
Strictly based on the latest CISCE Curriculum

OSWAAL BOOKS
LEARNING MADE SIMPLE

ISC
SOLVED

PAPER
2018

For
2019
Exam

COMPUTER
SCIENCE

OSWAAL BOOKS
1/11, Sahitya Kunj, M.G. Road,

Agra - 282002, UP (India)

 0562 2857671, 2527781Ph.:

 contact@oswaalbooks.comemail:

www.oswaalbooks.com website:

Oswaal Books has exercised due care and caution in collecting
the data before publishing this book. Inspite of this if any
omission, inaccuracy or printing error occurs with regards to the
data contained in this book, Oswaal books will not be held
responsible or liable. Oswaal Books will be grateful if you could
point out any such error or your suggestions which will be of
great help for other readers.

Disclaimer :

(2)

LATEST SYLLABUS

COMPUTER SCIENCE
CLASS 12

There will be two papers in the subject.
Paper I: Theory - 3 hours ... 70 marks
Paper II: Practical - 3 hours ... 30 marks

PAPER I – THEORY – 70 MARKS
Paper 1 shall be of 3 hours duration and be divided into
two parts.
Part I (20 marks) : This part will consist of compulsory short
answer questions, testing knowledge, application and skills
relating to the entire syllabus.
Part II (50 marks) : This part will be divided into three Sections,
A, B and C. Candidates will be required to answer two questions
out of three from Section A (each carrying 10 marks) and two
questions out of three from Sections B (each carrying 10 marks)
and two questions out of three from Section C (each carrying 5
marks). Therefore, a total of six questions are to be answered in
Part II

SECTION A
1. Boolean Algebra
 (a) Propositional logic, well formed formulae, truth

values and interpretation of well formed formulae
(wff), truth tables, satisfiable, unsatisfiable and
valid formulae. Equivalence laws and their use
in simplifying wffs.

 Propositional variables; the common logical
connectives (~ (not)(negation), L (and)(conjunction),
V (or)(disjunction), (implication),
(biconditional); definition of a well-formed formula
(wff); representation of simple word problems as wff
(this can be used for motivation); the values true and
false; interpretation of a wff; truth tables; satisfiable,
unsatisfiable and valid formulae.

 Equivalence laws: commutativity of L, V; associativity
of L, V; distributivity; de Morgan’s laws; law of
implication (p q ~p V q); law of biconditional
((p q) (p V q) L (q p)); identity (p p); law
of negation (~ (~p) p); law of excluded middle (p
V~p true); law of contradiction (pL~p false);
tautology and contingency simplification rules for
L, V. Converse, inverse and contra positive. Chain
rule(Modus ponen).

 p V p p p L p p
 p V true true p L true p
 p V false p p L false false
 p V (p V q) p p L (p V q) p
 The equivalence rules can be used to simplify

propositional wffs, for example :
 1) (p q) L (p r) to p (q L r)
 2) ((p q) L p) q to true
 etc.

 (b) Binary valued quantities; basic postulates of
Boolean algebra; operations AND, OR and NOT;
truth tables.

 (c) Basic theorems of Boolean algebra (e.g. Duality,
idempotence, commutativity, associativity, distri-
butivity, operations with 0 and 1, complements,
absorption, involution); De Morgan’s theorem
and its applications; reducing Boolean expre-
ssions to sum of products and product of sums
forms; Karnaugh maps (up to four variables).

 Verify the laws of boolean algebra using truth tables.
Inputs, outputs for circuits like half and full adders,
majority circuit etc., SOP and POS representation;
Maxterms & Minterms, Canonical and Cardinal
representation, reduction using Karnaugh maps and
boolean algebra.

2. Computer Hardware
 (a) Elementary logic gates (NOT, AND, OR, NAND,

NOR, XOR, XNOR) and their use in circuits.
 (b) Applications of Boolean algebra and logic gates

to half adders, full adders, encoders, decoders,
multiplexers, NAND, NOR as universal gates.

 Show the correspondence between boolean functions and
the corresponding switching circuits or gates. Show that
NAND and NOR gates are universal by converting some
circuits to purely NAND or NOR gates.

SECTION B
The programming element in the syllabus (Sections B
and C) is aimed at algorithmic problem solving and not
merely rote learning of Java syntax. The Java version used
should be 1.5 or later. For programming, the students
can use any text editor and the javac and java programs
or any development environment: for example, BlueJ,
Eclipse, NetBeans etc. BlueJ is strongly recommended for
its simplicity, ease of use and because it is very well suited
for an ‘objects first’ approach.
3. Implementation of algorithms to solve problems:

The students are required to do lab assignments in
the computer lab concurrently with the lectures.
Programming assignments should be done such that
each major topic is covered in at least one assignment.
Assignment problems should be designed so that they
are non-trivial and make the student do algorithm
design, address correctness issues, implement and
execute the algorithm in Java and debug where
necessary.

 Self explanatory.

(3)

4. Programming in Java (Review of Class XI Sections B
and C)

 Note that items 4 to 8 will get introduced almost
simultaneously when classes and their definitions are
introduced.

5. Objects
 (a) Objects as data (attributes) + behaviour

(methods or functions); object as an instance of
a class. Constructors.

 Difference between object and class should be made
very clear. BlueJ (www.bluej.org) and Greenfoot
(www.greenfoot.org) can be profitably used for this
purpose. Constructor as a special kind of function;
the new operator; multiple constructors with different
argument structures; constructor returns a reference
to the object.

 (b) Analysis of some real world programming
examples in terms of objects and classes.

 Use simple examples like a calculator, date, number,
etc. to illustrate how they can be treated as objects
that behave in certain welldefined ways and how the
interface provides a way to access behaviour. Illustrate
behaviour changes by adding new functions, deleting
old functions or modifying existing functions.

6. Primitive values, wrapper classes, types and casting
 Primitive values and types: int, short, long, float,

double, boolean, char. Corresponding wrapper
classes for each primitive type. Class as type of the
object. Class as mechanism for user defined types.
Changing types through user defined casting and
automatic type coercion for some primitive types.

 Ideally, everything should be a class; primitive types are
defined for efficiency reasons; each primitive type has a
corresponding wrapper class. Classes as user defined types.
In some cases types are changed by automatic coercion or
casting – e.g. mixed type expressions. However, casting in
general is not a good idea and should be avoided, if possible.

7. Variables, expressions
 Variables as names for values; expressions (arithmetic

and logical) and their evaluation (operators,
associativity, precedence). Assignment operation;
difference between left hand side and right hand side
of assignment.

 Variables denote values; variables are already defined as
attributes in classes; variables have types that constrain the
values it can denote. Difference between variables denoting
primitive values and object values – variables denoting
objects are references to those objects. The assignment
operator = is special. The variable on the lhs of = denotes
the memory location while the same variable on the rhs
denotes the contents of the location e.g. i=i+2.

8. Statements, scope
 Statements; conditional (if, if-then-else, switchbreak,?:

ternary operator), looping (for, while-do, do-while,
continue, break); grouping statements in blocks,
scope and visibility of variables.

 Describe the semantics of the conditional and looping
statements in detail. Evaluation of the condition in
conditional statements (esp. difference between || and | and
&& and &). Emphasize fall through in switch statement.
Many small examples should be done to illustrate control
structures. Printing different kinds of patterns for looping
is instructive. When number of iterations are known in
advance use the for loop otherwise the while-do or do-while
loop. Express one loop construct using the others. For e.g.:

 for (<init>; <test>; <inc>) <stmt>; is equivalent to:
 Using while
 <init>; while <test> {<stmt>; <inc> }
 Using do-while
 <init>; if !<test> do <stmt>; <inc> while <test>;
 Nesting of blocks. Variables with block scope, function

scope, class scope. Visibility rules when variables with
the same name are defined in different scopes.

9. Functions
 Functions/methods (as abstractions for complex

user defined operations on objects), functions as
mechanisms for side effects; formal arguments and
actual arguments in functions; different behaviour of
primitive and object arguments. Static functions and
variables. The this variable. Examples of algorithmic
problem solving using functions (various number
theoretic problems, finding roots of algebraic
equations).

 Functions are like complex operations where the object is
implicitly the first argument. Variable this denotes the
current object. Functions typically return values, they
may also cause sideeffects (e.g. change attribute values
of objects) – typically functions that are only supposed
to cause side-effects return void (e.g. Set functions). Java
passes argument by value. Illustrate the difference between
primitive values and object values as arguments (changes
made inside functions persist after the call for object values).
Static definitions as class variables and class functions
visible and shared by all instances. Need for static functions
and variables. Introduce the main method – needed to begin
execution.

10. Arrays, strings
 (a) Structured data types – arrays (single and multi-

dimensional), strings. Example algorithms
that use structured data types (e.g. searching,
finding maximum/minimum, sorting techniques,
solving systems of linear equations, substring,
concatenation, length, access to char in string,
etc.).

...contd.

(4)

 Storing many data elements of the same type requires
structured data types – like arrays. Access in arrays
is constant time and does not depend on the number
of elements. Sorting techniques (bubble, selection,
insertion). Structured data types can be defined by
classes – String. Introduce the Java library String
class and the basic operations on strings (accessing
individual characters, various substring operations,
concatenation, replacement, index of operations). The
Class StringBuffer should be introduced for those
applications that involve heavy manipulation of
strings.

 (b) Basic concept of a virtual machine; Java virtual
machine; compilation and execution of Java
programs (the javac and java programs).

 The JVM is a machine but built as a program
and not through hardware. Therefore it is called a
virtual machine. To run, JVM machine language
programs require an interpreter (the java program).
The advantage is that such JVM machine language
programs (.class files) are portable and can run on any
machine that has the java program.

 (c) Compile time and run time errors; basic concept
of an exception, the Exception class, catch and
throw.

 Differentiate between compile time and run time
errors. Run time errors crash the program. Recovery
is possible by the use of exceptions. Explain how
an exception object is created and passed up until a
matching catch is found. This behaviour is different
from the one where a value is returned by a deeply
nested function call. It is enough to discuss the
Exception class. Sub-classes of Exception can be
discussed after inheritance has been done in Class XII.

 (d) Class as a contract; separating implementation
from interface; encapsulation; private and public.

 Class is the basic reusable unit. Its function prototypes
(i.e. the interface) work as a visible contract with the
outside world since others will use these functions
in their programs. This leads to encapsulation (i.e.
hiding implementation information) which in turn
leads to the use of private and public for realizing
encapsulation.

 (e) Interfaces in Java; implementing interfaces
through a class; interfaces for user defined
implementation of behaviour.

 Motivation for interface: often when creating reusable
classes, some parts of the exact implementation can
only be provided by the final end user. For example,
in a class that sorts records of different types the exact
comparison operation can only be provided by the end
user. Since only he/she knows which field(s) will be

used for doing the comparison and whether sorting
should be in ascending or descending order be given by
the user of the class.

 Emphasize the difference between the Java language
construct interface and the word interface often used
to describe the set of function prototypes of a class.

 (f) Basic input/output using Scanner and Printer
classes from JDK; files and their representation
using the File class, file input/output; input/
output exceptions. Tokens in an input stream,
concept of whitespace, extracting tokens from an
input stream (String Tokenizer class).

 The Scanner class can be used for input of various
types of data (e.g. int, float, char etc.) from the standard
input stream or a file input stream. The File class is
used model file objects in the underlying system in an
OS independent manner. Similarly, the Printer class
handles output. Only basic input and output using
these classes should be covered.

 Discuss the concept of a token (a delimited continuous
stream of characters that is meaningful in the
application program – e.g. words in a sentence where
the delimiter is the blank character). This naturally
leads to the idea of delimiters and in particular
whitespace and user defined characters as delimiters.
As an example show how the String Tokenizer class
allows one to extract a sequence of tokens from a string
with user defined delimiters.

 (g) Concept of recursion, simple recursive functions
(e.g. factorial, GCD, binary search, conversion of
representations of numbers between different
bases). Recursive sorting techniques.

 Many problems can be solved very elegantly by
observing that the solution can be composed of solutions
to ‘smaller’ versions of the same problem with the base
version having a known simple solution. Recursion
can be initially motivated by using recursive equations
to define certain functions. These definitions are fairly
obvious and are easy to understand. The definitions
can be directly converted to a program. Emphasize that
any recursion must have a base case. Otherwise, the
computation can go into an infinite loop. Illustrate this
by removing the base case and running the program.
Examples:

 (i) Definition of factorial :
 factorial(0) = 1 //base case
 factorial(n) = n * factorial(n-1)
 (ii) Definition of GCD :
 gcd(m, n) =
 if (m==n) then n //base case
 else if (m>n) then gcd(m-n, n)
 else gcd(m, n-m)

...contd.

(5)

 (iii) Definition of Fibonacci numbers :
 fib(0) = 1 //base case
 fib(1) = 1 //base case
 fib(n) = fib(n-1)+ fib(n-2)
 The tower of Hanoi is a very good example of

how recursion gives a very simple and elegant
solution where as non-recursive solutions are
quite complex. Discuss the use of a stack to
keep track of function calls. A stack can also be
used to solve the tower of Hanoi problem non-
recursively. Merge sort and Quick sort on arrays.

SECTION C
Inheritance, polymorphism, data structures, computa-
tional complexity
11. Inheritance and polymorphism
 Inheritance; base and derived classes; member access

in derived classes; redefinition of variables and
functions in subclasses; abstract classes; class Object;
protected visibility. Subclass polymorphism and
dynamic binding.

 Emphasize the following :
 inheritance as a mechanism to reuse a class by

extending it.
 inheritance should not normally be used just to reuse

some functions defined in a class but only when there
is a genuine specialization (or subclass) relationship
between objects of the base class and that of the derived
class.

 Allows one to implement operations at the highest
relevant level of abstraction.

 Freezes the interface in the form of abstract classes with
abstract functions that can be extended by the concrete
implementing classes. For example, an abstract class
Shape can have an abstract function draw that is
implemented differently in the sub-classes like Circle,
Quadrilateral etc.

	 how the exact function call at run time depends on
the type of the object referenced by the variable. This
gives sub-class polymorphism. For example in the code
fragment :

 Shape s1=new Circle(), s2=new Quadrilateral();
 s1.draw(); //the draw is the draw in Circle
 s2.draw(); //the draw is the draw in Quadrilateral

the two draw function invocations on s1, s2 invoke
different draw functions depending on the type of
objects referenced by s1 and s2 respectively.

12. Data structures
 (a) Basic data structures (stack, queue, dequeue);

implementation directly through classes;
definition through an interface and multiple
implementations by implementing the interface.

Basic algorithms and programs using the above
data structures.

 A data structure is a data collection with well defined
operations and behaviour or properties. The behaviour
or properties can usually be expressed formally using
equations or some kind of logical formulae. Consider
for e.g. a stack with operations defined as follows :

 void push(Object o)
 Object pop()
 boolean isEmpty()
 Object top()
 Then, for example the LIFO property can be expressed

by (assume s is a stack) :
 if s.push(o); o1=pop() then o o1
 What the rule says is: if o is pushed on the stack s and

then it is popped and o1 is the object obtained then o,
o1 are identical.

 Another useful property is :
 if s.isEmpty() == true then s.pop() = ERROR
 It says that popping an empty stack gives ERROR.
 Similarly, several other properties can also be specified.

It is important to emphasize the behavioural rules or
properties of a data structure since any implementation
must guarantee that the rules hold.

 Some simple algorithms that use the data structures:
 (i) For stack: parentheses matching, tower of Hanoi,

nested function calls; solving a maze.
 (ii) For queue: scheduling processes, printers, jobs in

a machine shop.
 (b) Recursive data structures: single linked list

(Algorithm and programming), binary trees, tree
traversals (Conceptual)

 Data structures should be defined as abstract data
types with a well defined interface (it is instructive to
define them using the Java interface construct) – see
the comments in (a) above. Emphasize that algorithms
for recursive data structures are themselves recursive
and that algorithms are usually the simplest and most
elegant. The following should be covered for each data
structure :

 Linked List (single) : insertion, deletion, reversal,
extracting an element or a sublist, checking emptiness.

 Binary trees : apart from the definition the following
concepts should be covered : external and internal
nodes, height, level, size, degree, completeness,
balancing, Traversals (pre, post and in-order).

13. Complexity and big O notation
 Concrete computational complexity; concept of input

size; estimating complexity in terms of functions;
importance of dominant term; best, average and worst

...contd.

(6)

case. Big O notation for computational complexity;
analysis of complexity of example algorithms using
the big O notation (e.g. Various searching and sorting
algorithms, algorithm for solution of linear equations
etc.).

 Points to be given particular emphasis:
 (i) Algorithms are usually compared along two dimensions

– amount of space (that is memory) used and the time
taken. Of the two the time taken is usually considered
the more important. The motivation to study time
complexity is to compare different algorithms and
use the one that is the most efficient in a particular
situation.

 (ii) Actual run time on a particular computer is not a good
basis for comparison since it depends heavily on the
speed of the computer, the total amount of RAM in
the computer, the OS running on the system and the
quality of the compiler used. So we need a more abstract
way to compare the time complexity of algorithms.

 (iii) This is done by trying to approximate the number of
operations done by each algorithm as a function of
the size of the input. In most programs the loops are
important in deciding the complexity. For example in
bubble sort there are two nested loops and in the worst
case the time taken will be proportional to n(n-1) where
n is the number of elements to be sorted. Similarly,
in linear search in the worst case the target has to be
compared with all the elements so time taken will be
proportional to n where n is the number of elements in
the search set.

 (iv) In most algorithms the actual complexity for a
particular input can vary. For example in search the
number of comparisons can vary from 1 to n. This
means we need to study the best, worst and average
cases. Comparisons are usually made taking the worst
case. Average cases are harder to estimate since it
depends on how the data is distributed. For example
in search, if the elements are uniformly distributed
it will take on the average n/2 comparisons when the
average is taken over a statistically significant number
of instances.

 (v) Comparisons are normally made for large values of the
input size. This means that the dominant term in the
function is the important term. For example if we are
looking at bubble sort and see that time taken can be
estimated as: a*n2 +b*n + c where n is the number of
elements to be sorted and a, b, c are constants then for
large n the dominant term is clearly n2 and we can, in
effect, ignore the other two terms.

 All the above motivates the big O notation. Let f(n), g(n)
be positive functions, then f(n) is said to be O(g(n)) if there
exists constants c, n0 such that f(x)≤ c*g(n) whenever
n>n0. What this means is that g(n) asymptotically
dominates f(n). Expressing time complexity using the big
O notation gives us an abstract basis for comparison and
frees us from bothering about constants. So the estimated
time complexity a*n2+b*n+c is O(n2).

 Analyse the big O complexity of the algorithms pertaining
to the data structures in 11 (a) and (b) above.

 qq

...contd.

To know about more useful books for class-12 click here

ISC Solved Paper, 2018
Class-XII

Computer Science
Paper-I (Theory)

(Maximum Marks : 70)

(Time allowed : Three hours)

(Candidates are allowed additional 15 minutes for only reading the paper.

They must NOT start writing during this time.)

 Answer all questions in Part I (compulsory) and six questions from Part-II, choosing two

questions from Section-A, two from Section-B and two from Section-C.

All working, including rough work, should be done on the same sheet as the

rest of the answer.

The intended marks for questions or parts of question are given in brackets [].

 PART- I (20 Marks)

Answer all questions
While answering question in this Part, indicate briefly your working and reasoning,

wherever required.
 1. (a) State the Commutative law and prove it with the help of a the truth table. 1
 (b) Convert the following expression into its canonical POS form : 1
 F(X, Y, Z) = (X + Y')·(Y' + Z)
 (c) Find the dual of : 1
 (A' + B)·(1 + B') = A' + B
 (d) Verify the following proposition with the help of a truth table : 1
 (P ∧ Q) ∨ (P ∧ ~ Q) = P
 (e) If F(A, B, C) = A' (BC' + B'C), then find F' 1
 2. (a) What are Wrapper classes ? Given any two examples. 2
 (b) A matrix A[m][m] is stored in the memory with each element requiring 4 bytes of storage. If the base address

at A[1][1] is 1,500 and the address of A[4][5] is 1,608, determine the order of the matrix when it is stored in
Column Major Wise. 2

 (c) Convert the following infix notation to postfix form : 2
 A + (B – C * (D/E) * F)
 (d) Define Big 'O' notation. State the two factors which determine the complexity of an algorithm. 2
 (e) What is exceptional handling ? Also, state the purpose of finally block in a try catch statement. 2
 3. The following is a function of some class which checks if a positive integer is a Palindrome number by returning

true or false. (A number is said to be palindrome if the reverse of the number is equal to the original number.) The function
does not use modulus (%) operator to extract digit. There are some places in the code marked by ?1?, ?2?, ?3?, ?4?,
?5? which may be replaced by a statement /expression so that the function works properly.

 boolean PalindromeNum(int N)
 {
 int rev = ?1?
 int num = N;
 while (num > 0)
 {

https://www.oswaalbooks.com/books/isc-board-41

8 | OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII

To know about more useful books for class-12 click here

 int f = num/10;
 int s = ?2?;
 int digit = num – ?3?
 rev = ?4? + digit;
 num /= ?5?
 }
 if (rev = = N)
 return true;
 else
 return false;
 }
 (i) What is the statement or expression at ?1? 1
 (ii) What is the statement or expression at ?2? 1
 (iii) What is the statement or expression at ?3? 1
 (iv) What is the statement or expression at ?4? 1
 (v) What is the statement or expression at ?5? 1

 PART- II (50 Marks)

Answer six questions in this part, choosing two questions from
Section A, two from Section B and two from Section C.

SECTION - A

Answer any two question.
 4. (a) Given the Boolean function F(A, B, C, D,) = ∑ (0, 2, 4, 8, 9, 10, 12, 13).
 (i) Reduce the above expression by using 4-variable Karnaugh map, showing the various groups (i.e., octal,

quads and pairs). 4

 (ii) Draw the logic gate diagram for the reduced expression. Assume that the variables and their complements
are available as inputs. 1

 (b) Given the Boolean function F(A, B, C, D) = p (3, 4, 5, 6, 7, 10, 11, 14, 15).

 (i) Reduce the above expression by using 4-variable Karnaugh map, showing the various groups (i.e. octal,
quads and pairs). 4

 (ii) Draw the logic gate diagram for the reduced expression. Assume that the variables and their complements
are available as inputs. 1

 5. (a) A training institute intends to give scholarships to its students as per the criteria given below : 5

 l The student has excellent academic record but is financially weak.

OR

 l The student does not have an excellent academic record and belongs to a backward class.

OR

 l The student does not have an excellent academic record and is physically impaired.
 The inputs are :

INPUTS

A Has excellent academic record

F Financially sound

C Belongs to a backward class

I Is physically impaired

 (In all the above cases 1 indicates yes and 0 indicates no).
 Output : X [1 indicates yes, 0 indicates no for all cases]
 Draw the truth table for the inputs and outputs given above and write the SOP expression for X (A,F, C,I).
 (b) Using the truth table, state whether the following proposition is a tautology, contingency or a contradiction : 3

~ (A ∧ B) V (~ A ⇒ B)

https://www.oswaalbooks.com/books/isc-board-41

OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII | 9

To know about more useful books for class-12 click here

 (c) Simplify the following expression, using Boolean laws : 2

A • (A' + B) • C • (A + B)

 6. (a) What is a Encoder ? Draw the Encoder circuit to convert A-F hexadecimal numbers to binary. State an
application of a Multiplexer. 5

 (b) Differentiate between Half Adder and Full Adder. Draw the logic circuit diagram for a Full Adder. 3
 (c) Using only NAND gates, draw the logic circuit diagram for A' + B. 2

SECTION - B

Answer any two questions.

Each program should be written in such a way that it clearly depicts the logic of the problem.

This can be achieved by using mnemonic names and comments in the program.

(Flowcharts and Algorithms are not required.)

The programs must be written in Java.

 7. Design a class Perfect to check if a given number is a perfect number or not. [A number is said to be perfect if sum
of the factors of the number excluding itself is equal to the original number] 10

 Example : 6 = 1 + 2 + 3 (where 1, 2 and 3 are factors of 6, excluding itself)
 Some of the members of the class are given below :
 Class name : Perfect
 Data members/instance variables :
 num : to store the number
 Methods/Member functions :
 Perfect (int nn) : parameterized constructor to initialize the data member

num=nn
 int sum_of_factors (int i) : returns the sum of the factors of the number(num), excluding

itself, using recursive technique
 void check () : checks whether the given number is perfect by invoking

the function sum_of_factors () and displays the result with an
appropriate message

 Specify the class Perfect giving details of the constructor (), int sum_of_factors(int) and void check (). Define a
main () function to create an object and call the functions accordingly to enable the task.

 8. Two matrices are said to be equal if they have the same dimension and their corresponding elements are equal. 10
 For example the two matrices A and B given below are equal :
 Matrix A Matrix B

1 2 3
2 4 5
3 5 6

1 2 3
2 4 5
3 5 6

 Design a class EqMat to check if two matrices are equal or not. Assume that the two matrices have the same
dimension.

 Some of the members of the class are given below :
 Class name : EqMat
 Data members/instance variables :
 a[] [] : to store integer elements
 m : to store the number of rows
 n : to store the number of columns
 Member functions / methods :
 EqMat(int mm, int nn) : parameterised constructor to initialise the data members m

= mm and n = nn
 void readarray () : to enter elements in the array
 int check (EqMat P, EqMat Q) : checks if the parameterized objects P and Q are equal and

returns 1 if true, otherwise returns 0
 void print () : displays the array elements
 Define the class EqMat giving details of the constructor (), void readarray (), int check(EqMat, EqMat) and void

print (). Define the main () function to create objects and call the functions accordingly to enable the task.

https://www.oswaalbooks.com/books/isc-board-41

10 | OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII

To know about more useful books for class-12 click here

 9. A class Capital has been defined to check whether a sentence has words beginning with a capital letter or not.
 Some of the members of the class are given below : 10
 Class name : Capital
 Data member/instance variables :
 sent : to store a sentence
 freq : stores the frequency of words beginning with a capital letter
 Member functions / methods :
 Capital() : default constructor
 void input() : to accept the sentence
 boolean isCap(String w) : checks and returns true if word begins with a capital letter,

otherwise returns false
 void display() : displays the sentence along with the frequency of the words

beginning with a capital letter
 Specify the class Capital, giving the details of the constructor(), void input(), boolean isCap(String) and void

display(). Define the main() function to create an object and call the functions accordingly to enable the task.

SECTION - C

Answer any two questions.
Each program should be written in such a way that it clearly depicts the logic of the problem

stepwise.
This can be achieved by using comments in the program and mnemonic names or pseudo codes for
algorithms. The programs must be written in Java and the algorithms must be written in general /

standard form, wherever required / specified.
(Flowcharts are not required.)

 10. A super class Number is defined to calculate the factorial of a number. Define a sub class Series to find the sum
of the series S = 1! + 2! + 3! + 4! + + n ! 5

 The details of the members of both the classes are given below :
 Class name : Number
 Data member/instance variable :
 : to store an integer number
 Member functions / methods :
 Number(int nn) : parameterized constructor to initialize the data member n = nn
 int factorial(int a) : returns the factorial of a number
 (factorial of n = 1 × 2 × 3 × × n)
 void display () : displays the data members
 Class name : Series
 Data member/instance variable :
 sum : to store the sum of the series
 Member functions/methods :
 Series(...) : Parameterized constructor to initialize the data members of both

the classes
 void calsum() : calculates the sum of the given series
 void display() : displays the data members of both the classes
 Assume that the super class Number has been defined. Using the concept of inheritance, specify the class Series giving

the details of the constructor(...), void calsum() and void display().
 The super class, main function and algorithm need NOT be written.
 11. Register is an entity which can hold a maximum of 100 names. the register enables the user to add and remove

names from the top most end only 5
 Define a class Register with the following details :
 Class name : Register
 Data Members/instance variables :
 stud[] : array to store the names of the students
 cap : stores the maximum capacity of the array
 top : to point the index of the top end

https://www.oswaalbooks.com/books/isc-board-41

OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII | 11

To know about more useful books for class-12 click here

 Member functions :
 Register (int max) : constructor to initialize the data member cap = max, top = – 1

and create the string array
 void push(String n) : to add names in the register at the top location if possible

otherwise display the message "OVERFLOW"
 String pop() : removes and returns the names from the top most location of

the register if any, else returns "$$"
 void display() : displays all the names in the register
 (a) Specify the class Register giving details of the functions void push(String) and String pop(). Assume that

 the other functions have been defined.
 The main function and algorithm need NOT be written.
 (b) Name the entity used in the above data structure arrangement .
 12. (a) A linked list is formed from the objects of the class Node. The class structure of the Node is given below : 2
 class Node
 {
 int n;
 Node link;
 }

 Write an Algorithm OR a Method to search for a number from an existing linked list.
 The method declaration is as follows :
 void FindNode(Node str, int b)
 (b) Answer the following questions from the diagram of a Binary Tree given below :

 (i) Write the inorder traversal of the above tree structure. 1

 (ii) State the height of the tree, if the root is at level 0 (zero) 1

 (iii) List the leaf nodes of the tree. 1

ANSWERS

 PART-I (20 Marks)

 1. (a) Commutative law :
 A + B = B + A Additive and Multiplicative A·B = B·A

A B A+B A.B B A B+A B.A

0
0
1
1

0
1
0
1

0
1
1
1

0
0
0
1

0
1
0
1

0
0
1
1

0
1
1
1

0
0
0
1

 Table 1 Table 2
 From table 1 and table 2
 A + B = B + A and A·B = B·A

https://www.oswaalbooks.com/books/isc-board-41

12 | OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII

To know about more useful books for class-12 click here

 (b) F(X, Y, Z) = (X + Y')·(Y' + Z)
 = (X + Y' + ZZ') (XX' + Y' + Z)
 = (X + Y' + Z) (X + Y' + Z') (X + Y' + Z) (X' + Y' + Z)
 (c) Dual of (A' + B)·(1 + B') = A' + B
 is (A' ·B) + (0 ·B') = A' ·B
 (d)

P Q ~Q P ∧ Q P ∧ ~ Q (P ∧ Q) ∨ (P ∧ ~ Q)

0

0

1

1

0

1

0

1

1

0

1

0

0

0

0

1

0

0

1

0

0

0

1

1

 From the table (P ∧ Q) ∨ (P ∧ ~ Q) = P
 (e) F(A, B, C) = A' (BC' + B'C)
 F' = (A' (BC' + B'C))'
 = A + (BC' + B'C)'
 = A + (BC')' (B'C)'
 = A + (B' + C) (B + C')
 2. (a) A wrapper class wraps around a data type and gives it an object appearance. Wherever, the data type is

required as an object, this object can be used. Wrapper classes include type methods to unwrap the object
and give back the data type.

 e.g., Integer, Boolean
 (b) Formula for finding out address of A[J] [K] element is column-major order of Matrix (MXN) order.
 LOC (A[J] [K]) = Base (A) + w (M(K– 1) + (J–1))
 Given : M = N = m, w = 4 bytes
 Bass address = 1500
 address of A[4] [5] = 1608
 LOC (A [4] [5]) = 1500 + 4(m (5 – 1) + (4 – 1))
 1608 = 1500 + 4(4 m + 3)
 1608 – 1500 = 16 m + 12
 16 m = 108 – 12 = 96
 m = 6
 Therefore,
 Order of the matrix is (6 × 6)
 (c)

Scanned Stack Postfix Expression

(

A (A

+ (+ A

((+(A

B (+(AB

– (+(– AB

C (+(– ABC

* (+(–* ABC

((+(–*(ABC

D (+(–*(ABCD

/ (+(–*(/ ABCD

E (+(–*(/ ABCDE

) (+(–* ABCDE/

https://www.oswaalbooks.com/books/isc-board-41

OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII | 13

To know about more useful books for class-12 click here

* (+(–** ABCDE/

F (+(–** ABCDE/F

) (+ ABCDE/F**–

) ABCDE/F**–+

 Postfix form of A + (B – C * (D/E) * F) = ABCDE/F**–+
 Infix → A + (B – C * (D/E) * F)
 = A + (B – C * DE/ * F)
 = A + (B – CDE/ * * F)
 = A + (B – CDE/ * F *)
 = A + (B C D E/ * F * –)
 = ABCDE/* F * – +
 (d) Big 'O' Notation : Big O notation is used to describe the performance or complexity of an algorithm.
 For a given function g(n), it is denoted by O(g(n)) the set of functions
 O(g(n)) = {f(n) : there exist positive constants c and n0 such that
 0 < f(n) < cg(n) for all n > n0}.
 Two factors which determine the complexity of an algorithm :
 (1) Time Complexity : The amount of computer time, algorithm needs to run to completion.
 (2) Space Complexity : The amount of memory, algorithm needs to run to completion.
 (e) Exceptional Handling : A Java exception is an object that describes an exceptional (that is error) condition

that has occurred in a piece of code. When an exceptional condition arise, an object representing that
exception is created and thrown in the method that caused the error. The method may choose to handle
the exception itself, or pass it on.

 Java exception handling is managed via five keywords. try, catch, throws and finally.
 Any code that absolutely must be executed after a try block completes is put under finally block.
 3. (i) ? 1 ? ⇒ 0
 (ii) ? 2 ? ⇒ rev * 10
 (iii) ? 3 ? ⇒ f * 10
 (iv) ? 4 ? ⇒ s
 (v) ? 5? ⇒ 10;

 PART- II
SECTION - A

 4. (a) (i) F(A, B, C, D) = S(0, 2, 4, 8, 9, 10, 12, 13)

 I quad (m0 + m2 + m8 + m10) = B D

 II quad (m0 + m4 + m12 + m8) = C D

 III quad (m12 + m13 + m8 + m9) = AC

 so the reduced expression is,

 F(A, B, C, D) = B D + C D + AC

https://www.oswaalbooks.com/books/isc-board-41

14 | OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII

To know about more useful books for class-12 click here

 (ii)

 (b) (i) F(A, B, C, D) = p (3, 4, 5, 6, 7, 10, 11, 14, 15)

 I quad (M4 M5 M7 M6) = A B+

 II quad (M3 M7 M15 M11) = ()C D+

 III quad (M15 M14 M11 M10) = ()A C+

 F(A, B, C, D) = A B+ ()C D+ ()A C+

 (ii)

 5. (a) From the question, we have four inputs A, F, C, I and on output X. The truth table for given variables is
shown.

A F C I X

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
1
0
1
1
1

https://www.oswaalbooks.com/books/isc-board-41

OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII | 15

To know about more useful books for class-12 click here

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
1
1
1
1

 So, the SOP expression is,
 A' F' C' I + A' F' C I' + A' F' CI + A' FC' I + A' FC I' + A' FCI + AFC' I' + AFC' I + AFC I' + AFCI
 (b)

A B A ∧ B ~ (A ∧ B) ~ A ~A ⇒ B ~(A ∧ B) ∨ (~ A ⇒ B)

0
0
1
1

0
1
0
1

0
0
0
1

1
1
1
0

1
1
0
0

0
1
1
1

1
1
1
1

 ~ (A ∧ B) ∨ (~ A ⇒ B) have all 1's, therefore Proposition is a tautology.
 (c) A·(A' + B)·C·(A + B) = (A·A' + A·B)·(C·A + C·B) (Distributive law)
 = AB ·(CA + CB) (Complement law)
 = AB·CA + AB·CB (Distributive law)
 = ABC + ABC (Idempotent law)
 = ABC (Idempotent law)
 6. (a) Encoder : An encoder is a digital function that produces a reverse operation from that a decoder. An encoder

has 2n (or less) input limes and n output lines. The output lines generate the binary code for the 2n input
variables.

Hexadecimal No F3 F2 F1 F0

A
B
C
D
E
F

1
1
1
1
1
1

0
0
1
1
1
1

1
1
0
0
1
1

0
1
0
1
0
1

 F0 = S(B, D, F)

 F1 = S(A, B, E, F)

 F2 = S(C, D, E, F)

 F3 = S(A, B, C, D, E, F)

https://www.oswaalbooks.com/books/isc-board-41

16 | OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII

To know about more useful books for class-12 click here

 In telephone network, multiple audio signals are integrated on a single line for transmission with the help
of multiplexers.

 (b)

S.No. Half Adder Full Adder

1. A combinational circuits that performs the
addition of two bits is called a half adder

A combinational circuit that performs the
addition of three bits (two bits are significant
and one is a previous carry) is called a full adder

2. The half adder circuits needs two binary inputs
and two binary outputs.

It consists of three binary inputs and two binary
outputs.

3. Half adder does not have carry in input. Full adder has carry in input.

 Full adder circuit diagrams :

 (c)

 SECTION–B
 7. import java. io. *;
 class Perfect
 {
 int num;
 Perfect (int nn)
 {
 num = nn;
 }
 int sum_of_factors (int i)
 {
 if (num = = i)
 return (sum_of_factors (i/2));
 else if (i = = 1)
 return (1);
 else if (num % i = = 0)
 return (i + sum_of_factors (i – 1));
 else return (sum_of_factors (i – 1));
 }
 void check ()
 {
 if (num = = sum_of_factors (num))
 System. out. println (" Perfect Number");
 else System. out. println ("Not Perfect Number");
 }
 public static void main (String args [])
 {
 system. out. println ("Enter one number");

https://www.oswaalbooks.com/books/isc-board-41

OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII | 17

To know about more useful books for class-12 click here

 BufferedReader br = new BufferedReader (new InputStreamReader (System.in));
 int n = Integer parseInt (br. readLine());
 Perfect ob = new Perfect (n);
 ob. check ();
 }
 }
 8. import java. io. *;
 class EqMat
 {
 int a [] [];
 int m, n;
 EqMat (int mm, int nn)
 {
 m = mm;
 n = nn;
 a = new int[m][n];
 }
 void readarray ()
 {
 int i, j;
 BufferedReader br = new BufferedReader (new InputStreamReader (System. in));
 System. out. println ("Enter" + m + n + "values");
 for (i = 0; i < m; i + +)
 {
 for (j = 0; j < n; j ++)
 a [i] [j] = Integer. parseInt (br. readLine ());
 }
 }
 int check (EqMat P, EqMat Q)
 { int i, j;
 for (i = 0; i < m; i ++)
 {
 for (j = 0; j < n; j++)
 if (P. a [i] [j] ! = Q. a [i] [j])
 return (0);
 }
 return (1);
 }
 void print ()
 { int i, j;
 for (i = 0; i < m; i ++)
 {
 for (j = 0; j < n; j ++)
 System. out. print (a [i] [j]);
 system. out. println () ;
 }
 }
 public static void main (String args [])
 {
 BufferedReader br = new BufferedReader (new InputStreamReader (System. in));
 system. out. println ("Enter no. of rows of matrix");
 int row = Integer. parseInt (br. readLine ());
 system . out. println ("Enter no. of Columns of matrix ");
 int col = Integer. parseInt (br. readLine ());
 EqMat Ob1 = new EqMat (row, col);
 Ob1. readarray ();
 Ob1. print ();
 EqMat Ob2 = new EqMat (row, col);
 Ob2. readarray ();
 Ob2. print ();
 EqMat Ob3 = new EqMat (row, col);
 if (Ob3. check (Ob1, Ob2) = = 1)
 system. out. println (" Matrices are equal");
 else

https://www.oswaalbooks.com/books/isc-board-41

18 | OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII

To know about more useful books for class-12 click here

 system. out. println (" Matrices are not equal");
 }
 }
 9. import java. io. * ;
 class Capital
 {
 String sent;
 int freq;
 Capital ()
 { sent = " "; freq = 0;
 }
 void input ()
 {
 BufferedReader br = new BufferedReader
 (new InputStreamReader (System. in));
 system. out. println ("Enter one sentence");
 sent = br. readLine ();
 String [] word = sent. split (" \\ s");
 for (int i = 0; i < word. length; i ++) {
 if (isCap (word [i]) = = true)
 freq ++;
 }
 }
 boolean isCap (String w)
 {
 if (Character. isUpperCase (w. charAt (0)) = = true)
 return true;
 else return false;
 }
 void display ()
 }
 System. out. println (sent);
 System. out. println (" the frequency of the words beginning with a capital

letter is "+ freq);
 }
 public static void main ()
 {
 Capital Ob = new Capital ();
 Ob. input ();
 Ob. display ();
 }
 }

SECTION–C
 10. class Series extends Number
 {
 int sum;
 Series (int nn)
 {
 super (nn);
 sum = 0;
 }
 void calsum ()
 { int i;
 for (i = 1; i < n; i ++)
 {
 sum = sum + factorial (i);
 }
 }
 void display ()
 {

https://www.oswaalbooks.com/books/isc-board-41

OSWAAL ISC SOLVED PAPER - 2018, COMPUTER SCIENCE, Class-XII | 19

To know about more useful books for class-12 click here

 system. out. println ("n = "+ n);
 system. out. println (" sum of series is " + sum);
 }
 }
 11. (a)
 class Register
 {
 String stud [];
 int cap, top;
 Register (int max)
 { cap = max;
 top = – 1;
 stud = new int [cap];
 }
 void push (String n)
 {
 if (top = = cap – 1)
 System. out. println ("OVER FLOW");
 else
 {
 top ++;
 stud [top] = n;
 }
 }
 String pop ()
 {
 if (top = = – 1)
 return ("$ $");
 else
 {
 String w = stud [top];
 top – – ;
 return (w);
 }
 }
 }
 11. (b) Stack
 12. (a) class Node
 {
 int n;
 Node link;
 void FindNode (Node str, int b)
 {
 Node t;
 t = str;
 while (t ! = null)
 {
 if (t. n = = b)
 {
 system. out. println ("Number is present in linked list");
 system. exit(0);
 }
 t = t. link;
 }
 system. out. println ("Number is not present in linked list");
 }
 }
 (b) (i) In order traversal → left root right
 G E H C A B F D
 (ii) height of the tree = 3
 (iii) leaf nodes = G, H, F

https://www.oswaalbooks.com/books/isc-board-41

	1.pdf
	2-6.pdf
	7-19.pdf

