

OSWAAL BOOKS "Oswaal House" 1/11, Sahitya Kunj, M.G. Road, AGRA-282002 Ph.: 0562-2857671, 2527781 email : contact@oswaalbooks.com, website : www.oswaalbooks.com

LATEST SYLLABUS

PART-I

1. MATHEMATICAL LOGIC

- Statements Logical connectives Statement patterns and logical equivalence Algebra of statements.
- Venn diagram.

2. MATRICES

- > Definition of matrix Types of matrices Algebra of matrices Elementary transformation.
- > Inverse of a matrix Solution of system of linear equations Inversion method Reduction method.

3. CONTINUITY

Continuity of a function at a point – Algebra of continuous functions – Types of discontinuity – Continuity of some standard functions.

4. DIFFERENTIATION

- > Derivative of an Inverse function Logarithmic Differentiation.
- > Derivative of an Implicit function Derivative of a parametric function-second order derivatives.

5. APPLICATIONS OF DERIVATIVE

- Increasing and decreasing functions Applications of derivative in economic elasticity of demand Marginal property.
- > Maxima and minima.

6. INTEGRATION

Definition of an integral – Integral of standard functions – Rules of Integration – Methods of Integration – Integration by parts.

7. DEFINITE INTEGRALS

> Definite Integrals – Properties of definite integral – Applications : Area and Volume.

(2)

...Contd.

PART – II

1. RATIO PROPORTION AND PARTNERSHIP

> Ratio, Percentage, Proportion and Partnership

2. COMMISION, BROKERAGE AND DISCOUNT

Commission and Brokerage – Discount – Present worth – Sum due – True discount – Bills of exchange – Banker's discount – Banker's gain.

3. INSURANCE AND ANNUITY

Fire, Marine & accident Insurance Annuity, Various technologies of Annuity, Annuity Due, Sinking Fund.

4. DEMOGRAPHY

> Definition of demography uses of vital statistics – Measurement of mortality life tables.

5. BIVARIATE FREQUENCY DISTRIBUTION AND CORRELATION

- > Bivariate frequency distribution : Karl Pearson's.
- > Coefficient of correlation : Rank Correlation.

6. REGRESION ANALYSIS

> Equation of line of regression – Regression coefficients and their properties.

7. RANDOM VARIABLE AND PROBABILITY DISTRIBUTION

Definition and types of random variables – Probability distribution of a Discrete Random variable
 – Probability distribution of a Continuous random variable – Binomial Theorem – Binomial Distribution – Poisson Distribution – Normal Distribution.

8. LINEAR INEQUATIONS AND LINEAR PROGRAMMING

> Inequations – Linear programming problems.

9. ASSIGNMENT PROBLEM AND SEQUENCING

Assignment problem – Sequencing.

Solved Paper

Maharashtra HSC Exam March 2018

Set No. J-269

Time : 3 Hours

General Instructions :

- *(i)* All questions are compulsory.
- (ii) Figures to the right indicate full marks.
- (iii) Graph paper is necessary for L.P.P.
- (iv) Use of logarithmic table is allowed.
- (v) Answer to the question in Section-I and Section-II should be written in two separate answer books.
- (v) Questions from Section-I attempted in the answer book of Section-II and vice-versa will not be assessed/not be given any credit.
- (vi) Answer to every question must be written on a new page.

SECTION-I

1.	Attempt any SIX of the following : (i) Draw Venn diagram for the truth of the following statements :	[12]
	(a) All rational number are real numbers.	
	(b) Some rectangles are squares.	(2)
	(ii) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ using elementary transformations.	(2)
	(iii)Examine the continuity of	
	$f(x) = x^2 - x + 9$ for $x \le 3$	
	= 4x + 3 for $x > 3$, at $x = 3$	(2)
	(iv) Find $\frac{dy}{dx}$, if $y = \cos^{-1}(\sin 5x)$	(2)
	(v) The price P for demand D is given as $P = 183 + 120 D - 3D^2$.	
	Find <i>D</i> for which the price is increasing.	(2)
	(vi)Evaluate: $\int \frac{1}{x(3+\log x)} dx$	(2)
	(vii) Find cofactors of the elements of the matrix $A = \begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}$.	(2)
	(viii) Evaluate : $\int \frac{1}{9x^2 + 49} dx$	(2)
2.	(A) Attempt any TWO of the following :	6) [14]
	(i) Find k, if $f(x) = \frac{\log(1+3x)}{5x}$ for $x \neq 0$	
	= k for x = 0	
	is continuous at $x = 0$.	(3)
	(ii) Examine whether the following statement pattern is tautology, contradiction or contingency :	
	$p \lor - (p \land q)$	(3)
	(iii) If $x = \cos^2 \theta$ and $y = \cot \theta$ then find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$.	(3)

To know about more useful books for class-12 click here

Max. Marks : 80

Mathematics & Statistics (88) (Commerce)

(B) Attempt any TWO of the following : The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we (i) get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices. (ii) Find the area of the region bounded by the parabola $y^2 = 16x$ and the line x = 4. (iii) The consumption expenditure E_c of a person with the income x. is given by $E_c = 0.0006x^2 + 0.003x$. Find MPC, MPS, APC and APS when the income x = 200. 3. (A) Attempt any TWO of the following : (i) Discuss continuity of $f(x) = \frac{x^3 - 64}{\sqrt{x^2 + 9} - 5}$ for $x \neq 4$ = 10 for x = 4at x = 4(ii) Find $\frac{dy}{dx}$, if $e^x + e^y = e^{x-y}$ (iii) Using truth table show that $-(p \rightarrow -q) \equiv p \land q$ (B) Attempt any TWO of the following : Evaluate : $\int \frac{\sin x}{\sqrt{\cos^2 x - 2\cos x - 3}} \, dx$ (ii) The total cost function of a firm is $C = x^2 + 75x + 1600$ for output x. Find the output (x) for which average cost is minimum. Is $C_A = C_M$ at this output?

(iii) Evaluate :
$$\int_{1}^{1} \frac{1}{(x+1)(x+3)} dx$$

SECTION-II

4. Attempt any SIX of the following :

- (i) A shop valued at ₹ 2,40,000 is insured for 75% of its value. If the rate of premium is 90 paise percent, find the premium paid by the owner of the shop. (2)
- (ii) Find the Age-Specific Death Rate (Age-SDR) for the following data :

Age groups (in years)	Population (in '000)	Number of deaths
1-10	11	240
10 - 20	12	150
20 - 60	9	125
60 and above	2	90

(iii) If $\sum d_i^2 = 25$, n = 6 find rank correlation coefficient where d_i , is the difference between the ranks of *i*th values. (2)

(iv) The following table gives the ages of husbands and wives :

Age of wives	Age of husbands (in years)						
(in years)	20 - 30	30 - 40	40 - 50	50 - 60			
15 - 25	5	9	3				
25 - 35	_	10	25	2			
35 - 45	_	1	12	2			
45 - 55	_		4	16			
55 - 65		_		4			

Find : (i) The marginal frequency distribution of the age of husbands.

(2)

(4)

(4)

(4)

(3)

(3)

(3)

(8)

(4)

(4)

(4)

[12]

(6) [14]

⁽ii) The conditional frequency distribution of the age of husbands when the age of wives lies between 25 - 35. (2)

To know about more useful books for class-12 click here

- (v) The regression equation of *Y* on *X* is $y = \frac{2}{9}x$ and the regression equation of *X* on *Y* is $x = \frac{y}{2} + \frac{7}{6}$
 - Find : (i) Correlation coefficient between *X* and *Y*.

(ii)
$$\sigma_y^2$$
 if $\sigma_x^2 = 4$. (2)

(vi) Identify the regression equations of *X* on *Y* and *Y* on *X* from the following equations :

2x + 3y = 6 and 5x + 7y - 12 = 0

- (vii) If X has Poisson distribution with parameter m = 1, find $P[X \le 1]$. (Use $e^{-1} = 0.3679$) (2)
- (viii) Three fair coins are tossed simultaneously. If *X* denotes the number of heads, find the probability distribution of *X*.
- 5. (A) Attempt any TWO of the following :
 - (i) Ramesh, Vivek and Sunil started a business by investing capitals in the ratio 4:5:6. After 3 months Vivek withdrew all his capital and after 6 months Sunil withdrew all his capital from the business. At the end of the year Ramesh received ₹ 6,400 as profit. Find the profit earned by Vivek. (3)
 - (ii) Solve the following minimal assignment problem and hence find the minimum value

	Ι	II	III	IV	
Α	2	10	9	7	
В	13	2	12	2	
С	3	4	6	1	
D	4	15	4	9	2

(iii) Calculate from e_{0}^{0} , e_{1}^{0} , e_{2}^{0} from the following data :

Age x	0	1	2			
I_x	1000	900	700			
T_x			11500			

(B) Attempt any TWO of the following :

- (i) A bill was drawn on 12th April for ₹ 3,500 and was discounted on 4th July at 5% p.a. If the banker paid ₹ 3,465 for the bill. Find period of the bill.
 (4)
- (ii) Find Karl Pearson's correlation coefficient for the following data :

X	3	2	1	5	4
Ŷ	8	4	10	2	6

(3)

(4)

(6) [14]

(iii) Solve the following using graphical method :

Minimize : Subject to

$$2x + 3y \ge 1$$
$$-x + y \le 3$$

Z = 3x + 5y

$$x \le 4, y \ge 3, x \ge 0, y \ge 0$$

- 6. (A) Attempt any TWO of the following :
 - (i) Given the following information :

Age groups (in years)	Population	Number of deaths
0 - 20	40,000	350
20 - 65	65,000	650
65 and above	15,000	x

Find *X*, if the CDR = 13.4 per thousand.

(ii) The manager of a company wants to find a measure which he can use to fix the monthly wages of persons applying for a job in the production department. As an experimental project, he collected data of 7 persons from that department referring to years of service and their monthly income :

To know about more useful books for class-12 <u>click here</u>

(3)

(3)

(2)

Years of service	11	7	9	5	8	6	10	
Income (₹ in thousands)	10	8	6	5	9	7	11	

Find regression equation of income on the years of service.

(iii) Solve the following inequation :

-8 < -(3x-5) < 13.

(B) Attempt any TWO of the following :

- (i) Find the probability of guessing correctly at most three of the seven answers in a True or False objective test. (4)
- (ii) A person bought a television set paying ₹ 20,000 in cash and promised to pay ₹ 1,000 at the end of every month for the next 2 years. If the money is worth 12% p.a. converted monthly, what is the cash price of the television set? (4)

 $[(1.01)^{-24} = 0.7884]$

(iii) There are four jobs to be completed. Each job must go through machines M_1, M_2, M_3 in the order $M_1 - M_2$ $-M_3$. Processing time in hours is given below. Determine the optimal sequence and idle time for Machine M_1 .

Jobs	Α	В	C	D
M_1	5	8	7	3
M2	6	7	2	5
M ₂	7	8	10	9

To know about more useful books for class-12 click here

7

(3) (3)

(8)

To know about more useful books for class-12 click here

8

$$D < \frac{120}{6}$$
$$D < 20.$$

Demand and price cannot be negative \therefore Price is increasing in the internal (0, 20).

(vi)
$$\int \frac{1}{x(3+\log x)} dx$$

 $3 + \log x = t$ Put

$$\frac{1}{x}dx = dt$$

 $\int \frac{dt}{t} + c = \log t + c = \log (3 + \log x) + c$ *.*..

 $A = \begin{bmatrix} -1 & 2 \\ -3 & 4 \end{bmatrix}$

(vii)

 $A_{11} = (-1)^{1+1} (4) = 4$ Cofactors are

3x = t

dx =

(viii) $\int \frac{1}{9x^2 + 49} dx$

Put

2. (A) (i) $\lim_{x \to 0} \left[\frac{\log(1+3x)}{5x} \right]$

$$A_{11} = (-1)^{1+2} (4) = 4$$
$$A_{12} = (-1)^{1+2} (-3) = 3$$
$$A_{21} = (-1)^{2+1} (2) = -2$$
$$A_{21} = (-1)^{2+2} (-1) = -2$$

= 3

= -1

 $=\frac{3}{5}$

 \therefore *f* is continuous at x = 0

$$\lim_{x \to 0} f(x) = f(0) \Rightarrow k = \frac{3}{5}$$

(ii) We make the truth table as follows

Р	q	$P \wedge q$	$-(P \wedge q)$	$Pv - (P \land q)$
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	Т	Ť

So the final statement is always true. So it is a tautology.

(iii)
$$x = \cos^2\theta$$
 and $y = \cot\theta$

$$\frac{d\theta}{d\theta} = \frac{d\theta}{d\theta} (\cos \theta)$$
$$\frac{dx}{d\theta} = -2\cos\theta\sin\theta$$

 $\frac{dy}{d\theta} = -\csc^2\theta$

$$\frac{dy}{dx} = \frac{dy}{d\theta} \Big/ \frac{dx}{d\theta}$$

$$= \frac{-\cos \sec^2 \theta}{-2\cos \theta \, \sin \theta}$$

$$= \frac{1}{2\sin^3\theta\,\cos\theta}$$

$$= \left(\frac{1}{2\sin^3\theta\,\cos\theta}\right)\theta = \frac{\pi}{4}$$

$$\left(\frac{dy}{dx}\right)_{\theta} = \frac{\pi}{4}$$

$$= \frac{1}{2\left(\frac{1}{\sqrt{2}}\right)^3 \frac{1}{\sqrt{2}}}$$
$$= \frac{1}{2\frac{1}{4}} = 2$$

 $= \lim_{x \to 0} \left[\frac{3}{5} - \frac{9x}{10} + \frac{9}{5}x^2 \dots \right]$

 $= \lim_{x \to 0} \left[\frac{3x - \frac{(3x)^2}{2} + \frac{(3x)^3}{3} - \dots}{5x} \right]$

 $=\frac{1}{3}\left[\frac{1}{7}\tan^{-1}\frac{t}{7}\right]+c$

 $=\frac{1}{21}\tan^{-1}\frac{3x}{7}+c$

$$\left(\frac{dy}{d\theta}\right)_{\theta=\frac{\pi}{4}} = 2$$
$$\theta = \frac{\pi}{4}$$

(B) (i) Let the three numbers are *x*, *y* and *z* according to condition

x + z = 2y

$$x + y + z = 6$$
 ...(i)

$$3z + y = 11$$
 ...(ii)

•••

 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$

 $R_2: R_2 \leftrightarrow R_3$

ſ	1	1	1]	$\begin{bmatrix} x \end{bmatrix}$		6	
	1	-2	1	y	=	0	
	0	1	3	$\lfloor z \rfloor$		11	

 $R_2: R_2 - R_1$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 0 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 11 \end{bmatrix}$$

$$R_3: 3R_3 + R_2$$

 R_3

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 0 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 27 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
$$\begin{bmatrix} R_3 \\ 9 \\ 7 \end{bmatrix}, R_2 : \frac{R_2}{-3}$$
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
$$I \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

23

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

x = 1, y = 2 and z = 3

(ii) The region bounded by the parabola $y^2 = 16x$ and the line x = 4 is the area *OACO*

The area OACO is symmetrical about *x*-axis

Area of
$$OACO = 2(Area of OAB)$$

(ii)
(iii)
Area of $OACO = 2[Area of OAB)$
 $y^2 = 16x$
 $x = 4$
Area of $OACO = 2[\int_0^4 y \, dx]$
 $= 2\int_0^4 4\sqrt{x} \, dx$
 $= 8\left(\frac{x^2}{3}\right)_0^4$
 $= \frac{16}{3}(8) = \frac{128}{3}$
Therefore, the required area is $\frac{128}{3}$ sq. units.
(iii) The expenditure E_C of a person with income x is given by
 $E_C = [0.0006]x^2 + [0.003]x$
So, marginal propensity to consume $(MPC) = \frac{d}{dL} \frac{E_C}{dL}$
 $\therefore MPC = \frac{d}{dx} = 2(0.0006)x + (0.003)$
 $= 0.0012x + 0.003$

∴ MPC at x = 200 is

$$= 0.0012 (200) + 0.003$$

$$= 0.24 + 0.003$$

$$= 0.243$$
As $MPC + MPS = 1$

$$MPS = 1 - MPC$$

$$= 1 - 0.0243$$

$$= 0.0006 x + 0.003$$

$$= 0.757$$
Now $APC = \frac{E_c}{x}$

$$= 0.0006 x + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

$$= 0.12 + 0.003$$

From the truth table, we get 5^{th} and 6^{th} columns are identical

$$\therefore - (P \to -q) \cong P \land q$$

To know about more useful books for class-12 click here

(x-4)(x+4)

 $[x \neq -4]$

 $\frac{e^x + e^y - e^x}{e^x + e^y + e^y}$

 $P \wedge q$

(6) Т

F

F

F

For minimum average cost \overline{C} ' (x) = 0

To know about more useful books for class-12 <u>click here</u>

(B)

(ii)

SECTION-II

4. (i) Given, property value = ₹ 2,40,000

Since, the shop is insured for 75% of its value

 \therefore Policy value = 75% of property value

Policy value =
$$\frac{75}{100} \times 240000$$

(ii) We present the computation in the following table

=₹1620

Now, amount of premium = 0.9% of policy value

= ₹ 180000

 $=\frac{0.9}{100} \times 180000$

	1		
Age group	Population n ^P x	No of Deaths $n^D x$	Age – SDR per thousand
			$= \frac{n^D x}{n^P x} \times 1000$
0 - 10	11000	240	21.81
10 - 20	12000	150	12.50
20 - 60	9000	125	13.88
60 and above	2000	90	45.00

4. (iii) Here given $\Sigma di^2 = 25$

...

n = 6

The rank correlation coefficient is given by

Age of wives	Age of husbands (in years)					
(in years)	20 - 30	30 – 40	40 – 50	50 – 60		
15 – 25	5	9	3			
25 – 35		10	25	2		
35 – 45		1	12	2		
45 – 55			4	16		
55 – 65				4		
Total	5	20	44	24		

Now, marginal distribution of age of husbands.

Age (years)	20 – 30	30 – 40	40 - 50	50 - 60	Total
Number	5	20	44	24	93

Now marginal distribution of husband, when the age of wives lies between 25 - 35

Age (years)	20 - 30	30 - 40	40 – 50	50 - 60	Total
Number	—	10	25	2	37

(v) The repression eqn. of *y* on *x* is $y = \frac{2}{9}x$

Comparing with $y - \overline{y} = b_{yx}(x - \overline{x})$

Here

Here

Now the regression eqn. of *x* on *y* is $x = \frac{y}{2} + \frac{7}{6}$

 $b_{yx} = \frac{2}{9}$

Comparing with $x - \overline{x} = b_{xy}(y - \overline{y})$

 $b_{xy} = \frac{1}{2}$

(a) we have, correlation coefficient between *x* and *y* is

$$r = \sqrt{b_{yx} \cdot b_{xy}}$$
$$= \sqrt{\frac{2}{9} \times \frac{1}{2}} = \sqrt{\frac{1}{9}} \pm \frac{1}{3}$$

here

$$\therefore \qquad r = \frac{1}{3} (\because b_{yx} \text{ and } b_{xy} \text{ are positve})$$
(b)
$$\because \qquad \sigma_x^2 = 4 \Rightarrow \sigma_x = 2$$
We have
$$b_{yx} = r \cdot \frac{\sigma_y}{\sigma_x}$$

$$\therefore \qquad \frac{2}{9} = \frac{1}{3} \cdot \frac{\sigma_y}{2}$$

$$\Rightarrow \qquad \sigma_y = \frac{12}{9}$$

$$\Rightarrow \qquad \sigma_y = \frac{4}{3}$$

(vi) Let the regression eqn. of *y* on *x* is

$$2x + 3y = 6$$

$$\Rightarrow \qquad \qquad y = \frac{-2}{3}x - 2$$

Here

The regression eqn. of *x* on *y* is 5x + 7y - 12 = 0

12

 $b_{yx} = \frac{-2}{3}$

$$\Rightarrow \qquad \qquad x = \frac{-7y}{5}$$

 $b_{yy} = \frac{-7}{-7}$

$$b_{yx} \times b_{xy} = \frac{-2}{3} \times \frac{-7}{5}$$

= $\frac{14}{15} < 1$

Hence regression eqn. of *y* on *x* is 2x + 3y = 6and regression eqn. of *x* on *y* is 5x + 7y - 12 = 0

(vii) We have, the Poisson distribution is given by

$$P(r) = \frac{e^{-m} \cdot m^r}{r!}$$

Here
$$m = 1$$
 (given

Then $P(X \le 1) = P(0) + P(1)$

 $= \frac{e^{-m} \cdot (1)^0}{0!} + \frac{e^{-1} \cdot (1)^1}{1!}$ $= e^{-1} + e^{-1}$

= 2(0.3679)

1

 $e^{-1} = 0.3679$ (given)

...(ii)

= 0.7358

 $= 2e^{-1}$

 $q = 1 - \frac{1}{2} = \frac{1}{2}$

 $=\frac{1}{2}$

The probability distribution is as follows

<i>x</i> (No. of heads)	0	1	2	3
P(x)	${}^{3}C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{3} = \frac{1}{8}$	${}^{3}C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{2} = \frac{3}{8}$	${}^{3}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right) = \frac{3}{8}$	${}^{3}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{0} = \frac{1}{8}$

5. (A) (i) Since Ratio of their capital is 4:5:6

∴ Let Ramesh capital be 4x, Vivek capital be 5x and Sunil capital be 6x

∴ Ramesh invested ₹ 4x for 12 month

Vivek invested \mathbf{E} 5*x* for 3 month

- Sunil invested ₹ 6x for 6 month
- \therefore Profit is distributed in the ratio

i.e., $4x \times 12: 5x \times 3: 6x \times 6$

16x: 5x: 12x

16:5:12

Also 16 + 5 + 12 = 33

Now given that Ramesh profit is ₹ 6400

∴ Ramesh share in the profit

	$=\frac{16}{33}$ × Total profit
	$6400 = \frac{16}{33} \times \text{Total profit}$
	Total profit = ₹ 13,200
Now	Vivek share in the profit = $\frac{5}{33} \times 13200$
	=₹2000
and	Sunil share in the profit = $\frac{12}{33} \times 13200$
	=₹4800

(ii)

	I	II	III	IV
Α	2	10	9	7
В	13	2	12	2
С	3	4	6	1
D	4	15	4	9

Subtracting minimum element from each row, we have

	Ι	II	III	IV
Α	0	8	7	5
В	11	0	10	0
C	2	3	5	0
D	0	11	0	5

Subtracting minimum element from each Column, we have

	Ι	II	III	IV
Α	0	8	7	5
В	11	0	10	X
С	2	3	5	0
D	X	11	0	5

Hence $A \rightarrow I$, $B \rightarrow II$, $C \rightarrow IV$, $D \rightarrow III$

Minimum value is
$$2 + 2 + 1 + 4 = 9$$

(iii)
$$l_0 = 1000, l_1 = 880, l_2 = 876$$

$$T_2 = 3323$$

$$L_0 = \frac{l_0 + l_1}{2} = \frac{1000 + 880}{2}$$

 $= \frac{1880}{2} = 940$ $L_{1} = \frac{l_{1} + l_{2}}{2} = \frac{880 + 876}{2}$ $= \frac{1756}{2} = 878$ $T_{1} = L_{1} + T_{2}$ = 828 + 3323 = 4201 $T_{0} = L_{0} + T_{1}$ = 940 + 4201 = 5141 $e_{0}^{0} = \frac{T_{0}}{l_{0}} = \frac{5141}{1000} = 5.141$ $e_{1}^{0} = \frac{T_{1}}{l_{1}} = \frac{4201}{880} = 4.7738$ $e_{2}^{0} = \frac{T_{2}}{l_{2}} = \frac{3323}{876} = 3.7933$ S.D. = 3500, C.V. = 3465

r = 5%Now B.D. = S.D. - C.V. = 3500 - 3465 = 35Also $B.D. = \frac{S.D \times n \times r}{100}$ $35 = \frac{3500 \times n \times 5}{100}$ $n = \frac{1}{5} \text{ year} = \frac{365}{5} = 73 \text{ days}$

(B) (i)

The period for which the discount is deducted is 73 days which is counted from the date of discounting *i.e.*, 4th July

July	August	September	Total
27	31	15	73

 \therefore The legal due date is 15 September. Hence the period of the bill is from 12th April to 15 September *i.e.*, 5 month.

со

16

x	y	<i>x</i> ²	y^2	ху
3	8	9	64	24
2	4	4	16	8
1	10	1	100	10
5	2	25	4	10
4	6	16	36	24
15	30	55	220	76

Here n = 5, $\Sigma x = 15$, $\Sigma y = 30$, $\Sigma x^2 = 55$, $\Sigma y^2 = 220$, $\Sigma xy = 76$

Karl pearson coefficient of correlation between x and *y* is

$$r(x, y) = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}}$$
$$= \frac{5 \times 76 - 15 \times 30}{\sqrt{5 \times 55 - (15)^2} \sqrt{5 \times 220 - (30)^2}}$$
$$= \frac{380 - 450}{\sqrt{275 - 225} \sqrt{1100 - 900}}$$
$$= \frac{-70}{\sqrt{50} \sqrt{200}}$$
$$= \frac{-70}{100} = -0.7$$
(iii)
Min Z = 3x + 5y
S.t. 2x + 3y \ge 12 ...(i)
-x + y \le 3...(ii)
x \le 4, y \ge 3, x \ge 0, y \ge 0
Taking eqn (i)
2x + 3y = 12
Putting x = 0, y = 4 Let the point is (0, 4)
Now putting y = 0, x = 6 Let the point is (6, 0)
Now taking eqn (ii)
 $-x + y = 3$
Putting x = 0, y = 3 (0, 3)
Putting y = 0, x = -3 (-3, 0)

The graph is as follows

ABCDA be the feasible region bounded by these lines Now we find the coordinates of A, B, C and D for A, Solving the eqns.

$$2x + 3y = 12 \text{ and } - x + y = 3$$

We get
$$x = \frac{+3}{5} \text{ and } y = \frac{18}{5}$$

coordinate of $A\left(\frac{+3}{5}, \frac{18}{5}\right)$
Now
$$Z = 3 \times \left(\frac{+3}{5}\right) + 5 \times \frac{18}{5}$$
$$= \frac{+9}{5} + \frac{90}{5} = \frac{99}{5}$$
For *B*, Solving the eqns

2x + 3y = 12 and y = 3

 $x = \frac{3}{2}, y = 3$ We get \therefore Coordinate of $B\left(\frac{3}{2},3\right)$ $Z = 3 \times \frac{3}{2} + 5 \times 3$ Now $=\frac{9}{2}+15=\frac{39}{2}$ For *C*. Solving the eqn x = 4 and y = 3 \therefore Coordinate of C (4, 3) $Z = 3 \times 4 + 5 \times 3$ Now = 12 + 15 = 27

For *D*, Solving the eqn

We get

$$-x + y = 3$$
 and $x = 4$

$$x = 4, y = 7$$

$$= 12 + 35 = 47$$

Min
$$Z = \frac{39}{2}$$
, for $x = \frac{3}{2}$, $y = 3$

6. (A) (i) Given CDR = 13.4

Total population $(\Sigma Pi) = 40000 + 65000 + 15000$

 $Z = 3 \times 4 + 5 \times 7$

No of Deaths (
$$\Sigma Di$$
) = 350 + 650 + x

$$= 1000 + x$$

$$CDR = \frac{\sum Di}{\sum Pi} \times 1000$$

4000

$$\Rightarrow \qquad 13.4 = \frac{1000 + x}{120000} \times 1000$$

$$\Rightarrow \qquad 13.4 = \frac{1000 + x}{120}$$

x = 1608 - 1000 \Rightarrow x = 608

Year of service	income	xy	<i>x</i> ²	y^2
x	у			
11	10	110	121	100
7	8	56	49	64
9	6	54	81	36
5	5	25	25	25
8	9	72	64	81
6	7	42	36	49
10	11	110	100	121
56	56	469	476	496
			\geq	

Here n = 7, $\Sigma x = 56$, $\Sigma y = 56$, $\Sigma xy = 469$, $\Sigma x^2 =$ 476, $\Sigma y^2 = 496$

Now

...

$$\overline{y} = \frac{\Sigma y}{n} = \frac{56}{7} = 8$$

 $\overline{x} = \frac{\Sigma x}{n} = \frac{56}{7} = 8$

The regression of y on x is given by

$$b_{yx} = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$= \frac{7 \times 469 - 56 \times 56}{7 \times 476 - (56)^2}$$
$$= \frac{3283 - 3136}{3332 - 3136}$$
$$= \frac{147}{196} = 0.75$$

Hence the regression line of *y* on *x* is given by

$$y - \overline{y} = b_{yx}(x - \overline{x})$$

$$y - 8 = 0.75 (x - 8)$$

$$y - 8 = 0.75 x - 6.00$$

$$y = 0.75 x + 2$$

$$y = \frac{3}{4}x + 2$$

$$4y = 3x + 8$$
given inequality is

$$8 < -(3x - 5) < 13$$

= -8 < -3x + 5 < 13
= -8 - 5 < -3x + 5 - 5 < 13 - 5

= -13 < -3x < 8

Multiplying by – 1, we have

(iii) The

$$13 > 3x > -8$$
$$= \frac{13}{3} > x > \frac{-8}{3}$$

reversing the order of inequality

$$\frac{-8}{3} < x < \frac{13}{3}$$

 \therefore The solution set is $x \in \left(\frac{-8}{3}, \frac{13}{3}\right)$

(B) (i) For true, false question

Let the prob. of true $P = \frac{1}{2}$ and q = 1 - P =

$$1 - \frac{1}{2} = \frac{1}{2}$$

Now we have to find

$$P(X \le 3) = P(0) + P(1) + P(2) + P(3)$$
$$= {}^{7}C_{0} \left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{7} + {}^{7}C_{1} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^{6}$$

$$+{}^{7}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3} + {}^{7}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{4}$$
$$= \left(\frac{1}{2}\right)^{7} + 7\cdot\left(\frac{1}{2}\right)^{7} + 21\left(\frac{1}{2}\right)^{7} + 35\cdot\left(\frac{1}{2}\right)^{7}$$
$$= 64 \times \left(\frac{1}{2}\right)^{7}$$
$$= 64 \times \frac{1}{128}$$
$$= \frac{1}{2}$$

 \therefore Prob. of guessing at most three question correctly = $\frac{1}{2}$

(ii)
$$C = \overline{\langle} 1000, n = 2 \text{ years} = 24 \text{ months}$$

r = 12% per annum= 1% per month $i = \frac{r}{100} = \frac{1}{100} = 0.01$ Present value $P = \frac{C}{i} [1 - (1 + i)^{-n}]$ $= \frac{1000}{0.01} [1 - (1 + 0.01)^{-24}]$ $= \frac{1000}{0.01} [1 - 0.7884]$ $= \frac{1000}{0.01} \times 0.2116$ = ₹ 21160Cash price of television = 20000 + 21160 = ₹ 41160

(iii) The given problem is of n jobs and three machines. We change the problem in of n jobs and two machines.

For this either Min $M_1 \le M_3 \times M_2$ or min $M_3 \le \max M_2$

Here min
$$M_3 = 7 = M_1 \times M_2$$

Hence we write $M_1 + M_2 = G$ and $M_2 + M_3 = H$ the problem will be as follows

Jobs	Α	В	С	D
$G = M_1 + M_2$	11	15	9	8
$H = M_2 + M_3$	13	15	12	14

The sequence as follows

Now D C A D

Job	M_1		M_2		M_3	
	Time in	Time out	Time in	Time out	Time in	Time out
D	0	3	3	8	8	17
С	3	10	10	12	17	27
А	10	15	15	21	27	34
В	15	23	23	30	34	42

The minimum elapsed time = 42 hrs.

Ideal time for $M_1 = 42 - 23 = 19$ hrs.