KENDRIYA VIDYALAYA SANGATHAN
 [AGRA REGION]
 SESSION ENDING EXAMINATION 2018 SUBJECT : MATHEMATICS CLASS-IX
 [SOLVED PAPER]

Time : 3 Hrs.

Instructions :

1. All questions are compulsory.
2. The question paper consists of 30 questions divided into 4 sections- $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D}.
3. Section-A comprises of 6 question of 1 mark each, Section-B comprises of 6 questions of $\mathbf{2}$ marks each. Section-C comprises of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each, Section-D comprises of 8 questions of 4 marks each.
4. There is no overall choice in this question paper. However, an internal choice has been provided in four question of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
5. Use of calculator is not permitted.

SECTION-A

1. What is the degree of the polynomial $p(x)=2 x+\frac{3}{2} x^{3}-7$.
2. Find the value of a,for which the polynomial $2 x^{2}+a x+\sqrt{2}$ has 1 as its zero.
3. If a point is on negative side of x axis at distance of 5 units from origin, then find the coordinate of the point.
4. Express $x=3 y$ in the form $a x+b y+c=0$ and indicate the values of a, b and c.
5. In $\triangle \mathrm{ABC}, \angle \mathrm{A}=65^{\circ}$ and $\angle \mathrm{B}=30^{\circ}$, which side of the triangle is the longest ? Give reason for your answer.
6. Find the cured surface area of a right circular cone whose slant height is 10 cm and base radius is 7 cm .

SECTION-B

7. (a) $(125)^{\frac{-1}{3}}$
(b) $2^{\frac{1}{4}} \times 8^{\frac{1}{4}}$
8. In a conversation, Anand said his savings of the month is same as that of Raju, Pankaj replied he also saves as much his monthly savings of Anand and Pankaj? Write the Euclid's axiom for this situation.
9. In the given fig. If $x+y=w+z$, then prove that AOB is line

10. In the fig., $\angle P Q R=100^{\circ}$, where P, Q and R are points on the circle with centre O . Find $\angle \mathrm{OPR}$.

To know about more useful books for class-9 click here

11. If a wooden box of dimensions $8 \mathrm{~m} \times 7 \mathrm{~m} \times 6 \mathrm{~m}$ is to carry boxes of dimensions $8 \mathrm{Cm} \times 7 \mathrm{Cm} \times 6 \mathrm{Cm}$, then find the maximum number of boxes that can be carried in the wooden box.
12. Eleven bags of wheat flour, each marked 5-kg actually contained the following weights of flour (in kg). $4 \cdot 97,5 \cdot 05,5 \cdot 08,5 \cdot 03,5 \cdot 00,5 \cdot 06,5 \cdot 08,4 \cdot 98,5 \cdot 04,5 \cdot 07,5 \cdot 00$
Find the probability that any one of these bags chosen at random contains
(a) More than 5 kg .
(b) Equal to 5 kg .

SECTION-D

13. Write $0 \cdot 2 \overline{35}$ in the form of $\mathrm{p} / \mathrm{q}, \mathrm{q} \neq 0, \mathrm{p}$ and q are integers.
14. Locate $\sqrt{3}$ on the number line.
15. Factorize $2 x^{2}+3 \sqrt{5} x+5$.

OR

Factorize $x^{3}-2 x^{2}-x+2$
16. Draw the graph of the linear equation

$$
x+y=7
$$

At what points, does the graph cut the x axis and the y axis.
17. In fig., if $\mathrm{AB}\|\mathrm{CD}, \mathrm{CD}\| \mathrm{EF}$ and $x: y=3: 2$, find z.

18. In fig., $A B C D$ and $A B E F$ are parallelograms. The area of the Parallelogram $A B C D$ is 90 sq cm . Find
(a) ar (ABEF)
(b) ar (ABD)
(c) $\operatorname{ar}(\mathrm{BEF})$

Show that a median of a triangle divides it into two triangles of equal area.
To know about more useful books for class-9 click here
19. Plot the following points and check whether these are collinear or not.

$$
(4,-4),(3,-3),(-2,2),(-1,1)
$$

20. Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=5 \mathrm{~cm}, \mathrm{~B}=60^{\circ}$ and $\mathrm{AB}+\mathrm{AC}=7.5 \mathrm{~cm}$.
21. Find the area of triangular region two sides of which are 18 m and 10 m and the perimeter is 42 m .

OR
Sides of a triangle are in the ratio 12:17:25 and its perimeter is 540 cm . Find its area.
22. A shot putt is a metallic sphere of radius 4.9 cm . If the density of the metal is 7.8 gm per cu cm , find the mass of the shot-putt.

OR

How many litres of milk can a hemispherical bowl of diameter 10.5 cm hold ?

SECTION-D

23. In countries like USA and Canada, temperature is measured in Fahrenheit, whereas in countries like India, it measured in Celsius. Here is a linear that converts Fahrenheit to Celsius.

$$
\mathrm{F}=\frac{9}{5} \mathrm{C}+32
$$

(a) If the temperature is $30^{\circ} \mathrm{C}$, what is the temperature in Fahrenheit?
(b) If the temperature is $95^{\circ} \mathrm{F}$, what is the temperature in Celsius?
(c) Suggest a measure to control global warming.
24. Evaluate the following using suitable identities.
(a) $(102)^{3}$
(b) 104×96
25. Prove that "The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part the circle".

OR

If the non parallel sides of a trapezium are equal, prove that it is cyclic.
26. $\triangle A B C$ is an isosceles triangle in which $A B=A C$. Side $B A$ is produced to D such that $A D=A B$. Show that $\angle B C D$ is a right angle.
27. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersect $A C$ to D. Show that
(a) D is the midpoint of AC .
(b) $\mathrm{MD} \perp \mathrm{AC}$
(c) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$

OR
Prove that the line segment joining the mid points of two sides of a triangle is parallel to the third side and is half of it.
28. Curved surface area of right circular cylinder is 4.4 sq m . If the radius of the base of the cylinder is 0.7 m . Find its height. Also, find its volume.
29. The points scored by a basketball team is a series of 16 matches are as follows :
$17,2,7,27,25,5,14,18,10,24,48,10,8,7,10,28$.
Find the Median and Mode for the data.

OR

Find the mean salary of 60 workers of a factory from the following table.

Salary (Rs.)	No. of Workers
3000	16
4000	12
5000	10
6000	8
7000	6
8000	4
9000	3
10000	1
TOTAL	$\mathbf{6 0}$

To know about more useful books for class-9 click here
30. The table given below show the age of 80 teachers in a school.

Age (in years)	$18-29$	$30-39$	$40-49$	$50-59$
No. of Teachers	11	32	30	7

The teacher from this school is chosen at random. What is the probability that the age of the selected teachers is :
(a) 18 years or more?
(b) Between 30-39 years (including both)?
(c) Above 60 years?
(d) 40 or more than 40 years?

SOLUTIONS

SECTION-A

1. Degree of the polynomial $p(x)=3$
2.

$$
p(x)=2 x^{2}+a x+\sqrt{2}
$$

1 as its zero (Given)

$$
\begin{aligned}
\therefore \quad p(1) & =0 \\
2(1)^{2}+a(1)+\sqrt{2} & =0 \\
2+a+\sqrt{2} & =0 \\
a & =-(2+\sqrt{2})
\end{aligned}
$$

3. Coordinate of the point is $(-5,0)$

4.

$$
x=3 y
$$

$$
x-3 y+0=0
$$

5. $\because \quad \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

$$
65^{\circ}+30^{\circ}+\angle C=180^{\circ}
$$

curved surface area of cone $=\pi r l$

$$
=\frac{22}{7} \times 7 \times 10
$$

\therefore Curved surface area of cone $=220 \mathrm{~cm}^{2}$
7. (a)

$$
(125)^{\frac{-1}{3}}\left[a^{-m}=\frac{1}{a^{m}}\right]
$$

$$
=\left(\frac{1}{125}\right)^{\frac{1}{3}}=\left(\frac{1}{5^{3}}\right)^{\frac{1}{3}}
$$

$$
\therefore \quad a=1, b=-3 \text { and } c=0
$$

$$
\begin{aligned}
& =\left(\frac{1}{5}\right)^{3 \times \frac{1}{3}} \quad\left[\left(a^{m}\right)^{n}=a^{m n}\right] \\
& =\begin{array}{ll}
2^{\frac{1}{4}} \times 8^{\frac{1}{4}} \\
& =(2 \times 8)^{\frac{1}{4}} \\
& =\left(2^{4}\right)^{\frac{1}{4}} \\
& =2^{4 \times \frac{1}{4}}=2 \\
\therefore \quad & \left.2^{\frac{\mathrm{m}}{4}} \times \mathrm{b}^{\mathrm{m}}=(\mathrm{a} \times \mathrm{b})^{\mathrm{m}}\right] \\
\therefore \quad & =2
\end{array}
\end{aligned}
$$

8. Euclid's axiom state that things which are equal to the same thing are equal, to one another.
\therefore Anand's saving $=$ Raju saving $=$ Pankaj's Saving
9. Given, $\quad x+y=w+z$

[Since the sum of all the angles around a point is 360°]

$$
x+y+x+y=360^{\circ}
$$

To know about ${ }^{\mathrm{n}(\mathrm{E})=2}=2$ useful books for class-9 click here

$$
\begin{aligned}
2(x+y) & =360^{\circ} \\
x+y & =180^{\circ} \\
\angle \mathrm{BOC}+\angle \mathrm{AOC} & =180^{\circ} \\
\angle \mathrm{AOB} & =180^{\circ}
\end{aligned}
$$

$\therefore \angle \mathrm{AOB}$ is a straight line
Hence Proved.
10. Reflex

Reflex

$$
\angle \mathrm{POR}=2 \times 100=200^{\circ}
$$

$\because \angle \mathrm{POR}+$ Reflex $\angle \mathrm{POR}=360^{\circ}$ $\angle \mathrm{POR}+200=360^{\circ}$ $\angle \mathrm{POR}=360-200=160^{\circ}$
$\triangle \mathrm{POR}$
$\angle \mathrm{POR}+\angle \mathrm{OPR}+\angle \mathrm{ORP}=180^{\circ}$
[Sum of all agles of Δ]

$$
160^{\circ}+\angle \mathrm{OPR}+\angle \mathrm{OPR}=180^{\circ} \quad(\because \mathrm{OP}=\mathrm{OR})
$$

$$
2 \angle \mathrm{OPR}=180^{\circ}-160^{\circ}
$$

$$
\angle \mathrm{OPR}=\frac{20^{\circ}}{2}
$$

$$
\therefore \quad \angle \mathrm{OPR}=10^{\circ}
$$

11. Volume of Wooden box $=l \times b \times h$ unit 3

$$
\begin{aligned}
& =8 \times 7 \times 6 \mathrm{~m}^{3} \\
& =8 \times 7 \times 6 \times 1000000 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of small box $=8 \times 7 \times 6 \mathrm{~cm}^{3}$
Number of boxes that can be carried in the wooden box.

$$
\begin{aligned}
& =\frac{\text { Volume of wooden box }}{\text { Volume of small box }} \\
& =\frac{8 \times 7 \times 6 \times 1000000}{8 \times 7 \times 6}
\end{aligned}
$$

Number of boxes $=10,00,000$
12. $S=\{4 \cdot 97,5 \cdot 05,5 \cdot 08,5 \cdot 03,5 \cdot 00,5 \cdot 06,5 \cdot 08,4.98,5 \cdot 04$, 5.07,5.00\}
\therefore

$$
n(S)=11
$$

(a) more than 5 kg bag $=\{5 \cdot 05,5 \cdot 08,5 \cdot 03,5 \cdot 06,5 \cdot 08$, 5.04, 5.07\}
$\therefore \quad \mathrm{n}(\mathrm{E})=7$
Probability of beg which contains more than 5 kg

$$
\frac{n(E)}{n(S)}=\frac{7}{11}
$$

(b) Equal to 5 kg

$$
E=\{5 \cdot 00,5 \cdot 00\}
$$

Probability of beg which contains 5 kg

$$
\begin{aligned}
\frac{n(E)}{n(S)} & =\frac{2}{11} \\
& =\frac{2}{11}
\end{aligned}
$$

13. $0 \cdot 2 \overline{35}$

Let

$$
\begin{align*}
& x=0.2 \overline{35} \\
& x=0.235353535 \tag{i}
\end{align*}
$$

Multiply by 10

$$
10 x=2 \cdot 35353535
$$

Multiply by 100

$$
\begin{equation*}
1000 x=235 \cdot 353535 \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
10 x=2.353535 \tag{i}
\end{equation*}
$$

$$
(-) \quad(-)
$$

$$
990 x=233
$$

$$
x=\frac{233}{990}
$$

$$
0 \cdot 2 \overline{35}=\frac{233}{990}
$$

$$
3=4-1
$$

$$
3=(2)^{2}-(1)^{2}
$$

$$
\mathrm{OB}{ }^{2}=\mathrm{AB}^{2}-\mathrm{OA}^{2}
$$

Step of construction :

(i) Draw the number line
(ii) Mark the point A such that $\mathrm{OA}=1$ unit
(iii) Draw OC perpendicular on the number line.
(iv) Draw an arc taking centre A and radius 2 unit which intersect $O C$ at the point B.
(v) Draw an arc taking centre O and radius equal to OB which intersect the number line at the point P .
(vi) Point Pis the position of the $\sqrt{3}$ on the number line.
15.

$$
\begin{aligned}
2 x^{2}+3 \sqrt{5} x+5 & =2 x^{2}+2 \sqrt{5} x+\sqrt{5} x+5 \\
& =2 x(x+\sqrt{5})+\sqrt{5}(x+\sqrt{5}) \\
2 x^{2}+3 \sqrt{5} x+5 & =(x+\sqrt{5})(2 x+\sqrt{5})
\end{aligned}
$$

OR
$x^{3}-2 x^{2}-x+2$
$x^{2}(x-2)-1(x$

$x^{2}(x-2)-1(x-2) \quad\left[\because a^{2}-b^{2}=(a-b)(a+b)\right]$ $(x-2)\left(x^{2}-1\right)$
$(x-2)(x-1)(x+1)$
16.

	When	When			
	When			$x+y$	$=7$
---:	:---				
x	$=0$ then $y=7$				
y	$=0$ then $x=7$				
x	$=3$ then $y=4$				
	$x+y$				

When

$$
x=0 \text { then } y=7
$$

When

$$
x=3 \text { then } y=4
$$

$$
x+y=7
$$

x	0	7	3
y	7	0	4
(x, y)	$(0,7)$	$(7,0)$	$(3,4)$

Intercept on x axis and y-axis $=7$ units.
OR

On graph paper Intercept on x axis and y axis $=7$ units.
17. Given : $A B\|C D, C D\| E F$

and $\quad x: y=3: 2$

$$
\begin{array}{ll}
\therefore & \mathrm{AB} \| \mathrm{CD} \text { and } \mathrm{AB} \| \mathrm{EF} \\
\therefore & x: y=3: 2 \\
\mathrm{AB} \| \mathrm{EF} & x=3 k \text { and } y=2 \mathrm{k} \\
\therefore & x+y=180^{\circ}
\end{array}
$$

[Co. Int. angles of parallel lines]

$$
3 k+2 k=180^{\circ}
$$

$$
\mathrm{k}=\frac{180^{\circ}}{5}=36^{\circ}
$$

$\angle x=\angle z$
[Alternative in interior angle]

$$
\begin{aligned}
z & =3 \mathrm{k} \\
& =3 \times 36 \\
z & =108^{\circ}
\end{aligned}
$$

18. (a) $\quad \operatorname{ar}(\mathrm{ABEF})=\|^{\mathrm{gm}}(\mathrm{ABCD})$
$\therefore \quad$ ar $(\mathrm{ABEF})=90 \mathrm{~cm}^{2}$

[Both parallelogram having common base (AB) and lying between two parallel lines $A B$ and $C F]$
(b) $\because \Delta \mathrm{ABD}$ and $\|^{g m} \mathrm{ABCD}$ having common base (AB) and lying between two parallel lines $A B$ and $C D$

$$
\begin{aligned}
\therefore \quad \operatorname{ar} \triangle \mathrm{ABD} & =\frac{1}{2} \|^{\mathrm{gm}} \mathrm{ABCD} \\
& =\frac{1}{2} \times 90=45 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) $\because \triangle \mathrm{BFE}$ and $\|^{\mathrm{gm}}$ ABEF having common base (EF) and lying between two parallel line $E F$ and $A B$

$$
\begin{aligned}
\therefore \quad \operatorname{ar} \triangle \mathrm{BEF} & =\frac{1}{2} \|^{\mathrm{gm}} \mathrm{ABEF} \\
& =\frac{1}{2} \|^{\mathrm{gm}} \mathrm{ABCD} \text { [from (a) part] } \\
& =\frac{1}{2} \times 90=45 \mathrm{~cm}^{2} \\
& \mathrm{OR}
\end{aligned}
$$

Given: In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the median of the triangle.
To prove: \quad ar $\triangle A B D=$ ar $\triangle A D C$
Construction: Draw AP $\perp \mathrm{BC}$

$$
\text { Proof : } \quad \begin{align*}
\text { ar } \triangle \mathrm{ABC} & =\frac{1}{2} \times \mathrm{BC} \times \mathrm{AP} \tag{i}\\
\text { ar } \triangle \mathrm{ABD} & =\frac{1}{2} \times \mathrm{BD} \times \mathrm{AP} \\
& =\frac{1}{2} \times \frac{B C}{2} \times \mathrm{AP}
\end{align*}
$$

[AD is the median of $\triangle \mathrm{ABC}$]

$$
\begin{equation*}
\text { ar } \triangle \mathrm{ABD}=\frac{1}{2} \times \operatorname{ar} \triangle \mathrm{ABC} \tag{ii}
\end{equation*}
$$

$$
\text { ar } \triangle \mathrm{ADC}=\frac{1}{2} \times \mathrm{DC} \times \mathrm{AP}
$$

$$
=\frac{1}{2} \times \frac{B C}{2} \times \mathrm{AP}
$$

$$
\begin{equation*}
=\frac{1}{2} \times \operatorname{ar} \triangle \mathrm{ABC} \tag{iii}
\end{equation*}
$$

To know about more useful books for class-9 click here

from equation (i), (ii), and (iii)

$$
\operatorname{ar} \triangle \mathrm{ABD}=\operatorname{ar} \triangle \mathrm{ADC}=\frac{1}{2} \text { ar } \triangle \mathrm{ABC}
$$

19.

So, points are collinear.
20.

Step of construction :
(i) Draw a line segment $\mathrm{BC}=5 \mathrm{~cm}$
(ii) Make the $\angle \mathrm{CBX}=60^{\circ}$
(iii) Draw a arc, taking Centre as B and radius is 7.5 cm which intersect BX at the point D .
(iv) Join CD
(v) Draw perpendicular bisector of CD which intersect the line segment BD at the point A .
(vi) Join AC

Hence $A B C$ is required triangle
21. Given : Perimeter of $\Delta=42 \mathrm{~m}$

Two sides 18 m and 10 m respectively

Perimeter of

$$
\begin{array}{rlrl}
& & 42 & =18+10+c \\
& c & =42-28=14 \mathrm{~m} \\
& s & =\frac{a+b+c}{2}=\frac{42}{2}=21 \mathrm{~m}
\end{array}
$$

$$
\text { ar } \triangle \mathrm{ABC}=|\sqrt{s(s-a)(s-b)(s-c)}|
$$

$$
=|\sqrt{21(21-18)(21-10)(21-14)}|
$$

$$
\begin{aligned}
& =|\sqrt{21 \times 3 \times 11 \times 7}| \\
\operatorname{ar} \triangle \mathrm{ABC} & =|\sqrt{7 \times 7 \times 3 \times 3 \times 11}|
\end{aligned}
$$

$$
\text { ar } \triangle \mathrm{ABC}=21 \sqrt{11} \mathrm{~m}^{2}
$$

OR

Given : Sides of triangle are in the ratio $=12: 17: 25$

\therefore Sides are $12 x, 17 x$ and $25 x$ respectively.
22. Given : Radius of metallic Sphere $=4.9 \mathrm{~cm}$ and Density of the metal $=7.8 \mathrm{gm} / \mathrm{cm}^{3}$

$$
\begin{aligned}
\text { Volume of Sphere } & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \times \frac{22}{7} \times 4.9 \times 4.9 \times 4.9
\end{aligned}
$$

$$
\begin{aligned}
& 12 x+17 x+25 x=540 \\
& 54 x=540 \\
& x=10 \\
& s=\frac{a+b+c}{2} \\
& =\frac{12 x+17 x+25 x}{2} \\
& s=27 x \\
& \text { ar } \Delta \mathrm{ABC}=|\sqrt{s(s-a)(s-b)(s-c)}| \\
& =|\sqrt{27 x(27 x-12 x)(27 x-17 x)(27 x-25 x)}| \\
& =|\sqrt{27 x \times 15 x \times 10 x \times 2 x}| \\
& =\left|\sqrt{3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 2 \times 2 \times x^{4}}\right| \\
& \text { ar } \triangle \mathrm{ABC}=3 \times 3 \times 5 \times 2 \times x^{2} \\
& =90 x^{2} \mathrm{~cm}^{2} \\
& \text { ar } \triangle \mathrm{ABC}=90(10)^{2}=9000 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4}{3} \times 22 \times 0.7 \times 4.9 \times 4.9 \mathrm{~cm}^{3} \\
& =\frac{1479.016}{3}
\end{aligned}
$$

Mass of the shot putt Sphere $=$ Volume \times density Sphere

$$
\begin{aligned}
& =\frac{1479.016}{3} \times 7.8 \mathrm{gm} \\
& =1479.016 \times 2.6 \mathrm{gm} \\
& =3845.44 \mathrm{gm}
\end{aligned}
$$

Mass of Shot Putt Sphere $=3.845 \mathrm{~kg}$ (Appro)
OR
Given : diameter of hemispherical bowl $=10.5 \mathrm{~cm}$ Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{22}{7} \times \frac{10 \cdot 5}{2} \times \frac{10 \cdot 5}{2} \times \frac{10.5}{2} \\
& =5.5 \times 0.5 \times 10.5 \times 10.5 \mathrm{~cm}^{3} \\
& =303.18 \mathrm{~cm}^{3} \\
& =0.303 \text { litre }
\end{aligned}
$$

$$
\left[1000 \mathrm{~cm}^{3}=1 \text { litre }\right]
$$

23. Given :

$$
\mathrm{F}=\frac{9}{5} \mathrm{C}+32
$$

(a)

$$
\text { when } C=30^{\circ}, \mathrm{F}=\frac{9}{5} \times 30+32
$$

$$
\begin{aligned}
\mathrm{F} & =54+32 \\
& =86^{\circ}
\end{aligned}
$$

(b)

$$
\text { If } \mathrm{F}=95^{\circ}
$$

$$
\mathrm{F}=\frac{9}{5} \mathrm{C}+32
$$

$$
95=\frac{9}{5} C+32
$$

$$
95-32=63=\frac{9}{5} C
$$

$$
\begin{aligned}
& C=\frac{63 \times 5}{9}=35 \\
& C=35^{\circ}
\end{aligned}
$$

(c) Burring of fossil fuels increases green house gasses, such as carbon dionicle, which trap heat and change the planet's climate in many ways.
24. (a)

$$
\begin{aligned}
&(102)^{3} \\
&(100+2)^{3} \\
&(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b) \\
&(100+2)^{3}=(100)^{3}+(2)^{3}+3 \times 100 \\
& \times 2(100+2) \\
& 102^{3}=10,00,000+8+600(102) \\
&=10,00,000+8+61200 \\
& 102^{3}=1061208
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 104 \times 96=(100+4)(100-4) \\
&=(100)^{2}-(4)^{2} \\
& \quad\left[a^{2}-b^{2}=(a+b)\right] \\
& 104 \times 96=10000-16=9984
\end{aligned}
$$

25.

Given : An arc $A B$ of a circle subtend $\angle A O B$ at the centre O and $\angle \mathrm{ACB}$ at a point C on the remaining part of circle.

$$
\text { To Prove : } \quad \angle A O B=2 \angle A C B
$$

Construction : Extend CO to the point D.

$$
\begin{aligned}
& \mathrm{AO}=\mathrm{OC}=\mathrm{OB} \\
& (\text { radius of circle having centre } \mathrm{O} \text {) }
\end{aligned}
$$

$$
A O=O C
$$

$$
\begin{equation*}
\angle A C O=\angle O A C \tag{i}
\end{equation*}
$$

[opposite angle of equal sides in $\triangle \mathrm{AOC}$]

$$
\mathrm{OB}=\mathrm{OC}
$$

$$
\begin{equation*}
\angle \mathrm{OBC}=\angle \mathrm{OCB} \tag{ii}
\end{equation*}
$$

[opposite angle of equal sides in $\triangle \mathrm{OBC}$]

$$
\angle \mathrm{AOD}=\angle \mathrm{OAC}+\angle \mathrm{ACO}
$$

[Exterior angle of $\triangle \mathrm{AOC}$] $\angle \mathrm{AOD}=\angle \mathrm{ACO}+\angle \mathrm{ACO}$
[From eqn. (i)]

$$
\text { Similarly } \quad \begin{aligned}
& \angle \mathrm{AOD}=2 \angle \mathrm{ACO} \\
& \angle \mathrm{DOB}=\angle \mathrm{OCB}+\angle \mathrm{OBC} \\
& \angle \mathrm{DOB}=\angle \mathrm{OCB}+\angle \mathrm{OCB} \\
& \angle \mathrm{DOB}=2 \angle \mathrm{OCB} \quad[\text { From eqn. (iii) }] \\
& \angle \mathrm{AOD}+\angle \mathrm{DOB}=2(\angle \mathrm{ACO}+\angle \mathrm{OCB}) \\
&\angle \mathrm{AD}) \\
& \angle \mathrm{AOB}=2 \angle \mathrm{ACB} \quad \text { (iveqn. (iii) and (iv) }] \\
& \mathrm{OR}
\end{aligned}
$$

Given : $A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$

To prove : Trapezium ABCD is a cyclic Quadrilateral. Construction : Draw CE\|AD
Proof $A D \| C E$
(By Construction)
and $\quad \mathrm{AE} \| \mathrm{CD}$ (given)
$\therefore \mathrm{AECD}$ is a parallelogram.

$$
\therefore \quad \begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{DCE} \\
& {\left[\text { opposite angle of } \|^{\mathrm{gm}}\right] } \\
& \angle \mathrm{A}=\angle \mathrm{BEC} \\
& {[\text { Corresponding angles }] } \\
& \angle \mathrm{A}=\angle \mathrm{B}[\mathrm{AD}=\mathrm{BC}=\mathrm{CE} \text { Given }]
\end{aligned}
$$

$A B \| C D$
$\therefore \quad \angle \mathrm{B}+\angle \mathrm{BCD}=180^{\circ}$
[Cointerior angle of parallel sides]
$\angle \mathrm{A}+\angle \mathrm{BCD}=180^{\circ}$
Similarly $\quad \angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic trapezium Hence Proved
26. Given : In $\triangle A B C, A B=A C$ and Extend $A B$ to the point D such that $B A=A D$
To prove : $\quad \angle \mathrm{BCD}=90^{\circ}$
Construction : Join DC

Proof: In $\triangle A B C$,

$$
\begin{array}{rlrl}
& & A B & =A C \\
\therefore & \angle A B C & =\angle A C B \\
\text { In } \triangle A C D & A C & =C D \\
& \therefore & \angle A C D & =\angle A D C \\
& \therefore & \angle B A C & =\angle A C D+\angle A D C
\end{array}
$$

(Exterior angle property)
$\angle B A C=2 \angle A C D$
$\angle \mathrm{CAD}=2 \angle \mathrm{ACB}$ (from equ. (i)) ...(iv)
Similarly
From equ. (iii) \& (iv)

$$
\begin{aligned}
\angle \mathrm{BAC}+\angle \mathrm{CAD} & =2 \angle \mathrm{ACD}+2 \angle \mathrm{ACB} \\
\angle \mathrm{BAD} & =2[\angle \mathrm{ACD}+\angle \mathrm{ACB}] \\
\frac{180}{2} & =\angle \mathrm{BCD} \\
\angle \mathrm{BCD} & =90^{\circ} \quad \text { Hence }
\end{aligned}
$$

Hence Proved.
27. Given : $A B C$ is a right angle triangle M is the mid point of $A B$ and $D M \| B C$.

To Prove : D is the mid point of $A C$

(a) Proof: M is the mid point of $A B$
$M D \| B C$
(Given) (Given)
$\therefore \mathrm{D}$ is the mid point of side AC by converse of mid point theorem.

Hence Proved.
(b) To Prove MD $\perp \mathrm{AC}$

Proof $\quad \mathrm{MD} \| \mathrm{BC}$
(Given) $\angle \mathrm{D} \neq \angle \mathrm{C} \quad$ (Corresponding angles)
$\angle \mathrm{D}=90^{\circ}$
$\mathrm{MD} \perp \mathrm{AC} \quad$ Hence Proved.
$\therefore \quad \mathrm{MD} \perp \mathrm{AC} \quad$ Hence Proved.
(c) To prove: $\mathrm{CM}=\mathrm{AM}=\frac{1}{2} \mathrm{AB}$
$\triangle A D M$ and $\triangle C D M$

OR
Given : $A \triangle A B C$ in which D and E are the mid-points of sides $A B$ and $A C$ respectively. $D E$ is joined.

To Prove : $\mathrm{DE}\left|\mid \mathrm{BC}\right.$ and $\mathrm{DE}=\frac{1}{2} \mathrm{BC}$
Construction : Produce the segment DE to F , such that $D E=E F$. Join FC.
Proof: In $\triangle \mathrm{s}$ AED and CEF, we have

$$
\mathrm{AE}=\mathrm{CE} \quad[\because \mathrm{E} \text { is the mid-point of } \mathrm{AC}]
$$

$$
\angle \mathrm{AED}=\angle \mathrm{CEF} \text { [Vertically opposite angles] }
$$

and $\quad \mathrm{DE}=\mathrm{EF} \quad$ [By construction]
So, by SAS criterion of congruence, we have

$$
\begin{array}{rlrl}
\Delta \mathrm{AED} & \cong \Delta \mathrm{CEF} & \text { [SAS Congruency rule] } \\
\Rightarrow & & \text { [c.p.c.t }] \ldots \text { (i) } & =\mathrm{CF} \tag{c.p.c.t}\\
& \angle \mathrm{ADE} & =\angle \mathrm{CFE} & {[\text { c.p.p.t }] \ldots \text { (ii) }}
\end{array}
$$

Now, D is the mid-point of AB

$$
\begin{align*}
\Rightarrow & \mathrm{AD} & =\mathrm{DB} & \\
\Rightarrow & \mathrm{DB} & =\mathrm{CF} & {[\text { From (i) } \mathrm{AD}=\mathrm{CF}] \ldots \text { (iii) } } \\
& \angle \mathrm{ADE} & =\angle \mathrm{CFE} & {[\text { From (ii)] }} \tag{ii}
\end{align*}
$$

i.e., alternate interior angles are equal.

$$
\begin{array}{ll}
\therefore & \mathrm{AD} \| \mathrm{FC} \\
\Rightarrow & \mathrm{DB} \| \mathrm{CF} \tag{iv}
\end{array}
$$

From (iii) and (iv), we find that DBCF is a quadrilateral such that one pair of sides are equal and parallel.
\therefore DBCF is a parallelogram
$\therefore \quad \mathrm{DF} \| \mathrm{BC}$ and $\mathrm{DF}=\mathrm{BC}$
[\because Opposite sides of a $\|\left.\right|^{g m}$ are equal and parallel] But, $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are collinear and $\mathrm{DE}=\mathrm{EF}$.
$\therefore \quad \mathrm{DE} \| \mathrm{BC}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{BC}$
28. Curved surface area of cylinder $=4.4 \mathrm{~m}^{2}$

$$
2 \pi r h=4 \cdot 4
$$

$$
\begin{aligned}
2 \times \frac{22}{7} \times 0 \cdot 7 \times h & =4 \cdot 4 \\
4 \cdot 4 h & =4 \cdot 4 \\
h & =1
\end{aligned}
$$

\therefore height of the cylinder $=1 \mathrm{~m}$
Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 0.7 \times 0.7 \times 1 \\
& =22 \times 0.1 \times 0.7
\end{aligned}
$$

Volume of cylinder $=1.54 \mathrm{~m}^{3}$
29. Arrange the data in ascending order.
$2,5,7,7,8,10,10,10,14,17,18,24,25,27,28,48$
$N=16$, which in even

$$
\begin{aligned}
\text { median } & =\frac{\frac{N^{\text {th }}}{2} \text { term }+\left(\frac{N}{2}+1\right)^{\text {th }} \text { term }}{2} \\
& =\frac{\frac{16^{\text {th }}}{2} \text { term }+\left(\frac{16}{2}+1\right)^{\text {th }} \text { term }}{2} \\
& =\frac{8^{\text {th }} \text { term }+9^{\text {th }} \text { term }}{2} \\
& =\frac{10+14}{2}
\end{aligned}
$$

median $=12$
Mode $=$ The most frequently occurring observation $=10$ i, e 4 times occurring 10

$$
\therefore \quad \text { Mode }=10
$$

	OR

Salary (₹) $\left(x_{i}\right)$	No. of worker $\left(f_{i}\right)$	$f_{i} \times x_{i}$
3000	16	48000
4000	12	48000
5000	10	50000
6000	8	48000
7000	6	42000
8000	4	32000
9000	3	27000
10000	1	10000
Total	60	305000

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{305000}{60} \\
& =\frac{30500}{6}=5083.33
\end{aligned}
$$

\therefore Mean salary of 60 workers $=₹ 5083.33$

$$
\therefore \quad \text { Mode }=10
$$

30.

Age	No. of teachers
$18-29$	11
$30-39$	32
$40-49$	30
$50-59$	7

(a) Probability of teachers of 18 years of more

$$
=\frac{\text { Favourable No. of Outcomes }}{\text { Total No. of Outcomes }}
$$

$$
=\frac{11+32+30+7}{80}=\frac{80}{80}=1
$$

(b) Probability of teachers of 30-39 years age
$=\frac{\text { Favourable No. of Outcomes }}{\text { Total No. of Outcomes }}$
$=\frac{32}{80}=\frac{2}{5}$
(c) Since there is no teacher available above 60 years

So, No. of favourable outcomes $=0$
Probability of teachers above 60 years
$=\frac{\text { Favourable No. of Outcomes }}{\text { Total No. of Outcomes }}$
$=\frac{0}{80}=0$
(d) Probability of teachers of 40 or more than 40 years
$=\frac{\text { Favourable No. of Outcomes }}{\text { Total No. of Outcomes }}$
$=\frac{30+7}{80}=\frac{37}{80}$

KENDRIYA VIDYALAYA SANGATHAN
 [JAMMU REGION]
 SESSION ENDING EXAMINATION 2018 SUBJECT : MATHEMATICS CLASS-IX
 [SOLVED PAPER]

Instructions :

1. All questions are compulsory.
2. The question paper consists of 30 questions divided into 4 sections- $\boldsymbol{A}, \boldsymbol{B}, C$ and D. Section- \boldsymbol{A} comprises of 6 question of 1 mark each, Section-B comprises of $\mathbf{6}$ questions of $\mathbf{2}$ marks each. Section-C comprises of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each, Section-D comprises of 8 questions of 4 marks each.
3. There is no overall choice.

SECTION-A

1. The total surface area of a cube is $726 \mathrm{~cm}^{2}$ Find the length if its edge.
2. Factorise : $y^{2}-8 y+16$.
3. In the figure two lines $P Q$ and RS intersect each other at O. Name pairs of vertically opposite angles.

4. A die is thrown six times and number on it is noted as given below :

Number on Die	1	2	3	4	5	6
Frequency	1	1	1	1	1	1

What is the probability that it is a prime number?
5. Identify an irrational number among the following numbers : $\sqrt{0.09}, \frac{5}{3}, \sqrt{5}, 6 \cdot \frac{3}{3}$
6. In $\angle A B C$, if $A B=A C$ and $B=70^{\circ}$, Find $\angle A$.

SECTION-B

7. Find the mean mode of given data :
$2,3,4,5,0,1,3,3,4,3$
8. Find the area of a triangle whose sides are $11 \mathrm{~m}, 60 \mathrm{~m}$ and 61 m .
9. Write the shape of the quadrilateral formed by joining $(1,1),(6,1),(4,5)$ and $(3,5)$ on graph paper.
10. If $p+q=12$ and $p q=27$, find the value of $p^{3}+q^{3}$?
11. An isosceles right triangle has area $200 \mathrm{~cm}^{2}$. Find the length of its hypotenuse.
12. Write the answer of each
(i) What is the name of each part of the plane formed by two intersecting axes on the Cartesian plane?
(ii) Write the name of point where these two lines intersect.

SECTION-C

13. Find the value of k, if $(1,-1)$ is a solution of the equation $3 x-k y=8$. Also find the coordinates of another point lying on its graph.
14. If two circles intersect in two points, prove that the line through their centre is the perpendicular bisector of the common chord.
To know about more useful books for class-9 click here
15. Represent $\sqrt{5}$ on the number line.

OR

Represent $\sqrt{9 \cdot 3}$ on the number line.
16. If $p(x)=x^{3}-3 x^{2}+4 x-5$ and $s(x)=x-2$, find the quotient and remainder when $p(x)$ is divided by $s(x)$.
17. In the given figure, find x.

Prove that sum of angles in a triangle is 180°.
18. The volume of a cylindrical pipe is $748 \mathrm{~cm}^{3}$. Its length is 0.14 m and its internal radius is 0.09 m . Find thickness of the pipe.

OR

A conical tent is 10 m high and radius of its base is 24 m . Find
(i) slant height of the tent.
(ii) Cost of canvas required to make the tent if cost of $1 \mathrm{~m}^{2}$ canvas is Rs. 70.
19. Write Euclid's fifth postulate. Does Euclid's fifth postulate imply the existence of parallel lines ? Explain.
20. Find the area of the triangle whose permeter is 180 cm and two of its sides are of lengths 80 cm and 18 cm . Also, calculate the altitude of the triangle corresponding to the shortest side.
21. $A B C D$ is a parallelogram and line segments $A X, C Y$ bisect the angles A and C, respectively. Show that $A X \| C Y$.
22. Two dice are thrown simultaneously 500 times. Each time the sum of two numbers appearing on them is noted and recorded in the following table :

Sum	2	3	4	5	6	7	8	9	10	11	12
Frequency	14	30	42	55	72	75	70	53	46	28	15

From the above data, what is the probability of getting a sum :
(i) More than 10 .
(ii) Between 8 and 12 .
23. Express $23 \cdot \overline{43}$ and $\frac{p}{q}$ from, where p, q are integers and $q \neq 0$.
24. A right-angled $\triangle A B C$ with side $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm is revolved about the fixed side of 4 cm . Find the volume of the solid generated. Also, find the total surface area of the solid.
Find the volume of a sphere whose surface area is $154 \mathrm{~cm}^{2}$.
25. Construct a $\triangle A B C$ such the $B C=7 \mathrm{~cm}, \angle B=45^{\circ}$ and $A B+A C=13 \mathrm{~cm}$.
26. Cost of 1 pen is $(₹) x$ and that of 1 pencil is $(₹) y$. Cost of 2 pens and 3 pencils together is $(₹) 18$. Write a linear equation which satisfies this data. Draw the graph for the same.
27. In the figure, $\angle \mathrm{X}=72^{\circ}, \angle \mathrm{XZY}=46^{\circ}$. If YO and ZO are bisectors of $\angle \mathrm{XYZ}$ and $\angle \mathrm{XZY}$ respectively of $\triangle \mathrm{XYZ}$, find $\angle \mathrm{OYZ}$ and $\angle \mathrm{YOZ}$.

OR

Prove that angles opposite to equal sides of an isosceles triangle are equal.
28. Factorise : $6 x^{3}-5 x^{2}-13 x+12$.

To know about more useful books for class-9 click here
29. Draw a histogram of the weekly expenses of 125 students of a school given below :

Weekly Pocket Expenses (in $₹$)	Number of Students
$0-10$	10
$10-20$	20
$20-30$	10
$30-40$	15
$40-70$	30
$70-100$	40

30. If each diagonal of a quadrilateral divides it into two triangles of equal areas, then prove that quadrilateral is a parallelogram.

OR
The angle subtended by an arc at the centre is double the angle subtended by it any point on the remaining part of the circle.

SOLUTIONS

SECTION-A

1. Total surface area of a cube $=6(\text { sides })^{2}$

$$
\begin{array}{lrl}
\therefore & 6(\text { side })^{2} & =726 \\
& (\text { side })^{2} & =\frac{726}{6}=121 \\
& \therefore & \text { side }
\end{array}=\sqrt{121}=11 \mathrm{~cm}
$$

2.

$$
\begin{aligned}
& y^{2}-8 y+16 \\
& y^{2}-4 y-4 y+16 \\
& y(y-4)-4(y-4) \\
& \quad(y-4)(y-4)=(y-4)^{2}
\end{aligned}
$$

3. $\angle \mathrm{POR}$ and $\angle \mathrm{QOS}$ are pair of vertically opposite angles respectively
$\angle \mathrm{QOR}$ and $\angle \mathrm{POS}$ are also pair of vertically opposite angles respectively.
4. Prime numbers are 2,3 and 5
\therefore Probability of getting a prime number
$=\frac{\text { Total favourable events }}{\text { Total events }}$
$=\frac{3}{6}=\frac{1}{2}$
Probability of Prime numbers
5.

$$
\begin{aligned}
= & \frac{1}{2} \\
\sqrt{0 \cdot 09} & =0 \cdot 3=\frac{3}{10}
\end{aligned}
$$

is rational number $\frac{5}{3}$ is rational number because 5 and 3 are integers.
$6 \cdot \overline{3}=\frac{19}{3}$ or we can says that $6 \cdot \overline{3}$ is a recurring non terminating numbers.
$\therefore \sqrt{5}$ is irrational number because square root. of any prime number is always irrational number.
6. In $\triangle A B C$,

$$
\mathrm{AB}=\mathrm{AC}
$$

(Given)

$$
\angle \mathrm{ABC}=\angle \mathrm{ACB}
$$

(Opposite angle sides)

In $\triangle A B C$

$$
\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}
$$

(Sum of all angle of Δ)

$$
\begin{aligned}
\angle \mathrm{A}+70^{\circ}+70^{\circ} & =180^{\circ} \\
\angle \mathrm{A} & =180^{\circ}-140^{\circ} \\
\therefore \quad \angle \mathrm{A} & =40^{\circ}
\end{aligned}
$$

SECTION-B

7. Mean $=\frac{2+3+4+5+0+1+3+3+4+3}{10}$

$$
=\frac{28}{10}=2 \cdot 8
$$

\therefore Mean $=2.8$
We find that the data 3 occurs frequently maximum number of times i.e. 4 times.
Hence Mode is 3 .
8. In $\triangle \mathrm{ABC}, a=60 \mathrm{~m}, c=11 \mathrm{~m}$ and $b=61 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{S}=\frac{a+b+c}{2} \\
& \mathrm{~S}=\frac{60+61+11}{2}
\end{aligned}
$$

To know about more useful books for class-9 click here

$S=\frac{132}{2}=66 \mathrm{~m}$

$$
\text { ar } \triangle \mathrm{ABC}=\sqrt{\mathrm{s}(\mathrm{~s}-a)(\mathrm{s}-b)(\mathrm{s}-c)}
$$

$$
=\sqrt{66(66-60)(66-61)(66-11)}
$$

ar $\triangle \mathrm{ABC}=\sqrt{66 \times 55 \times 6 \times 5}$
$=\sqrt{6 \times 11 \times 5 \times 11 \times 5 \times 6}$
$\Delta \mathrm{ABC}=6 \times 5 \times 11$

$$
=330 \mathrm{~m}^{2}
$$

Short Method: $\quad A C^{2}=61^{2}=3721$

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{BC}^{2} & =11^{2}+60^{2} \\
& =121+3600 \\
& =3721=\mathrm{AC}^{2}
\end{aligned}
$$

$\therefore \triangle \mathrm{ABC}$ is a right triangle at right angle at B .
$\therefore \quad$ ar $\triangle \mathrm{ABC}=\frac{1}{2}$ base \times height

$$
=\frac{1}{2} \times 60 \times 11
$$

$$
=330
$$

$$
\therefore \quad \text { ar } \triangle \mathrm{ABC}=330 \mathrm{~m}^{2}
$$

9.

10.

$$
\begin{aligned}
p+q & =12 \text { and } p q=27 \\
(p+q) & =12 \\
(p+q)^{3} & =12^{3} \\
p^{3}+q^{3}+3 p q(p+q) & =1728 \\
p^{3}+q^{3}+3 \times 27(12) & =1728 \\
p^{3}+q^{3}+81 \times 12 & =1728 \\
p^{3}+q^{3} & =1728-972 \\
p^{3}+q^{3} & =756 \\
\therefore \quad p^{3}+q^{3} & =756
\end{aligned}
$$

(Given)
11. Given : ABC is an isosceles right triangle.

\because Hypotenuse (AC) is the longest side of $\triangle A B C$
$\therefore \quad \angle B=90^{\circ}$ and $\mathrm{AB}=\mathrm{BC}$
or $\quad \triangle \mathrm{ABC}=200 \mathrm{~cm}^{2}$

$$
\frac{1}{2} \times \mathrm{BC} \times \mathrm{AB}=200
$$

$B C^{2}=400$
$\therefore \quad B C=\sqrt{400}=20 \mathrm{~cm}$

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
& =B C^{2}+B C^{2} \quad(A B=B C)
\end{aligned}
$$

$A C=\sqrt{2} B C$

$$
\mathrm{AC}=20 \sqrt{2} \mathrm{~cm}
$$

$\mathrm{AC}=20 \times 1.414=28.280 \mathrm{~cm}$
$\mathrm{AC}=28.28 \mathrm{~cm}$
12. (i) Quadrant
(ii) Origin

SECTION-C

13. $(1,-1)$ is a solution of the equation $3 x-k y=8$

$$
\begin{aligned}
\therefore & 3(1)-k(-1) & =8 \\
& 3+k & =8 \\
\therefore & k & =5
\end{aligned}
$$

Given equation $3 x-5 y=8$
if $x=-4$ then $3(-4)-5 y=8$

$$
\begin{aligned}
-12-5 y & =8 \\
-5 y & =8+12 \\
y & =\frac{20}{-5}=-4
\end{aligned}
$$

$\therefore(-4,-4)$ is also another solution of $3 x-5 y=8$
14.
.

Given : Two circles having centre P and Q respectively.

To know about more useful books for class-9 click here

To Prove : $\mathrm{PQ} \perp \mathrm{AB}$ and $\mathrm{AC}=\mathrm{BC}$
Construction : Join $A Q, B Q, A P$ and $B P$
Proof: $\triangle \mathrm{AQP}$ and $\triangle \mathrm{BPQ}$

	$P Q=P Q$	(common side)
	$A Q=B Q$	(radius of circle)
	$\mathrm{AP}=\mathrm{BP}$	(radius of circle)
\therefore	$\triangle \mathrm{AQP} \cong \triangle \mathrm{BQP}$	S congrencyrule)
\therefore	$\triangle \mathrm{AQP} \cong \triangle \mathrm{BQP}$	(c.p.c.t.)

$\triangle A Q C$ and $\triangle B Q C$

$$
\begin{array}{rlr}
\angle \mathrm{AQP} & =\angle \mathrm{BQP} & \text { (proved) } \\
\mathrm{AQ} & =\mathrm{BQ} & \text { (radius of circle) } \\
\mathrm{QC} & =\mathrm{QC} & \text { (common side) } \\
\therefore \quad \triangle \mathrm{AQC} & \cong \triangle \mathrm{BQC} &
\end{array}
$$

(SAS congruency rule)
$\therefore \quad \mathrm{AC}=\mathrm{BC} \quad$ (c.p.c.t.) ...(i)
Hence common chord bisect by the line segment PQ.

$$
\begin{array}{rlr}
\Delta \mathrm{AQC} & \cong \Delta \mathrm{BQC} \\
\angle \mathrm{ACQ} & =\angle \mathrm{BCQ} & \text { (c.p.c.t.) } \tag{c.p.c.t.}\\
\angle \mathrm{ACQ}+\angle \mathrm{BCQ} & =180^{\circ} & \text { (Linear pair) } \\
2 \angle \mathrm{ACQ} & =180^{\circ} & \\
\angle \mathrm{ACQ} & =90^{\circ} & \\
\therefore \quad \mathrm{AB} & \perp \mathrm{PQ} &
\end{array}
$$

Thus line through their centre is the perpendicular bisector of the common chord.

Hence Proved.
15.

$$
\begin{aligned}
5 & =4+1 \\
5 & =2^{2}+1^{2} \\
\mathrm{OB}^{2} & =\mathrm{OA}^{2}+\mathrm{AB}^{2} \\
\text { Where } \quad \mathrm{OA}^{2} & =2 \text { unit } \\
\mathrm{AB} & =1 \text { unit } \\
\mathrm{OB}^{2} & =5 \text { unit } \\
\therefore \quad \mathrm{OB} & =\sqrt{5} \text { unit }
\end{aligned}
$$

Point D represents $\sqrt{5}$ on number line

Step of Construction :

On the number line, in figure, we have marked two points O and A representing numbers 0 and 2 respectively.
We draw $A B=1$ unit and $A C \perp O A$.
Now Join OB
We draw an arc which taking centre as O and radius equal to OB which intersect the number line at the point D .
\therefore Point D represent $\sqrt{5}$ on the number line.

Step of construction :
(i) Draw the line segment $A B=9.3 \mathrm{~cm}$.
(ii) Extend the line segment and mark the point C such that $B C=1$ unit.
(iii) Draw perpendicular bisector of line segment $A C$.
(iv) Draw a semicircle taking OA a radius and centre O.
(v) Draw perpendicular at the point B which intersect semicircle at the point D.
(vi) Draw arc taking B as centre and radius BD which intersect the number line at the point E.

$$
\mathrm{OE}=\sqrt{9 \cdot 3} \text { unit }
$$

Point Erepresents on $\sqrt{9 \cdot 3}$ the number line.

$$
\begin{aligned}
& p(x)=x^{3}-3 x^{2}+4 x-5 \\
& x-2) \frac{s(x)=x-2}{x^{3}-3 x^{2}+4 x-5\left(x^{2}-x+2\right.} \\
& x^{3}-2 x^{2} \\
& \frac{(-) \quad(+)}{-x^{2}+4 x-5} \\
& -x^{2}+2 x \\
& \frac{(+)(-)}{2 x-5} \\
& 2 x-4 \\
& \text { Quotient }=\frac{\frac{(-)(+)}{-1}}{x^{2}-x+2} \\
& \text { Remainder }=-1
\end{aligned}
$$

17. In $\triangle A B C$,

$$
\begin{aligned}
\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C} & =180^{\circ} \\
40^{\circ}+\angle \mathrm{B}+90^{\circ} & =180^{\circ} \\
\angle \mathrm{B} & =180^{\circ}-130^{\circ}=50^{\circ}
\end{aligned}
$$

In $\triangle \mathrm{BDE}$

$$
\begin{aligned}
\angle \mathrm{B}+\angle \mathrm{D}+\angle \mathrm{E} & =180^{\circ}(\text { Sum of all angle of } \Delta) \\
50^{\circ}+x^{\circ}+100 & =180^{\circ} \\
x & =180-150=30 \\
x & =30^{\circ}
\end{aligned}
$$

Given : $A B C$ is a triangle
To Prove : $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
Construction : Draw PQ parallel to line segment BC such that passing through the point A .
Proof: line $P Q \| B C$
$\therefore \quad \angle \mathrm{B}=\angle \mathrm{PAB}$
(Alternative interior angle)
$\angle \mathrm{C}=\angle \mathrm{CAQ}$
$\therefore \quad \angle \mathrm{B}+\angle \mathrm{C}=\angle \mathrm{PAB}+\angle \mathrm{CAQ}$

$$
\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{A}=\angle \mathrm{PAB}+\angle \mathrm{CAQ}+\angle \mathrm{A}
$$

$$
\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{A}=\angle \mathrm{PAQ}
$$

$$
\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{A}=180^{\circ}
$$

Hence Proved.
18. Given : Volume of pipe is $748 \mathrm{~cm}^{3}$

Length of pipe $(h)=0.14 \mathrm{~m}=14 \mathrm{~cm}$
Internal radius $\left(r_{1}\right)=0.09 \mathrm{~m}=9 \mathrm{~cm}$
Let the outer radius be $r_{2} \mathrm{~cm}$
Volume of pipe $=748 \mathrm{~cm}^{3}$

$$
\pi\left(r_{2}^{2}-r_{1}^{2}\right) h=748
$$

$$
\pi\left(r_{2}^{2}-r_{1}^{2}\right) \times 14=748
$$

$$
\frac{22}{7}\left(r_{2}^{2}-r_{1}^{2}\right)=\frac{748}{14}
$$

$$
r_{2}^{2}-r_{1}^{2}=\frac{748 \times 7}{22 \times 14}
$$

$$
r_{2}^{2}-(9)^{2}=\frac{34 \times 7}{14}=17
$$

$$
r_{2}^{2}-81=17
$$

$$
r_{2}^{2}=81+17=98
$$

$$
r_{2}=\sqrt{98}=7 \sqrt{2} \mathrm{~cm}
$$

$$
r_{2}=7 \times 1.414
$$

$$
r_{2}=9.898 \mathrm{~cm}
$$

Thickness of the pipe $=r_{2}-r_{1}=9.898-9$

$$
=0.898 \mathrm{~cm}
$$

Given : Tent Conical shape

Height $(h)=10 \mathrm{~m}$
Radius of base $(r)=24 \mathrm{~m}$
Let the slant height be $l \mathrm{~m}$

$$
\left.\begin{array}{ll}
\therefore & l^{2} \\
& =r^{2}+h^{2} \\
& =24^{2}+10^{2} \\
& =576+100=676 \\
\therefore & l
\end{array}\right)=\sqrt{676}=26 \mathrm{~m}
$$

\therefore Slant height of the tent $=26 \mathrm{~m}$
(ii) C.S.A of cone $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{7} \times 24 \times 26 \mathrm{~m}^{2} \\
& =\frac{22 \times 624}{7} \mathrm{~m}^{2}
\end{aligned}
$$

Canvas required to make the tent

$$
=\frac{13728}{7} \mathrm{~m}^{2}
$$

Cost of canvas required to make the tent

$$
\begin{aligned}
& =\text { Area } \times \text { Rate } \\
& =\frac{13728}{7} \times 70 \\
& =₹ 137280
\end{aligned}
$$

19. Euclid's fifth postulate are

(i) For every line l and for every point P not lying on l, there exists a unique line passing through P and parallel to P or we can say that
Two distinct intersecting lines cannot be parallel to the same line.
Take any line l and a point P , not on l. Then we know that their is unique line m through P which is parallel to l.
20. Perimeter of $\triangle \mathrm{ABC}=180 \mathrm{~cm}$

$$
\begin{aligned}
a+b+c & =180 \\
18+b+80 & =180 \\
b & =180-98=82 \mathrm{~cm} \\
\mathrm{~S} & =\frac{a+b+c}{2}=\frac{180}{2}=90 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\text { ar } \triangle \mathrm{ABC} & =\sqrt{\mathrm{s}(\mathrm{~s}-a)(\mathrm{s}-b)(\mathrm{s}-c)} \\
= & \sqrt{90(90-80)(90-82)(90-18)} \\
& =\sqrt{90 \times 10 \times 8 \times 72} \\
& =\sqrt{9 \times 10 \times 10 \times 8 \times 8 \times 9} \\
& =9 \times 8 \times 10 \\
\text { ar } \triangle \mathrm{ABC} & =720 \mathrm{~cm}^{2} \\
\text { ar } \triangle \mathrm{ABC} & =720 \mathrm{~cm}^{2} \\
\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD} & =720 \\
\frac{1}{2} \times 18 \times \mathrm{AD} & =720 \\
\mathrm{AD} & =\frac{720}{9} \\
& =80 \mathrm{~cm}
\end{aligned}
$$

Altitude of the triangle corresponding to the short side
$=80 \mathrm{~cm}$
21. Given : $A B C D$ is a parallelogram. $A X$ and $C Y$ bisect the angle A and C respectively.

To Prove: $\quad A X \| C Y$
Construction : Join XY
Proof : ABCD is a parallelogram
$\therefore \quad \angle \mathrm{A}=\angle \mathrm{C}$ (opposite angles of $\left\|\|^{\mathrm{gm}}\right.$)

$$
\frac{\angle \mathrm{A}}{2}=\frac{\angle \mathrm{C}}{2}
$$

$$
\angle X A Y=\angle X C Y
$$

$\triangle X A Y$ and $\triangle X C Y$

$$
\begin{array}{rrrr}
\angle X A Y & =\angle X C Y & \text { (Proved) } \\
\angle X Y A & =\angle Y X C & \text { (Alternative angles) } \\
X Y & =X Y & \text { (Common sides) } \\
\triangle A X Y & \cong \triangle C Y X & \text { (AAS congruency rule) } \\
A X & =C Y & \text { (c.p.c.t.) } & \text { (c.p.c.t.) }
\end{array}
$$

These are alternative angles
$\therefore \quad \mathrm{AX} \| \mathrm{CY}$
Hence Proved.
22. (i) Total events $n(S)=500$

Favourable events $n(\mathrm{E})=n(\mathrm{E})>10$

$$
=28+15
$$

$\therefore \quad n(\mathrm{E})=43$
(i) Probability of getting a sum more than 10

$$
\begin{aligned}
& =\frac{n(\mathrm{E})}{n(\mathrm{~S})} \\
& =\frac{43}{500}
\end{aligned}
$$

(ii) Favourable events $n(\mathrm{E})=8<n(\mathrm{E})<12$
$\therefore \quad \mathrm{n}(\mathrm{E})=53+46+28=127$
Probability getting a sum between 8 and 12

$$
\begin{align*}
& =\frac{127}{500} \\
x & =23 \cdot \overline{43} \\
x & =23 \cdot 43434343 \tag{i}
\end{align*}
$$

23. Let

Multiply of 100 both sides
$100 x=2343 \cdot 434343$
From equation (i) and (ii)

$$
\begin{aligned}
99 x & =2343-23 \\
x & =\frac{2320}{99} \\
\therefore \quad 23 \cdot \overline{43} & =\frac{2320}{99}
\end{aligned}
$$

24. A right triangle $\triangle \mathrm{ABC}$ is revolved about the fixed side of 4 cm then solid generated a cone shape
Which is radius $(r)=3 \mathrm{~cm}$, height $(h)=4 \mathrm{~cm}$ and slant height $(l)=5 \mathrm{~cm}$
Volume of solid generated

$$
\begin{aligned}
&=\frac{1}{3} \pi r^{2} h \\
&=\frac{1}{3} \times \frac{22}{7} \times 3 \times 3 \times 4 \\
&=\frac{264}{7} \mathrm{~cm}^{3} \\
&=37 \cdot 714 \mathrm{~cm}^{3}(\text { Approx }) \\
& \text { T.S.A. of solid }=\pi r(r+l) \\
&=\pi \times 3(3+5) \\
&=\frac{22}{7} \times 24 \\
&=\frac{528}{7} \mathrm{~cm}^{2} \\
& \text { T.S.A. of solid }=75 \cdot 43 \mathrm{~cm}^{2} \\
& \text { OR }
\end{aligned} \begin{aligned}
& \text { Find volume of sphere if } \\
& \text { Surface Area }=154 \mathrm{~cm}^{2} \\
& 4 \pi r^{2}=154 \\
& 4 \times \frac{22}{7} \times r^{2}=154
\end{aligned}
$$

$$
r^{2}=\frac{154 \times 7}{4 \times 22}=\frac{7 \times 7}{4}
$$

$$
r=\sqrt{\frac{49}{4}}=\frac{7}{2} \mathrm{~cm}
$$

Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2} \\
& =\frac{11 \times 7 \times 7}{3} \mathrm{~cm}^{3}
\end{aligned}
$$

$$
=\frac{539}{3} \mathrm{~cm}^{3}
$$

$\therefore \quad$ Volume of sphere $=179 \frac{2}{3} \mathrm{~cm}^{3}$
25. Step of Construction :
(i) Draw a line segment $\mathrm{BC}=7 \mathrm{~cm}$.
(ii) Make the $\angle \mathrm{XBC}=45^{\circ}$.

(iii) Draw a arc taking centre B and radius 13 cm which intersect the line $B X$ at the point D.
(iv) Join DC.
(v) Draw a perpendicular bisector PQ on the line segment DC.
(vi) Join AC.
$\triangle A B C$ is required triangle.
26.

$2 x+3 y=18$

x	9	0	3
y	0	6	4

27. In $\triangle X Y Z$

$$
\angle X Y Z+\angle Y Z X+\angle Z X Y=180^{\circ}
$$

[Sum of all angles of Δ]

$$
\begin{aligned}
\angle \mathrm{XYZ}+46+72 & =180^{\circ} \\
\angle \mathrm{XYZ} & =180-118 \\
\angle \mathrm{XYZ} & =62^{\circ} \\
\angle \mathrm{OYZ} & =\frac{\angle \mathrm{XYZ}}{2}=\frac{62}{3}=31^{\circ}
\end{aligned}
$$

In $\triangle \mathrm{OYZ}$,
$\angle \mathrm{YOZ}+\angle \mathrm{OYZ}+\angle \mathrm{OZY}=180^{\circ}$

$$
\begin{aligned}
\angle \mathrm{YOZ}+31^{\circ}+\frac{46}{2} & =180^{\circ} \\
\angle \mathrm{YOZ} & =180-54 \\
\angle \mathrm{YOZ} & =126^{\circ}
\end{aligned}
$$

OR

Given: In $\triangle A B C$, side $A B=A C$
To Prove:

$$
\angle B=\angle C
$$

Construction : Draw $A D \perp B C$
Proof: In $\triangle A B D$ and $\triangle A C D$

$$
\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}
$$

(By construction)
Side

$$
\begin{array}{rlr}
\mathrm{AB} & =\mathrm{AC} & \text { (Given) } \\
\mathrm{AD} & =\mathrm{AD} & \text { (Common side) } \\
\Delta \mathrm{ADB} & \cong \Delta \mathrm{ADC} &
\end{array}
$$

(RHS congruency rule)
$\therefore \quad \angle \mathrm{B}=\angle \mathrm{C} \quad$ (c.p.c.t.)

Hence Proved.

28.

$$
\begin{aligned}
p(x) & =6 x^{3}-5 x^{2}-13 x+12 \\
x & =1 \\
p(1) & =6(1)^{3}-5(1)^{2}-13(1)+12 \\
& =6-5-13+12 \\
& =18-18=0
\end{aligned}
$$

If
Then
$\therefore(x-1)$ is a factor of given polynomial $p(x)$

$$
\begin{aligned}
& x-1) 6 x^{3}-5 x^{2}-13 x+15\left(6 x^{2}+x-12\right. \\
& 6 x^{3}-6 x^{2}
\end{aligned}
$$

$(-) \quad(+)$

$$
x^{2}-13 x+12
$$

$$
x^{2}-x
$$

$(-)(+)$

$$
-12 x+12
$$

$$
-12 x+12
$$

$$
\left.6 x^{3}-5 x^{2}-13 x+12=\frac{\frac{(+)(-)}{x}}{(x-1)\left(6 x^{2}\right.}+x-12\right)
$$

$$
=(x-1)\left\{\left(6 x^{2}+9 x-8 x-12\right)\right\}
$$

$$
=(x-1)\{3 x(2 x+3)
$$

$$
-4(2 x+3)\}
$$

$$
=(x-1)(2 x+3)(3 x-4)
$$

$\therefore 6 x^{3}-5 x^{2}-13 x+12=(x-1)(2 x+3)(3 x-4)$

To know about more useful books for class-9 click here
29.

Weekly Pocket expenses (in ₹)	Number of Persons	Length of rectangle
$0-10$	10	$\frac{10}{10} \times 3=3$
$10-20$	10	$\frac{20}{10} \times 3=6$
$20-30$	15	$\frac{20}{10} \times 3=3$
$30-40$	30	$\frac{30}{30} \times 3=3$
$40-70$	40	$\frac{40}{30} \times 3=4$
$70-100$		

30. In quadrilateral $A B C D, A C$ is the diagonal

In Quadrilateral $\mathrm{ABCD}, \mathrm{BD}$ is the diagonal

$$
\begin{align*}
\therefore \quad \text { ar } \triangle \mathrm{ABD} & =\operatorname{ar} \triangle \mathrm{BCD} \\
\text { ar } \triangle \mathrm{AOD}+\operatorname{ar} \triangle \mathrm{AOB} & =\operatorname{ar} \triangle \mathrm{BOC}+\operatorname{ar} \triangle C O D . . \\
\operatorname{ar} \triangle \mathrm{AOB}+\operatorname{ar} \triangle \mathrm{BOC} & =\operatorname{ar} \triangle \mathrm{AOD}+\operatorname{ar} \triangle \mathrm{DOC} . \tag{i}
\end{align*}
$$

From eq. (ii)-(i), we have

$$
\begin{aligned}
\text { ar } \triangle \mathrm{AOD}-\operatorname{ar} \triangle \mathrm{BOC} & =\operatorname{ar} \triangle \mathrm{BOC}-\operatorname{ar} \triangle \mathrm{AOD} \\
2 \operatorname{ar} \triangle \mathrm{AOD} & =2 \operatorname{ar} \triangle \mathrm{BOC} \\
\operatorname{ar} \triangle \mathrm{AOD} & =\operatorname{ar} \triangle \mathrm{BOC} \\
\operatorname{ar} \triangle \mathrm{AOD}+\operatorname{ar} \triangle \mathrm{AOB} & =\operatorname{ar} \triangle \mathrm{AOB}+\operatorname{ar} \triangle \mathrm{BOC} \\
\operatorname{ar} \triangle \mathrm{ADB} & =\operatorname{ar} \triangle \mathrm{ABC}
\end{aligned}
$$

$\triangle A D B$ and $\triangle A B C$ having common base $A B$ and lying between two lines $A B$ and $D C$
$\therefore \quad A B \| D C$
Similarly we can prove that $A D \| B C$
$\therefore \mathrm{ABCD}$ is a parallelogram
Hence Proved.

Given : An arc AB of a circle subtend $\angle \mathrm{AOB}$ at the centre O and $\angle A C B$ at a point C on the remaining part of circle.
To Prove: $\quad \angle A O B=2 \angle A C B$
Construction : Extend CO to the point D .
$\mathrm{AO}=\mathrm{OC}=\mathrm{OB}$
(radius of circle having centre O)

$$
\mathrm{AO}=\mathrm{OC}
$$

$$
\begin{equation*}
\therefore \quad \angle \mathrm{ACO}=\angle \mathrm{OAC} \tag{i}
\end{equation*}
$$

[opposite angle of equal sides in $\triangle A O C$]

$$
\mathrm{OB}=\mathrm{OC}
$$

$$
\begin{equation*}
\therefore \quad \angle \mathrm{OBC}=\angle \mathrm{OCB} \tag{ii}
\end{equation*}
$$

[opposite angle of equal sides in $\triangle \mathrm{OBC}$]
$\angle \mathrm{AOD}=\angle \mathrm{OAC}+\angle \mathrm{ACO}$
[Exterior angle of $\triangle \mathrm{AOC}$]
$\angle \mathrm{AOD}=\angle \mathrm{ACO}+\angle \mathrm{ACO}$
[From eqn. (i)]
Similarly $\quad \angle \mathrm{DOB}=\angle \mathrm{OCB}+\angle \mathrm{OBC}$ $\angle \mathrm{DOB}=\angle \mathrm{OCB}+\angle \mathrm{OCB}$
[From eqn. (ii)]

$$
\angle \mathrm{AOD}+\angle \mathrm{DOB}=2(\angle \mathrm{ACO}+\angle \mathrm{OCB})
$$

[From eqn. (iii) and (iv)]
$\angle A O B=2 \angle A C B \quad$ Hence Proved.

