-5 \\
& =-13<-3 x<8
\end{aligned}
$$

Multiplying by -1 , we have

$$
\begin{aligned}
13 & >3 x>-8 \\
& =\frac{13}{3}>x>\frac{-8}{3}
\end{aligned}
$$

reversing the order of inequality

$$
\frac{-8}{3}<x<\frac{13}{3}
$$

\therefore The solution set is $x \in\left(\frac{-8}{3}, \frac{13}{3}\right)$

Here $n=7, \Sigma x=56, \Sigma y=56, \Sigma x y=469, \Sigma x^{2}=$ $476, \Sigma y^{2}=496$

Now

$$
\begin{aligned}
& \bar{x}=\frac{\Sigma x}{n}=\frac{56}{7}=8 \\
& \bar{y}=\frac{\Sigma y}{n}=\frac{56}{7}=8
\end{aligned}
$$

The regression of y on x is given by

$$
b_{y x}=\frac{n \Sigma x y-\Sigma x \Sigma y}{n \Sigma x^{2}-(\Sigma x)^{2}}
$$

(B) (i) For true, false question

Let the prob. of true $P=\frac{1}{2}$ and $q=1-P=$ $1-\frac{1}{2}=\frac{1}{2}$

Now we have to find

$$
\begin{aligned}
P(X \leq 3) & =P(0)+P(1)+P(2)+P(3) \\
& ={ }^{7} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{7}+{ }^{7} C_{1}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { No of Deaths }(\Sigma D i)=350+650+x \\
& =1000+x \\
& C D R=\frac{\sum D i}{\sum P i} \times 1000 \\
& \Rightarrow \quad 13.4=\frac{1000+x}{120000} \times 1000 \\
& \Rightarrow \quad 13.4=\frac{1000+x}{120} \\
& \Rightarrow \quad x=1608-1000 \\
& \therefore \quad x=608
\end{aligned}
$$

$$
\begin{aligned}
& +{ }^{7} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{5}+{ }^{7} C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{4} \\
= & \left(\frac{1}{2}\right)^{7}+7 \cdot\left(\frac{1}{2}\right)^{7}+21\left(\frac{1}{2}\right)^{7}+35 \cdot\left(\frac{1}{2}\right)^{7} \\
= & 64 \times\left(\frac{1}{2}\right)^{7} \\
= & 64 \times \frac{1}{128} \\
= & \frac{1}{2}
\end{aligned}
$$

\therefore Prob. of guessing at most three question correctly $=\frac{1}{2}$
(ii) $\mathrm{C}=₹ 1000, n=2$ years $=24$ months

$$
\text { Present value } P=\frac{C}{i}\left[1-(1+i)^{-n}\right]
$$

$$
\begin{aligned}
r & =12 \% \text { per annum } \\
& =1 \% \text { per month } \\
i & =\frac{r}{100}=\frac{1}{100}=0.01
\end{aligned}
$$

$$
=\frac{1000}{0.01}\left[1-(1+0.01)^{-24}\right]
$$

$$
=\frac{1000}{0.01}[1-0.7884]
$$

$$
=\frac{1000}{0.01} \times 0.2116
$$

$$
=₹ 21160
$$

Cash price of television $=20000+21160$

$$
=₹ 41160
$$

(iii) The given problem is of n jobs and three machines. We change the problem in of n jobs and two machines.

For this either Min $M_{1} \leq M_{3} \times M_{2}$ or $\min M_{3} \leq \max M_{2}$
Here $\min M_{3}=7=M_{1} \times M_{2}$
Hence we write $M_{1}+M_{2}=G$ and $M_{2}+M_{3}=H$ the problem will be as follows

Jobs	A	B	C	D
$G=M_{1}+M_{2}$	11	15	9	8
$H=M_{2}+M_{3}$	13	15	12	14

The sequence as follows
Now

D	C	A	B

Job	\boldsymbol{M}_{1}		$\boldsymbol{M}_{\mathbf{2}}$		\boldsymbol{M}_{3}	
	Time in	Time out	Time in	Time out	Time in	Time out
D	0	3	3	8	8	17
C	3	10	10	12	17	27
A	10	15	15	21	27	34
B	15	23	23	30	34	42

The minimum elapsed time $=42 \mathrm{hrs}$.
Ideal time for $M_{1}=42-23=19 \mathrm{hrs}$.

