Jain College, Jayanagar
 II PUC Mock Paper 2
 Subject - Mathematics

Section - A

I. Answer all the following:

1. Find whether * on Z^{+}defined by $a * b=a^{b}, \forall a, b \in Z^{+}$is a binary operation or not.
2. Find the principle value of $\operatorname{cosec}^{-1}(2)$.
3. Construct a 2×2 matrix, $A=[a i j]$ whose elements are $a i j=\frac{(i+j)^{2}}{2}$.
4. Find the value of x if $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$
5. Find $\frac{d y}{d x}$ if $\mathrm{y}=\tan (2 \mathrm{x}+3)$.
6. Find antiderivative of $(a x+b)^{2}$ w.r.t ' x '.
7. Define coplanar vectors.
8. Find direction cosines of y-axis.
9. Define feasible region.
10. If $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.5, \mathrm{P}(\mathrm{B} / \mathrm{A})=0.2$ find $P(A \cap B)$.

Section - B

II. Answer any ten of the following:

11. Show that the relation R on the set $A=\{1,2,3,4,5,6\}$ as $R=\{(x, y) ; y$ is divisible by $x\}$ is reflexive and transitive.
12. Prove that $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \cos ^{-1} x, 1 / \sqrt{2} \leq x \leq 1$.
13. Write $\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), 0<x<\pi$ in simplest form.
14. Show that the points $\mathrm{A}(\mathrm{a}, \mathrm{b}+\mathrm{c}), \mathrm{B}(\mathrm{b}, \mathrm{c}+\mathrm{a}), \mathrm{C}(\mathrm{c}, \mathrm{a}+\mathrm{b})$ are collinear.
15. Find $\frac{d y}{d x}$ if $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right), 0<x<\frac{1}{\sqrt{2}}$.
16. Differentiate $(x+3)^{2} \cdot(x+4)^{3}(x+5)^{4}$ with respect to x .
17. Find the intervals in which the function $f(x)=2 x^{2}-3 x$ is strictly increasing and strictly decreasing.
18. Integrate $\frac{1}{x(\log x)^{m}}, m \neq 1, \mathrm{x}>0$ w.r.t ' x '.
19. Evaluate $\int_{0}^{\pi / 4}\left(2 \sec ^{2} x+x^{3}+2\right) d x$.
20. Find order and degree of a differential equation $\left(\frac{d s}{d t}\right)^{4}+3 s\left(\frac{d^{2} s}{d t^{2}}\right)=0$
21. Find $|\vec{a} \times \vec{b}|$ if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$.
22. If $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$. Prove that \vec{a} and \vec{b} are perpendicular to each other, given $\vec{a} \neq 0, \vec{b} \neq 0$
23. Find the angle between the lines whose direction ratios are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\mathrm{b}-\mathrm{c}, \mathrm{c}-\mathrm{a}, \mathrm{a}-\mathrm{b}$.
24. A dies thrown, E is an event 'the number. appearing is a multiple of 3 ' and F be the event 'the number. appearing is even' then find whether E and F are independent.

Section-C

III. Answer any ten of the following:

25. Let $f: x \rightarrow y$ and $g: y \rightarrow z$ be two invertible functions. Then prove that gof is also invertible with $(\text { gof })^{-1}=f^{-1} o^{-1}$ 。
26. Simplify $\tan ^{-1}\left[\frac{a \cos x-b \sin x}{b \cos x+a \sin x}\right]$, if $\frac{a}{b} \tan x>-1$.
27. Using elementary transformation find the inverse of the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$
28. If $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$, find $\frac{d^{2} y}{d x^{2}}$.
29. Verify mean value theorem, if $f(x)=x^{3}-5 x^{2}-3 x$ in $[\mathrm{a}, \mathrm{b}]$ where $\mathrm{a}=1, \mathrm{~b}=3$.
30. Find two numbers whose sum is 24 and whose product is as large as possible.
31. Evaluate $\int \frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}} d x$
32. Evaluate $\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$
33. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $y=2 x$.
34. Find the general solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$.
35. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$
36. Show that the four points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D with position vectors $4 \hat{i}+5 \hat{j}+\hat{k},-(\hat{j}+\hat{k}), 3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $4(-\hat{i}+\hat{j}+\hat{k})$ are respectively coplanar.
37. Find the vector equation of the line passing through $(1,2,3)$ and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$.
38. Two dice are thrown simultaneously, if x denotes the number of sixes, find the expectation of x and variance of x.

Section - D

IV. Answer any two of the following:

39. Consider $f: R_{+} \rightarrow(-5 \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible.
40. If $A=\left[\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right], B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$ and $C=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$ verify that $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$.
41. Solve the system of equations by matrix method $3 x-2 y+3 z=8 ; 2 x+y-z=1$ and $4 x-3 y+2 z=4$.
42. If $y=\cos ^{-1} x$, prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$
43. Show that height of cylinder of maximum volume that can be inscribed in a sphere of radius ' a ' is $\frac{2 a}{\sqrt{3}}$.
44. Find the integral of $\sqrt{x^{2}-a^{2}}$ with respect to x and hence evaluate $\int \sqrt{x^{2}+4 x+1} d x$.
45. Using integration method find the area of the region bounded by the triangle whose vertices are $(1,0)$ $(2,2)$ and $(3,1)$.
46. Find the general solution of the differential equation $\left(1+x^{2}\right) d y+2 x y d x=\cot x d x$.
47. Derive the equation of a plane perpendicular to a given vector and passing through a given point both in vector and cartesian form.
48. A fair coin is tossed 10 times, find the probability of (a) exactly six head (b) atleast six heads (c) atmost six heads.

Section - E

V. Answer any one of the following:
49. a) Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ and hence evaluate $\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}$
b) Find the relationship between ' a ' and ' b ' so that the function f defined by $f(x)=\left\{\begin{array}{l}a x+1, \text { if } x \leq 3 \\ b x+3, \text { if } x>3\end{array}\right.$ is continuous at $\mathrm{x}=3$
50. a) Solve the following problem graphically minimize and maximize $\mathrm{z}=3 \mathrm{x}+$ qy Subject to constraints $x+3 y \leq 60 ; x+y \geq 10, x \leq y, x \geq 0, y \geq 0$
b) If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are different and $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$ then show that $1+\mathrm{xyz}=0$

